JP2003137691A - Method of producing single crystal - Google Patents

Method of producing single crystal

Info

Publication number
JP2003137691A
JP2003137691A JP2001326513A JP2001326513A JP2003137691A JP 2003137691 A JP2003137691 A JP 2003137691A JP 2001326513 A JP2001326513 A JP 2001326513A JP 2001326513 A JP2001326513 A JP 2001326513A JP 2003137691 A JP2003137691 A JP 2003137691A
Authority
JP
Japan
Prior art keywords
single crystal
producing
crucible
raw material
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001326513A
Other languages
Japanese (ja)
Other versions
JP4044315B2 (en
Inventor
Kenzo Susa
憲三 須佐
Hiroyuki Ishibashi
浩之 石橋
Sengutsutoban Nachimusu
セングツトバン ナチムス
Mitsuru Ishii
満 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIICHI KIDEN KK
Dai Ichi Kiden Co Ltd
Showa Denko Materials Co Ltd
Original Assignee
DAIICHI KIDEN KK
Hitachi Chemical Co Ltd
Dai Ichi Kiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAIICHI KIDEN KK, Hitachi Chemical Co Ltd, Dai Ichi Kiden Co Ltd filed Critical DAIICHI KIDEN KK
Priority to JP2001326513A priority Critical patent/JP4044315B2/en
Publication of JP2003137691A publication Critical patent/JP2003137691A/en
Application granted granted Critical
Publication of JP4044315B2 publication Critical patent/JP4044315B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)
  • Measurement Of Radiation (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a single crystal by which a high quality lithium tetraborate single crystal containing an impurity element added and having high light transmittance is produced. SOLUTION: The method of producing the Li2 Br4 O7 single crystal to which an impurity element is added includes the following processes: a) oxide raw materials having a predetermined composition are mixed and the resulting mixture is heated to a temperature of >=1,000 deg.C so as to melt the mixture in a crucible; b) a raw material for growing the single crystal is produced by pouring the melt into a casting mold and solidifying the melt; and c) the single crystal is formed by crystallizing the raw material for growing the single crystal by a Bridgman method or a Czohralski method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、中性子線検出器に
用いられるシンチレータ単結晶の製造方法に関するもの
であり、とくに不純物を添加したLi(以下
LBO)単結晶製造方法に適用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a scintillator single crystal used in a neutron beam detector, and particularly to a method for producing a doped Li 2 B 4 O 7 (hereinafter LBO) single crystal. To be done.

【0002】[0002]

【従来の技術】従来、放射線検出器用酸化物単結晶は融
液成長法として知られるチョクラルスキー法やブリッジ
マン法で育成されている。
2. Description of the Related Art Conventionally, an oxide single crystal for a radiation detector has been grown by the Czochralski method or Bridgman method known as a melt growth method.

【0003】[0003]

【発明が解決しようとする課題】最近、本発明者らは中
性子シンチレータとして、銅、ニッケル、チタンなどの
不純物元素を添加した4ホウ酸リチウム単結晶(Li
)が有望であるとの結果を得た。しかし、従来
の上記単結晶育成法をそのまま適用しても良質な単結晶
は得られなかった。その主な原因は上記ホウ酸リチウム
の融液は粘度が高く原料酸化物が融液状態でも容易に混
ざらないことにある。そのため、育成した結晶中には異
物や気泡欠陥が多く存在し、光透過率が低下する。その
結果、中性子線刺激によって発生した光信号が単結晶内
部を損失無く伝播できず、検出器への取出し効率が低下
するという問題があった。本発明は、光透過率の高い良
質な不純物添加4ホウ酸リチウム単結晶を歩留り良く製
造する方法を提供する。
Recently, the present inventors have proposed, as neutron scintillators, a lithium tetraborate single crystal (Li 2) to which an impurity element such as copper, nickel or titanium is added.
B 4 O 7 ) has shown promising results. However, a high quality single crystal could not be obtained even if the conventional single crystal growth method was applied as it was. The main cause is that the melt of the lithium borate has a high viscosity and the raw material oxides are not easily mixed even in the melt state. Therefore, many foreign matters and bubble defects are present in the grown crystal, and the light transmittance is reduced. As a result, there has been a problem that the optical signal generated by the neutron beam stimulation cannot propagate without loss inside the single crystal, and the extraction efficiency to the detector decreases. The present invention provides a method for producing a high-quality impurity-doped lithium tetraborate single crystal having high light transmittance with good yield.

【0004】[0004]

【課題を解決するための手段】本発明は、[1]不純物
元素を添加したLi単結晶の製造方法であっ
て、次の工程を経ることを特徴とする単結晶製造方法で
ある。 a)所定の組成の酸化物原料を混合し、るつぼ中で10
00℃以上に加熱溶融する、 b)融液を鋳型に注ぎ固化させて単結晶育成用原料を作
製する、 c)上記単結晶育成用原料を用いてブリッジマン法また
はチョクラルスキー法で単結晶化する。 本発明によれば、不純物元素を添加したLi
単結晶を製造するに当たり、まず、所定の組成の酸化物
原料を混合し、白金るつぼ中で約1000℃以上に加熱
溶融する。ついで融液を鋳型に注ぎ固化させて単結晶育
成用原料を作製する。これは鋳型の形状によるが、円筒
型の鋳型を用いた場合は通常円柱状の多結晶もしくはガ
ラスロッドとして取出すことが出きる。鋳型の形状は単
結晶育成用のるつぼの形状に一致させることが好まし
く、円形もしくは正方形などの多角形を用いることが出
きる。そして、上記単結晶育成用原料を用いてブリッジ
マン法もしくはチョクラルスキー法で単結晶育成するこ
とで良質の単結晶が得られる。
The present invention relates to [1] a method for producing a Li 2 B 4 O 7 single crystal doped with an impurity element, which is characterized by the following steps: Is. a) Mix oxide raw materials having a predetermined composition and mix them in a crucible for 10 times.
It is heated and melted at a temperature of 00 ° C. or higher, b) A melt is poured into a mold and solidified to prepare a single crystal growth raw material, and c) A single crystal is produced by the Bridgeman method or Czochralski method using the above single crystal growth raw material. Turn into. According to the present invention, Li 2 B 4 O 7 doped with an impurity element
In producing a single crystal, first, an oxide raw material having a predetermined composition is mixed and heated and melted in a platinum crucible at a temperature of about 1000 ° C. or higher. Then, the melt is poured into a mold and solidified to prepare a raw material for growing a single crystal. This depends on the shape of the mold, but when a cylindrical mold is used, it can usually be taken out as a cylindrical polycrystal or a glass rod. The shape of the mold is preferably matched with the shape of the crucible for growing a single crystal, and a polygon such as a circle or a square can be used. Then, a high quality single crystal is obtained by growing the single crystal by the Bridgman method or the Czochralski method using the above single crystal growing material.

【0005】また、本発明は、[2]上記酸化物原料と
して粒径が約2mm以下の粒子状Li化合物
および粉末状添加元素酸化物を用いることを特徴とする
上記[1]に記載の単結晶製造方法である。そして、
[3]上記酸化物原料の純度が99.9重量%以上であ
る上記[1]または上記[2]に記載の単結晶製造方法
である。上記酸化物原料として粒径は小さいほど好まし
いがLi組成の高純度溶融固化原料などを使
用する場合、予め約2mm以下の粒子状に粉砕した原料
および粉末状添加元素酸化物原料を用いることが好まし
い。また、上記酸化物原料の純度が99.9重量%以上
であることが好ましく、99.99重量%以上であれば
さらに好ましい。
[2] The present invention [2] is characterized in that a particulate Li 2 B 4 O 7 compound having a particle size of about 2 mm or less and a powdered additive element oxide are used as the oxide raw material. ] The method for producing a single crystal described in [1]. And
[3] The method for producing a single crystal according to the above [1] or [2], wherein the purity of the oxide raw material is 99.9% by weight or more. As the oxide raw material, the smaller the particle diameter is, the more preferable it is, but when using a high-purity melt-solidified raw material having a Li 2 B 4 O 7 composition, etc., a raw material and a powdered additive element oxide raw material which are previously pulverized into particles of about 2 mm or less. Is preferably used. The purity of the oxide raw material is preferably 99.9% by weight or more, and more preferably 99.99% by weight or more.

【0006】また、本発明は、[4]上記不純物元素が
Cu、Ni、Tiから選ばれなる上記[1]ないし上記
[3]のいずれかに記載の単結晶製造方法である。そし
て、[5]上記不純物元素の添加量が酸化物として0.
01〜5重量%である上記[1]ないし上記[4]のい
ずれかに記載の単結晶製造方法である。上記添加不純物
元素は如何なるものにも適用できるが特に中性子シンチ
レータ用途にはCu、Ni、Tiなどから少なくと1つ
以上選ぶことが好ましい。上記不純物元素の添加量が酸
化物として0.01〜5重量%である場合良好なシンチ
レータ特性が得られる。
Further, the present invention is [4] the method for producing a single crystal according to any one of the above [1] to [3], wherein the impurity element is selected from Cu, Ni and Ti. Then, [5] the addition amount of the above-mentioned impurity element is 0.
The method for producing a single crystal according to any one of the above [1] to [4], which is from 0 to 5% by weight. Although the above-mentioned additional impurity element can be applied to any element, it is preferable to select at least one or more from Cu, Ni, Ti, etc., especially for neutron scintillator applications. When the added amount of the above impurity element is 0.01 to 5% by weight as an oxide, good scintillator characteristics can be obtained.

【0007】また、本発明は、[6]上記製造工程にお
いて融液状態で撹拌を伴うことを特徴とする上記[1]
ないし上記[5]のいずれかに記載の単結晶製造方法で
ある。そして、[7]上記製造工程において融液状態で
3〜24時間保持することを特徴とする上記[1]ない
し上記[6]のいずれかに記載の単結晶製造方法であ
る。また、[8]上記鋳型が白金または炭素で構成され
ていることを特徴とする上記[1]ないし上記[7]の
いずれかに記載の単結晶製造方法である。また、[9]
上記鋳型の断面形状が単結晶育成用るつぼの断面形状に
等しく、円形もしくは多角形であって、内寸法が単結晶
育成用るつぼの内寸法に比べて等しいか、または、小さ
いことを特徴とする上記[1]ないし上記[8]のいず
れかに記載の単結晶製造方法である。上記製造工程にお
いて融液状態で撹拌を伴なわせることで融液の均一化を
促進することができる。撹拌手段として白金製の撹拌治
具を使用することが好ましい。また、溶融後、室温(2
5℃)に取出してから溶融状態を保っている間にすばや
く撹拌し、再び1000℃の溶融温度に保持することで
均一化が図れる。また、融液状態で3〜24時間保持す
ることが好ましい。上記鋳型の材質として融液の濡れが
悪くかつ熱膨張係数がLBO結晶より小さいものが好ま
しい。特に白金製もしくは炭素製が好ましい。白金製の
鋳型を用いた場合、単結晶育成用原料ロッドを取出し難
い場合があるが、その場合は白金を破いて容易に取り出
すことができる。るつぼへの原料充填効率改善の観点か
ら上記鋳型はるつぼに比べて等しいかもしくは僅かに小
さな寸法にすることが好ましい。
Further, the present invention [6] is characterized in that in the above manufacturing process, stirring is performed in a melt state.
To the single crystal production method according to any one of the above [5]. [7] The method for producing a single crystal according to any one of the above [1] to [6], characterized in that the melt state is maintained for 3 to 24 hours in the above production step. [8] The method for producing a single crystal according to any one of [1] to [7], wherein the template is made of platinum or carbon. Also, [9]
The cross-sectional shape of the mold is equal to the cross-sectional shape of the crucible for single crystal growth, circular or polygonal, the inner dimensions are equal to or smaller than the inner dimensions of the crucible for single crystal growth, or characterized by being small The method for producing a single crystal according to any one of [1] to [8] above. In the above manufacturing process, the homogenization of the melt can be promoted by agitation in the melt state. It is preferable to use a platinum-made stirring jig as the stirring means. Also, after melting, room temperature (2
Uniformity can be achieved by rapidly stirring after taking out at 5 ° C.) while maintaining the molten state and again holding at the melting temperature of 1000 ° C. Further, it is preferable to hold the melt state for 3 to 24 hours. It is preferable that the material of the mold is such that the wetting of the melt is poor and the coefficient of thermal expansion is smaller than that of the LBO crystal. Particularly, platinum or carbon is preferable. When a platinum mold is used, it may be difficult to take out the raw material rod for single crystal growth, but in that case, platinum can be broken and taken out easily. From the viewpoint of improving the efficiency of filling the crucible with the raw material, it is preferable that the mold has a size equal to or slightly smaller than that of the crucible.

【0008】また、本発明は、[10]ブリッジマン法
またはチョクラルスキー法で単結晶化する単結晶育成工
程において結晶育成速度を1時間当たり0.1〜1.0
mmとすることを特徴とする上記[1]ないし上記
[9]のいずれかに記載の単結晶製造方法である。ま
た、[11]上記単結晶育成工程において結晶育成用る
つぼが白金もしくは炭素からなり、その断面形状が円形
もしくは多角形であることを特徴とする上記[1]ない
し上記[10]のいずれかに記載の単結晶製造方法であ
る。また、[12]上記単結晶育成工程においてTi不
純物を添加する場合、炭素製るつぼを使用し、かつ、還
元雰囲気もしくは中性雰囲気で育成することを特徴とす
る上記[1]ないし上記[11]のいずれかに記載の単
結晶製造方法である。上記単結晶育成工程において結晶
育成速度を1時間当たり0.1〜1.0mmにすること
で良質な単結晶が得られる。1.0mmを超えて大きく
すると気泡欠陥が発生しやすくなる。また、育成速度は
遅い程良質の単結晶が得られやすいが、製造効率の観点
から0.1mm以上が好ましい。また、結晶育成用るつ
ぼ材料としては白金もしくは炭素が好ましい。特に、T
i不純物を添加する場合は炭素製るつぼを使用し、か
つ、還元雰囲気もしくは中性雰囲気で育成することが好
ましい。空気雰囲気などの酸化性雰囲気中で育成する
と、シンチレーション特性が劣化する。その理由は明確
ではないが、還元もしくは中性雰囲気では、不純物元素
のTiが3価のイオンとなり易いが、酸化性雰囲気下で
は4価のイオンとなるためと推定される。
Further, according to the present invention, in the single crystal growing step of [10] Bridgman method or Czochralski method, the crystal growth rate is 0.1 to 1.0 per hour.
mm is the method for producing a single crystal according to any one of the above [1] to [9]. [11] In any one of the above-mentioned [1] to [10], wherein the crucible for growing the crystal in the single-crystal growing step is made of platinum or carbon and its cross-sectional shape is circular or polygonal. It is the described method for producing a single crystal. [12] The above [1] to [11], wherein when a Ti impurity is added in the single crystal growing step, a carbon crucible is used and the growing is performed in a reducing atmosphere or a neutral atmosphere. The method for producing a single crystal according to any one of 1. A high-quality single crystal can be obtained by setting the crystal growth rate to 0.1 to 1.0 mm per hour in the single crystal growth step. If it exceeds 1.0 mm and becomes large, bubble defects are likely to occur. Further, the slower the growth rate, the easier it is to obtain a high-quality single crystal, but 0.1 mm or more is preferable from the viewpoint of production efficiency. Platinum or carbon is preferable as the crucible material for growing crystals. In particular, T
When the i impurity is added, it is preferable to use a carbon crucible and grow in a reducing atmosphere or a neutral atmosphere. When grown in an oxidizing atmosphere such as an air atmosphere, the scintillation characteristics deteriorate. The reason for this is not clear, but it is presumed that the impurity element Ti tends to become trivalent ions in a reducing or neutral atmosphere, but becomes tetravalent ions in an oxidizing atmosphere.

【0009】[0009]

【実施例】(実施例1)LBO原料として純度99.9
9%の溶融固化した円盤状多結晶体を準備し、粒径が2
mm以下のサイズになるように乳鉢にて軽く粉砕した。
添加元素酸化物原料として純度99.99%の酸化第1
銅(CuO)粉末を準備した。粉砕したLBO原料1
00gに対して重量で0.015%の酸化第1銅を添加
・混合し、内径50mm、外形70mm高さ70mmの白金製
るつぼに充填した。空気中で1000℃に昇温し、1時
間後に室温(25℃)に取出し、すばやく白金製の撹拌
棒で撹拌し、再び1000℃で溶融し、溶融状態で3時
間保持した後、室温(25℃)に取出し、異物(未溶解
物)が存在しないことを確認した。再び1000℃に昇
温し、ついで白金製の鋳型(内径19mm、長さ160m
m)に鋳込んだ。この場合、冷却固化物は容易に鋳型か
ら取出すことができなかった。そこで白金を破いて取出
し単結晶育成用原料ロッドとした。次に、3ゾーンの縦
型ブリッジマン炉を用いて単結晶育成を試みた。単結晶
育成用るつぼとして内径20mm、高さ160mm、厚さ
0.3mmの白金るつぼを用意した。種結晶として外径
19.5mm、長さ30mmの円柱状のLBO単結晶を用意
した。上記種結晶を上記るつぼに充填し、その上に単結
晶育成用原料ロッドを充填し、育成装置にセットした。
ついで3ゾーン育成炉を昇温し、定常になるのを待って
るつぼを上昇させ種結晶が約15mm溶ける位置でるつぼ
を停止させ24時間保持した。ついで毎時0.3mmの
速度でるつぼを降下させて育成を完了した。育成した結
晶を取出した結果、透明で均一な単結晶が得られた。つ
いで育成した単結晶の上部、下部、中心部から夫々直径
20mm、厚み5mmのサンプルを2枚合計6枚切出し研磨
した。研磨サンプルの紫外・可視領域の透過率を測定し
たところ、何れも300nmの波長で50%以上、40
0nm以上で90%以上の透過率であった。また、中性
子線を照射して中性子検出感度を調べた結果、何れも従
来の単結晶に比べて一様に高い光出力が確認された。
EXAMPLES Example 1 Purity 99.9 as LBO raw material
A 9% melt-solidified disk-shaped polycrystal was prepared and had a grain size of 2
Lightly crushed in a mortar so as to have a size of mm or less.
Oxide with a purity of 99.99% as a source of additive element oxide
Copper (Cu 2 O) powder was prepared. Crushed LBO raw material 1
0.015% by weight of cuprous oxide was added to and mixed with 00 g, and the mixture was filled in a platinum crucible having an inner diameter of 50 mm, an outer diameter of 70 mm and a height of 70 mm. The temperature was raised to 1000 ° C. in air, and after 1 hour, the mixture was taken out to room temperature (25 ° C.), quickly stirred with a platinum stirring rod, melted again at 1000 ° C., and held in the molten state for 3 hours, then at room temperature (25 Then, it was confirmed that no foreign matter (undissolved matter) was present. The temperature is raised again to 1000 ° C, and then a platinum mold (inner diameter 19 mm, length 160 m)
It was cast into m). In this case, the cooled solidified product could not be easily removed from the mold. Then, the platinum was broken and taken out to obtain a raw material rod for growing a single crystal. Next, an attempt was made to grow a single crystal using a 3-zone vertical Bridgman furnace. A platinum crucible having an inner diameter of 20 mm, a height of 160 mm, and a thickness of 0.3 mm was prepared as a crucible for growing a single crystal. A cylindrical LBO single crystal having an outer diameter of 19.5 mm and a length of 30 mm was prepared as a seed crystal. The seed crystal was filled in the crucible, and the raw material rod for growing a single crystal was filled on the crucible and set in the growing device.
Then, the temperature of the three-zone growth furnace was raised, the crucible waiting for the temperature to become steady was raised, and the crucible was stopped at a position where the seed crystal melted by about 15 mm, and was held for 24 hours. Then, the crucible was lowered at a speed of 0.3 mm per hour to complete the growth. As a result of taking out the grown crystal, a transparent and uniform single crystal was obtained. Then, two samples each having a diameter of 20 mm and a thickness of 5 mm were cut out from the upper, lower and central portions of the grown single crystal, and a total of 6 samples were cut and polished. When the transmittance of the polished sample in the ultraviolet / visible region was measured, it was found that both were 50% or more at a wavelength of 300 nm and 40% or less.
The transmittance was 90% or more at 0 nm or more. Moreover, as a result of irradiating the neutron beam and examining the neutron detection sensitivity, it was confirmed that the light output was uniformly higher than that of the conventional single crystal.

【0010】(実施例2)実施例1において、酸化第1
銅の代わりに酸化ニッケル(NiO)を用い、添加量と
して0.02重量%とし、実施例1と同様な操作で単結
晶を作製した。評価の結果、単結晶全般に渡って均一な
結晶が得られた。また、中性子検出感度も一様に高いも
のであった。
(Example 2) In Example 1, the first oxidation
Nickel oxide (NiO) was used instead of copper, the addition amount was 0.02% by weight, and a single crystal was produced by the same operation as in Example 1. As a result of the evaluation, a uniform crystal was obtained over the entire single crystal. The neutron detection sensitivity was also uniformly high.

【0011】(実施例3)実施例1において育成速度を
1mm/hにして行ったところ、単結晶の1部に気泡欠
陥が見られた。しかし90%以上は良質な単結晶であっ
た。
(Example 3) When the growth rate was set to 1 mm / h in Example 1, bubble defects were found in a part of the single crystal. However, 90% or more was a high quality single crystal.

【0012】(実施例4)実施例1において、酸化第1
銅の添加量を0.5重量%とし、同様な操作で単結晶を
作製した。評価の結果、単結晶の1部分に偏析が見られ
たが90%以上に渡って均一な結晶が得られた。また、
中性子検出感度も一様に高いものであった。
(Example 4) In Example 1, the first oxidation
A single crystal was produced by the same operation with the amount of copper added being 0.5% by weight. As a result of the evaluation, segregation was observed in one part of the single crystal, but a uniform crystal was obtained over 90% or more. Also,
The neutron detection sensitivity was also uniformly high.

【0013】(実施例5)実施例1において、酸化第1
銅の代わりに酸化チタン(TiO)を用い、添加量と
して0.02重量%とし、単結晶育成用るつぼとして、
内径20mm、高さ160mm、厚さ3mmの炭素製るつ
ぼを用意し、雰囲気を窒素雰囲気とした以外は実施例1
と同様な操作で単結晶を作製した。評価の結果、単結晶
全般に渡って均一な結晶が得られた。また、中性子検出
感度も一様に高いものであった。以上の実施例では、い
ずれもブリッジマン法を用いているが、公知のチョクラ
ルスキー法を適用しても育成条件を上記の範囲から大幅
に変更しない限り良質の単結晶が得られる。
(Example 5) In Example 1, the first oxidation
Titanium oxide (TiO 2 ) was used instead of copper, the addition amount was 0.02% by weight, and a crucible for growing a single crystal was obtained.
Example 1 except that a carbon crucible having an inner diameter of 20 mm, a height of 160 mm and a thickness of 3 mm was prepared and the atmosphere was a nitrogen atmosphere.
A single crystal was produced by the same operation as. As a result of the evaluation, a uniform crystal was obtained over the entire single crystal. The neutron detection sensitivity was also uniformly high. In all of the above examples, the Bridgman method is used, but even if the known Czochralski method is applied, a good quality single crystal can be obtained unless the growth conditions are significantly changed from the above range.

【0014】[0014]

【発明の効果】本発明により、光透過率の高い良質な不
純物元素添加4ホウ酸リチウム単結晶を歩留り良く製造
することができ、良質の中性子シンチレータ単結晶を得
ることができた。
According to the present invention, a good quality neutron scintillator single crystal with a high light transmittance can be produced with a good yield of a good quality impurity element-doped lithium tetraborate single crystal.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C30B 15/00 C30B 15/00 Z 15/10 15/10 G01T 1/202 G01T 1/202 3/06 3/06 (72)発明者 石橋 浩之 茨城県つくば市和台48 日立化成工業株式 会社総合研究所内 (72)発明者 ナチムス セングツトバン 茨城県つくば市和台48 日立化成工業株式 会社総合研究所内 (72)発明者 石井 満 東京都調布市下石原一丁目54番1号 株式 会社第一機電内 Fターム(参考) 2G088 FF09 GG10 JJ37 4G077 AA02 BD07 CD01 EC05 EC10 EG01 EG02 EH09 MA01 MA02 PA16 PD01 PD02 4H001 CA08 CF02 XA03 XA05 XA08 YA22 YA28 YA29 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C30B 15/00 C30B 15/00 Z 15/10 15/10 G01T 1/202 G01T 1/202 3/06 3 / 06 (72) Inventor Hiroyuki Ishibashi 48, Wadai, Tsukuba, Ibaraki Pref., Hitachi Chemical Co., Ltd. Research Institute (72) Inventor, Natimus Sengtu Toban 48, Wadai, Tsukuba, Ibaraki, Hitachi Co., Ltd. (72) Invention Person Ishii Mitsuru 1-54-1, Shimoishihara, Chofu-shi, Tokyo Stock company Dai-ichi Denki F-term (reference) 2G088 FF09 GG10 JJ37 4G077 AA02 BD07 CD01 EC05 EC10 EG01 EG02 EH09 MA01 MA02 PA16 PD01 PD02 4H001 CA08 CF02 XA03 XA05 XA05 XA05 YA22 YA28 YA29

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 不純物元素を添加したLi
結晶の製造方法であって、次の工程を経ることを特徴と
する単結晶製造方法、 a)所定の組成の酸化物原料を混合し、るつぼ中で10
00℃以上に加熱溶融する、 b)融液を鋳型に注ぎ固化させて単結晶育成用原料を作
製する、 c)上記単結晶育成用原料を用いてブリッジマン法また
はチョクラルスキー法で単結晶化する。
1. A method for producing a Li 2 B 4 O 7 single crystal to which an impurity element is added, comprising the following steps: a) an oxide raw material having a predetermined composition Mix and mix in crucible 10
It is heated and melted at a temperature of 00 ° C. or higher, b) A melt is poured into a mold and solidified to prepare a single crystal growth raw material, and c) A single crystal is produced by the Bridgeman method or Czochralski method using the above single crystal growth raw material. Turn into.
【請求項2】 上記酸化物原料として粒径が約2mm以
下の粒子状Li化合物および粉末状添加元素
酸化物を用いることを特徴とする請求項1に記載の単結
晶製造方法。
2. The method for producing a single crystal according to claim 1, wherein a particulate Li 2 B 4 O 7 compound having a particle size of about 2 mm or less and a powdered additive element oxide are used as the oxide raw material. .
【請求項3】 上記酸化物原料の純度が99.9重量%
以上である請求項1または請求項2に記載の単結晶製造
方法。
3. The purity of the oxide raw material is 99.9% by weight.
It is above, The single crystal manufacturing method of Claim 1 or Claim 2.
【請求項4】 上記不純物元素がCu、Ni、Tiから
選ばれなる請求項1ないし請求項3のいずれかに記載の
単結晶製造方法。
4. The method for producing a single crystal according to claim 1, wherein the impurity element is selected from Cu, Ni and Ti.
【請求項5】 上記不純物元素の添加量が酸化物として
0.01〜5重量%である請求項1ないし請求項4のい
ずれかに記載の単結晶製造方法。
5. The method for producing a single crystal according to claim 1, wherein the impurity element is added in an amount of 0.01 to 5% by weight as an oxide.
【請求項6】 上記製造工程において融液状態で撹拌を
伴うことを特徴とする請求項1ないし請求項5のいずれ
かに記載の単結晶製造方法。
6. The method for producing a single crystal according to claim 1, wherein stirring is performed in a melt state in the production process.
【請求項7】 上記製造工程において融液状態で3〜2
4時間保持することを特徴とする請求項1ないし請求項
6のいずれかに記載の単結晶製造方法。
7. In the above-mentioned manufacturing process, 3 to 2 in a melt state.
The method for producing a single crystal according to claim 1, which is held for 4 hours.
【請求項8】 上記鋳型が白金または炭素で構成されて
いることを特徴とする請求項1ないし請求項7のいずれ
かに記載の単結晶製造方法。
8. The method for producing a single crystal according to claim 1, wherein the template is made of platinum or carbon.
【請求項9】 上記鋳型の断面形状が単結晶育成用るつ
ぼの断面形状に等しく、円形もしくは多角形であって、
内寸法が単結晶育成用るつぼの内寸法に比べて等しい
か、または、小さいことを特徴とする請求項1ないし請
求項8のいずれかに記載の単結晶製造方法。
9. The cross-sectional shape of the mold is equal to the cross-sectional shape of the crucible for growing a single crystal, and is circular or polygonal,
9. The method for producing a single crystal according to claim 1, wherein the inner size is equal to or smaller than the inner size of the crucible for growing a single crystal.
【請求項10】 ブリッジマン法またはチョクラルスキ
ー法で単結晶化する単結晶育成工程において結晶育成速
度を1時間当たり0.1〜1.0mmとすることを特徴
とする請求項1ないし請求項9のいずれかに記載の単結
晶製造方法。
10. The crystal growth rate is 0.1 to 1.0 mm per hour in the single crystal growth step of single crystallizing by the Bridgman method or the Czochralski method. 10. The method for producing a single crystal according to any of 9.
【請求項11】 上記単結晶育成工程において結晶育成
用るつぼが白金もしくは炭素からなり、その断面形状が
円形もしくは多角形であることを特徴とする請求項1な
いし請求項10のいずれかに記載の単結晶製造方法。
11. The crystal growth crucible in the single crystal growth step is made of platinum or carbon, and the cross-sectional shape thereof is circular or polygonal, according to any one of claims 1 to 10. Single crystal manufacturing method.
【請求項12】 上記単結晶育成工程においてTi不純
物を添加する場合、炭素製るつぼを使用し、かつ、還元
雰囲気もしくは中性雰囲気で育成することを特徴とする
請求項1ないし請求項11のいずれかに記載の単結晶製
造方法。
12. The method according to claim 1, wherein when the Ti impurity is added in the single crystal growth step, a carbon crucible is used and the growth is performed in a reducing atmosphere or a neutral atmosphere. A method for producing a single crystal according to claim 1.
JP2001326513A 2001-10-24 2001-10-24 Single crystal manufacturing method Expired - Fee Related JP4044315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001326513A JP4044315B2 (en) 2001-10-24 2001-10-24 Single crystal manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001326513A JP4044315B2 (en) 2001-10-24 2001-10-24 Single crystal manufacturing method

Publications (2)

Publication Number Publication Date
JP2003137691A true JP2003137691A (en) 2003-05-14
JP4044315B2 JP4044315B2 (en) 2008-02-06

Family

ID=19142880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001326513A Expired - Fee Related JP4044315B2 (en) 2001-10-24 2001-10-24 Single crystal manufacturing method

Country Status (1)

Country Link
JP (1) JP4044315B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007008734A (en) * 2005-06-28 2007-01-18 Chichibu Fuji Co Ltd Lithium tetraborate single crystal and method for growing the same
JP2009040684A (en) * 2002-12-25 2009-02-26 Japan Science & Technology Agency Method of manufacturing fluoride crystal, and crucible
CN113802176A (en) * 2021-08-02 2021-12-17 江苏布里其曼科技股份有限公司 Single crystal copper growth process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009040684A (en) * 2002-12-25 2009-02-26 Japan Science & Technology Agency Method of manufacturing fluoride crystal, and crucible
JP2007008734A (en) * 2005-06-28 2007-01-18 Chichibu Fuji Co Ltd Lithium tetraborate single crystal and method for growing the same
JP4746925B2 (en) * 2005-06-28 2011-08-10 株式会社秩父富士 Lithium tetraborate single crystal and its growth method
CN113802176A (en) * 2021-08-02 2021-12-17 江苏布里其曼科技股份有限公司 Single crystal copper growth process

Also Published As

Publication number Publication date
JP4044315B2 (en) 2008-02-06

Similar Documents

Publication Publication Date Title
KR101858779B1 (en) A method for the preparation of doped garnet structure single crystals with diameters of up to 500 mm
CN106978629A (en) Method for controlling the gallium content in Gd-Ga garnet scintillator
Zhao et al. Characteristics of large-sized Ce: YAG scintillation crystal grown by temperature gradient technique
CZ200615A3 (en) Single crystal LuAG: Pr for manufacture scintillation detectors and solid lasers and manufacture thereof
CN1225572C (en) Integrated melt method for crystal growth
DE3301831A1 (en) IRIDIUM-RHENIUM POT, METHOD FOR THE PRODUCTION THEREOF AND METHOD FOR GROWING A CRYSTAL IN THE POT
CN104005088B (en) The Czochralski grown method of the magnesium aluminate spinel crystal of transition-metal ion doping
JP5446241B2 (en) Melt composition controlled unidirectionally solidified crystal growth apparatus and crystal growth method
JP4044315B2 (en) Single crystal manufacturing method
US5998313A (en) Cesium-lithium borate crystal
JP6102687B2 (en) Method for producing complex oxide single crystal
JPH08319198A (en) Production of spinel single crystal fiber
US3939252A (en) Dilithium heptamolybdotetragadolinate
JP2005343701A (en) SINGLE CRYSTAL OF YTTERBIUM (Yb)-CONTAINING MIXED CRYSTAL OXIDE
EP0786542B1 (en) Cesium-lithium borate crystal
JP2507910B2 (en) Method for producing oxide single crystal
JP2636929B2 (en) Method for producing bismuth germanate single crystal
CN115467024B (en) Potassium barium calcium boron oxyfluoride compound, potassium barium calcium boron oxyfluoride nonlinear optical crystal, preparation method and application
JP2004137096A (en) Compound raw material, compound single crystal, and its production method
TWI609997B (en) Method for preparing a silicon melt in a quartz crucible
JPH08295507A (en) Optical crystal and its production
KR100321373B1 (en) Method for fabricating bismuth germanium oxides crystal
JPS59169995A (en) Preparation of single crystal of hgcdte
JP2905321B2 (en) Lithium borate single crystal and method for producing the same
US2736659A (en) Method for preparation of highly refractive material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070607

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070802

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees