JP2005343701A - SINGLE CRYSTAL OF YTTERBIUM (Yb)-CONTAINING MIXED CRYSTAL OXIDE - Google Patents

SINGLE CRYSTAL OF YTTERBIUM (Yb)-CONTAINING MIXED CRYSTAL OXIDE Download PDF

Info

Publication number
JP2005343701A
JP2005343701A JP2002170174A JP2002170174A JP2005343701A JP 2005343701 A JP2005343701 A JP 2005343701A JP 2002170174 A JP2002170174 A JP 2002170174A JP 2002170174 A JP2002170174 A JP 2002170174A JP 2005343701 A JP2005343701 A JP 2005343701A
Authority
JP
Japan
Prior art keywords
single crystal
oxide
crystal
sio
nbo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002170174A
Other languages
Japanese (ja)
Inventor
Tsuguo Fukuda
承生 福田
Akira Yoshikawa
彰 吉川
Takuji Tsuzaki
卓司 津崎
Hikari Koike
光 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Corp
Fukuda Crystal Laboratory
Koike Co Ltd
Original Assignee
Mitsubishi Corp
Fukuda Crystal Laboratory
Koike Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Corp, Fukuda Crystal Laboratory, Koike Co Ltd filed Critical Mitsubishi Corp
Priority to JP2002170174A priority Critical patent/JP2005343701A/en
Priority to AU2003242191A priority patent/AU2003242191A1/en
Priority to PCT/JP2003/007342 priority patent/WO2003104533A1/en
Priority to TW92115793A priority patent/TW200401903A/en
Publication of JP2005343701A publication Critical patent/JP2005343701A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/08Downward pulling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Luminescent Compositions (AREA)
  • Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a luminescent material which has a high luminous efficiency and high accuracy and can emit light in the visible region. <P>SOLUTION: The single crystal of the mixed crystal oxide is selected from the group consisting of (Y<SB>y</SB>Yb<SB>x</SB>)<SB>2</SB>SiO<SB>5</SB>, (Gd<SB>y</SB>Yb<SB>x</SB>)<SB>2</SB>SiO<SB>5</SB>, (Lu<SB>y</SB>Yb<SB>x</SB>)<SB>2</SB>SiO<SB>5</SB>, (Y<SB>y</SB>Yb<SB>x</SB>)NbO<SB>4</SB>, (Gd<SB>y</SB>Yb<SB>x</SB>)NbO<SB>4</SB>, (Lu<SB>y</SB>Yb<SB>x</SB>)NbO<SB>4</SB>, (Y<SB>y</SB>Yb<SB>x</SB>)TaO<SB>4</SB>, (Gd<SB>y</SB>Yb<SB>x</SB>)TaO<SB>4</SB>, and (Lu<SB>y</SB>Yb<SB>x</SB>)TaO<SB>4</SB>. In the formulae, x+y≤1.03, 0≤x≤1.03, and 0≤y≤1.03. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、固体レーザー、シンチレータ等に適した発光材料に関し、より詳細には、シリケート単結晶、タンタレート単結晶及びニオベート単結晶を母結晶とし、Ybを含む混晶酸化物単結晶に関する。
【従来の技術】
従来、シンチレータ用発光材料として使用されているものは、Ce:GSO、Ce:LSO、又はCe:YAPに代表されるように、主にCeの5d-4f遷移を用いたものである。
例えば、Crによって賦活化されるGd・Gaガーネット、Gd・Sc・Gaガーネット、Gd・Sc・Alガーネット、及びCe又はNdによって賦活化されるY・Alガーネット(特開平4-289483号公報)及びTb含有ガーネット(特開平7-149599号公報及び特開平10-1396号公報)が開示されている。
【0002】
【発明が解決しようとする課題】
上記の発光材料は、下記のような問題点を有している。
Ce:GSO及びCe:LSOでは、発光元素であるCeが多量に含まれる方が発光量は多い。しかし、Ceの5d-4f遷移を用いたものは、1at%(原子量比)を超えるとコンセントレーションクエンチング(濃度消光)が顕著となり、シンチレータ効果を示さなくなる。
更に、Ceは希土類イオンの中でもLaに次いで大きく、母結晶における代表的な希土類イオン(Y、Gd、Lu等)と比して大きすぎるため、偏析係数が極めて小さくなる。その結果、Ceの濃度が単結晶の作製方向に従って変動する。このため、物性値が変化し、高精度化PET(ポジトロン断層技術)等に使用する場合には、大きな問題となっている。
また、発光波長が370nmであるため、検出器として光電子増倍管を用いる必要があり、光電子増倍管より30〜40倍も分解能が高い半導体フォトダイオード(=半導体光ダイオード)が使えないという技術的限界がある。
本発明は、上記の問題点を解決するためになされたものである。従って、本発明の目的は、発光効率が高く、高精度で、可視領域での発光が可能な発光材料を提供することである。
【0003】
【課題を解決するための手段】
本発明者らは、Ybを混晶成分とする特定の混晶酸化物単結晶において、優れた発光特性を有することを見出し、本発明を完成するに至った。すなわち、本発明は、(YyYbx)2SiO5、(GdyYbx)2SiO5、(LuyYbx)2SiO5、(YyYbx)NbO4、(GdyYbx)NbO4、(LuyYbx)NbO4、(YyYbx)TaO4、(GdyYbx)TaO4及び(LuyYbx)TaO4からなる群から選択される混晶酸化物単結晶である。
(式中、x+y≦1.03、0≦x≦1.03、0≦y≦1.03である)
上記単結晶は、
(1)酸化イットリウム(Y2O3)、酸化ガドリニウム(Gd2O3)又は酸化ルテチウム(Lu2O3)のいずれか1つと、
(2)シリカ(SiO2)、酸化ニオブ(Nb2O5)又は酸化タンタル(Ta2O5)のいずれか1つと、
(3)酸化イッテルビウム(Yb2O3)とを、
目的組成となるように秤量し、混合して融解した後、結晶成長させることにより製造することができる。
【0004】
【発明の実施の形態】
本発明の混晶酸化物単結晶は、以下のように分類される。
(YyYbx)2SiO5、(GdyYbx)2SiO5又は(LuyYbx)2SiO5の群からなる化合物から選択されるシリケート単結晶。
(YyYbx)NbO4、(GdyYbx)NbO4又は(LuyYbx)NbO4の群からなる化合物から選択されるニオベート単結晶。
(YyYbx)TaO4、(GdyYbx)TaO4又は(LuyYbx)TaO4の群からなる化合物から選択されるタンタレート単結晶。
(式中、x+y≦1.03、0≦x≦1.03、0≦y≦1.03である)
通常、希土類のサイトには最大で1ではなく、1.03程度まで入る。好ましいxの範囲は0.1〜0.2である。xがこの範囲の単結晶は発光効率が高い。
【0005】
上記化合物は、近接の陰イオン(酸素イオン)と電荷移動状態(CTS)と呼ばれる光学的に活性な状態を形成する元素としてYbを含有している。
本発明のYb混晶酸化物単結晶においては、Ybと酸素イオンとの間のCTSからの遷移により発光が生じる。このため、従来のシンチレータ用発光材料でみられた濃度消光も40at%以下のYb濃度では顕著に現れない。従って、従来に比べ高い輝度を得ることができる。また、本発明のYb混晶酸化物単結晶の発光波長は、540nm付近である。従って、シンチレータ用発光材料として用いた場合、発光波長が半導体フォトダイオードの感度範囲内であるという利点も有している。
【0006】
本発明の混晶酸化物単結晶は、回転引き上げ法やブリッジマン法等の従来技術におけるいずれの公知の方法を用いても作製することができる。例えば、下記のようなマイクロ引き下げ法(特願2000−29083号公報)により作製することもできる。
(シリケート単結晶の作製方法)
出発原料としては、純度5N(99.999%)の酸化イットリウム(Y2O3)、酸化ガドリニウム(Gd2O3)、酸化イッテルビウム(Yb2O3)、酸化ルテチウム(Lu2O3)、シリカ(SiO2)を用いる。これらの出発原料を目的組成となるように秤量、混合した後、成型、焼成してシリケート単結晶を作製する。
単結晶成長は、高周波誘導加熱によるモディファイドマイクロ引き下げ装置を用いて行う。マイクロ引き下げ装置は、坩堝と、坩堝底部に設けた細孔から流出する融液に接触させる種を保持する種保持具と、種保持具を下方に移動させる移動機構と、該移動機構の移動速度制御装置と、坩堝を加熱する誘導加熱手段とを具備した一方向凝固成長装置である。
該坩堝はイリジウム金属又はイリジウム合金坩堝であり、坩堝底部外周にイリジウム金属又はイリジウム合金からなる発熱体であるアフターヒーターを配置する。坩堝及びアフターヒーターは、誘導加熱手段の出力調整により発熱量を調整することによって、坩堝底部に設けた細孔から引き出される融液の固液境界相の加熱温度を制御することが可能である。
【0007】
この装置において、細孔を複数個設け、該細孔の径を実効偏析係数keffが約1であり、かつ、融液が垂れ落ちない大きさ(酸化物共晶体の場合、400μmφ以下、好ましくは200μmφ〜300μmφ)とし、流下した融液が種結晶に接触する前に合流するように複数の細孔を配置する。
この装置を用いて、上述の方法にて準備した成型、焼成済みの原料を坩堝に入れる。炉内の雰囲気制御のため、真空排気した後、高純度Arガス(99.99%)を炉内に導入することにより、炉内を不活性ガス雰囲気とし、高周波誘導加熱コイルに高周波電力を徐々に印加することにより坩堝を加熱して、坩堝内の原料を完全に融解する。融液の組成の均一性を図る為、高周波出力を約2時間保持することが望ましい。
種結晶を所定の速度で徐々に上昇させて、その先端を坩堝下端の細孔(流下した融液が種結晶に接触する前に合流するように複数の細孔を配置されている)に接触させて充分になじませる。次いで、融液温度を調整しながら引き下げ軸を下降させることで結晶を成長させる。準備した材料が全て結晶化し、融液が無くなった時点で結晶成長終了となる。当該結晶はアフターヒーター内に保持されたまま室温まで徐々に冷却される。
【0008】
(ニオベート単結晶又はタンタレート単結晶の作製方法)
出発原料として、純度5N(99.999%)の酸化イットリウム(Y2O3)、酸化イッテルビウム(Yb2O3)、酸化ルテチウム(Lu2O3)、酸化ニオブ(Nb2O5)、酸化タンタル(Ta2O5)を用いる。これらの出発原料を目的組成となるように秤量、混合した後、成型、焼成して単結晶を作製する。
単結晶成長は、上記と同様に高周波誘導加熱によるモディファイド引き下げ装置を用いて行う。
【0009】
【実施例】
(実施例1〜3)
各種シリケート単結晶をマイクロ引き下げ法により作製した。各種シリケート単結晶の作製条件を表1に示す。
【0010】
【表1】
表1

Figure 2005343701
【0011】
実施例3で得られた(Lu0.85Yb0.15)2SiO5(Yb=15at%)の単結晶の写真を図1に示す。また、実施例1〜3で得られた単結晶(Yb=15at%)の粉末X線回折図を図2〜4に示す。
(実施例4〜6)
各種ニオベート単結晶をマイクロ引き下げ法により作製した。各種ニオベート単結晶の作製条件を表2に示す。
【0012】
【表2】
表2
Figure 2005343701
【0013】
実施例6で得られた(Lu0.85Yb0.15)NbO4(Yb=15at%)の単結晶の写真を図5に示す。また、実施例4〜6で得られた単結晶(Yb=15at%)の粉末X線回折図を図6〜8に示す。
(実施例7〜9)
各種タンタレート単結晶をマイクロ引き下げ法により作製した。各種タンタレート単結晶の作製条件を表3に示す。
【0014】
【表3】
表3
Figure 2005343701
【0015】
実施例9で得られた(Lu0.85Yb0.15)TaO4(Yb=15at%)の単結晶の写真を図9に示す。また、実施例7〜9で得られた単結晶(Yb=15at%)の粉末X線回折図を図10〜12に示す。
【0016】
(比較例)
Ceを賦活材とする発光材料の代表例であるCe: Lu2SiO5を下記の方法により製造した。
出発原料は、純度4N(99.99%)以上の酸化ガドリニウム(Lu2O3)、シリカ(SiO2)を用いた。これらの出発原料を目的組成となるように秤量、混合した後、成型、焼成して発光材料の原料とした。酸化セリウム(CeO2)は結晶成長のバッチごとに坩堝中に添加した。
単結晶成長は、高周波誘導加熱によるCz装置を用いて行った。Cz装置は、坩堝及びアフターヒーターと、坩堝中にある融液に接触させる種(Lu2SiO5の単結晶)を保持する種保持具と、種保持具を下方に移動させる移動機構と、該移動機構の移動速度制御装置と、移動機構の回転機構と、回転速度制御装置と、坩堝を加熱する誘導加熱手段とを具備した一方向凝固成長装置である。該坩堝はイリジウム金属又はイリジウム合金坩堝であり、坩堝底部外周にイリジウム金属またはイリジウム合金からなる発熱体であるアフターヒーターを配置する。坩堝及びアフターヒーターは、誘導加熱手段の出力調整により発熱量の調整が可能であり、これによって加熱温度の制御を可能としている。
【0017】
この装置を用いて、上述の方法にて準備した成型、焼成済みの発光材料の原料を坩堝に入れた。炉内の雰囲気を制御するために真空排気した。その後、高純度Arガス(99.99%)を炉内に導入して、炉内を不活性ガス雰囲気とした。高周波誘導加熱コイルに高周波電力を徐々に印加することにより坩堝を加熱して、坩堝内の原料を完全に融解した。融液の組成の均一性を図る為、高周波出力を約5時間保持した。
続いて、種結晶を所定の速度で回転させながら所定の速度で徐々に下降させた。種結晶の先端を坩堝内の融液に接触させて充分になじませた後、融液温度を調整しながら引き上げ軸を上昇させることで結晶を成長させた。準備した材料が5割程度結晶化し、融液の組成が均質で無くなった時点で結晶成長を終えた。当該結晶をアフターヒーター内に保持したまま室温まで徐々に冷却した。
【0018】
(発光スペクトルの測定)
X線源としてCuの封入管(25kV、15mA)を用い、分光光度計(Spectrofluorometer 199S)によりX線励起に対する発光スペクトルを測定方法した。結果を図13〜15に示す。
図13は実施例3で得られた(Lu0.85Yb0.15)2SiO5(Yb=15at%)の単結晶の発光スペクトルである。長波長側の発光ピークが半導体光ダイオードの最高感度波長(530nm)付近に位置することがわかる。また、比較例のCeを賦活剤とするものと強度比較を行うと、本発明の結晶の発光が充分に高いことがわかる。
図14は実施例6で得られた(Lu0.85Yb0.15)NbO4(Yb=15at%)の単結晶の発光スペクトルである。比較例のCeを賦活剤とするものと強度比較を行うと、本発明の結晶の発光が充分に高いことがわかる。
図15は実施例9で得られた(Lu0.85Yb0.15)TaO4(Yb=15at%)の単結晶の発光スペクトルである。長波長側の発光ピークが半導体光ダイオードの最高感度波長(530nm)付近に位置することがわかる。また、比較例のCeを賦活剤とするものと強度比較を行うと、本発明の結晶の発光が充分に高いことがわかる。
また、いずれの実施例においても、Ybが15at%で最大強度を示す。
【0019】
(偏析の測定)
走査型電子顕微鏡(JXA-8621MX)に付属している波長分散型X線マイクロアナライザー(EPMA: JEOL JXA-8621MX)を用いて、結晶中のYb分布の測定を行った。その結果を図16〜18に示す。また比較例の結晶中のCe分布を図19に示す。いずれの実施例においても、実効偏析係数(C0/CS)は1であり、Ybが結晶中に均質に分布することを示しているが、比較例では、実効偏析係数は0.002から0.008程度しか単結晶中に取り込まれず、かつ、取り込まれる比率も0.002から0.008と4倍もの大きな分布を持つことがわかる。
【図面の簡単な説明】
【図1】実施例3の(Lu0.85Yb0.15)2SiO5(Yb=15at%)の単結晶の写真である。
【図2】実施例1の(Y0.85Yb0.15)2SiO5(Yb=15at%)の粉末X線回折図形である。
【図3】実施例2の(Gd0.85Yb0.15)2SiO5(Yb=15at%)の粉末X線回折図形である。
【図4】実施例3の(Lu0.85Yb0.15)2SiO5(Yb=15at%)の粉末X線回折図形である。
【図5】実施例6の(Lu0.85Yb0.15)NbO4(Yb=15at%)の単結晶の写真である。
【図6】実施例4の(Y0.85Yb0.15)NbO4(Yb=15at%)の粉末X線回折図形である。
【図7】実施例5の(Gd0.85Yb0.15)NbO4(Yb=15at%)の粉末X線回折図形である。
【図8】実施例6の(Lu0.85Yb0.15)NbO4(Yb=15at%)の粉末X線回折図形である。
【図9】実施例9の(Lu0.85Yb0.15)TaO4(Yb=15at%)の単結晶の写真である。
【図10】実施例7の(Y0.85Yb0.15)TaO4(Yb=15at%)の粉末X線回折図形である。
【図11】実施例8の(Gd0.85Yb0.15)TaO4(Yb=15at%)の粉末X線回折図形である。
【図12】実施例9の(Lu0.85Yb0.15)TaO4(Yb=15at%)の粉末X線回折図形である。
【図13】実施例3の単結晶のX線励起に対する発光スペクトルである。
【図14】実施例6の単結晶のX線励起に対する発光スペクトルである。
【図15】実施例9の単結晶のX線励起に対する発光スペクトルである。
【図16】実施例3の(Lu0.85Yb0.15)2SiO5(Yb=15at%)の単結晶のYb分布を示すグラフである。
【図17】実施例6の(Lu0.85Yb0.15)NbO4(Yb=15at%)の単結晶のYb分布を示すグラフである。
【図18】実施例9の(Lu0.85Yb0.15)TaO4(Yb=15at%)の単結晶のYb分布を示すグラフである。
【図19】比較例の単結晶のCe分布を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a light-emitting material suitable for a solid-state laser, a scintillator, and the like, and more particularly to a mixed crystal oxide single crystal containing Yb having a silicate single crystal, a tantalate single crystal and a niobate single crystal as a mother crystal.
[Prior art]
Conventionally, materials used as light emitting materials for scintillators are mainly those using the 5d-4f transition of Ce, as represented by Ce: GSO, Ce: LSO, or Ce: YAP.
For example, Gd · Ga garnet activated by Cr, Gd · Sc · Ga garnet, Gd · Sc · Al garnet, and Y · Al garnet activated by Ce or Nd (Japanese Patent Laid-Open No. 4-289483) and Tb-containing garnets (Japanese Patent Laid-Open Nos. 77-149599 and 10-1396) are disclosed.
[0002]
[Problems to be solved by the invention]
The above light emitting material has the following problems.
In Ce: GSO and Ce: LSO, the amount of light emitted is larger when Ce, which is a light emitting element, is contained in a large amount. However, in the case of using the 5d-4f transition of Ce, concentration quenching (concentration quenching) becomes prominent when it exceeds 1 at% (atomic weight ratio), and the scintillator effect is not exhibited.
Further, Ce is the second largest among the rare earth ions after La and is too large compared with typical rare earth ions (Y, Gd, Lu, etc.) in the mother crystal, so that the segregation coefficient becomes extremely small. As a result, the concentration of Ce varies according to the production direction of the single crystal. For this reason, the physical property value changes, which is a big problem when used for high precision PET (positron tomography technology).
In addition, since the emission wavelength is 370 nm, it is necessary to use a photomultiplier tube as a detector, and the technology that a semiconductor photodiode (= semiconductor photodiode) whose resolution is 30 to 40 times higher than that of the photomultiplier tube cannot be used. There is a limit.
The present invention has been made to solve the above problems. Accordingly, an object of the present invention is to provide a light emitting material that has high light emission efficiency, high accuracy, and can emit light in the visible region.
[0003]
[Means for Solving the Problems]
The present inventors have found that a specific mixed crystal oxide single crystal containing Yb as a mixed crystal component has excellent emission characteristics, and have completed the present invention. That is, the present invention relates to (Y y Yb x ) 2 SiO 5 , (Gd y Yb x ) 2 SiO 5 , (Lu y Yb x ) 2 SiO 5 , (Y y Yb x ) NbO 4 , (Gd y Yb x ) NbO 4 , (Lu y Yb x ) NbO 4 , (Y y Yb x ) TaO 4 , (Gd y Yb x ) TaO 4 and (Lu y Yb x ) TaO 4 Single crystal.
(Where x + y ≦ 1.03, 0 ≦ x ≦ 1.03, 0 ≦ y ≦ 1.03)
The single crystal is
(1) any one of yttrium oxide (Y 2 O 3 ), gadolinium oxide (Gd 2 O 3 ) or lutetium oxide (Lu 2 O 3 );
(2) any one of silica (SiO 2 ), niobium oxide (Nb 2 O 5 ) or tantalum oxide (Ta 2 O 5 );
(3) ytterbium oxide (Yb 2 O 3 ),
It can be manufactured by weighing it so as to have the target composition, mixing and melting, and then growing crystals.
[0004]
DETAILED DESCRIPTION OF THE INVENTION
The mixed crystal oxide single crystal of the present invention is classified as follows.
A silicate single crystal selected from a compound consisting of (Y y Yb x ) 2 SiO 5 , (Gd y Yb x ) 2 SiO 5 or (Lu y Yb x ) 2 SiO 5 .
A niobate single crystal selected from a compound consisting of (Y y Yb x ) NbO 4 , (Gd y Yb x ) NbO 4 or (Lu y Yb x ) NbO 4 .
A tantalate single crystal selected from a compound consisting of (Y y Yb x ) TaO 4 , (Gd y Yb x ) TaO 4 or (Lu y Yb x ) TaO 4 .
(Where x + y ≦ 1.03, 0 ≦ x ≦ 1.03, 0 ≦ y ≦ 1.03)
Normally, rare earth sites enter up to about 1.03 instead of 1. A preferable range of x is 0.1 to 0.2. Single crystals having x in this range have high luminous efficiency.
[0005]
The compound contains Yb as an element that forms an optically active state called a charge transfer state (CTS) with a nearby anion (oxygen ion).
In the Yb mixed crystal oxide single crystal of the present invention, light emission occurs due to the transition from CTS between Yb and oxygen ions. For this reason, the concentration quenching observed in conventional scintillator luminescent materials does not appear significantly at Yb concentrations of 40 at% or less. Therefore, it is possible to obtain higher luminance than in the past. The emission wavelength of the Yb mixed crystal oxide single crystal of the present invention is around 540 nm. Therefore, when used as a light-emitting material for a scintillator, there is an advantage that the emission wavelength is within the sensitivity range of the semiconductor photodiode.
[0006]
The mixed crystal oxide single crystal of the present invention can be produced by using any known method in the prior art such as the rotational pulling method or the Bridgman method. For example, it can also be produced by the following micro pull-down method (Japanese Patent Application No. 2000-29083).
(Manufacturing method of silicate single crystal)
Starting materials include 5N (99.999%) purity yttrium oxide (Y 2 O 3 ), gadolinium oxide (Gd 2 O 3 ), ytterbium oxide (Yb 2 O 3 ), lutetium oxide (Lu 2 O 3 ), silica ( SiO 2 ) is used. These starting materials are weighed and mixed so as to have a target composition, and then molded and fired to produce a silicate single crystal.
Single crystal growth is performed using a modified micro pulling apparatus using high frequency induction heating. The micro-pulling device includes a crucible, a seed holder that holds the seed that is brought into contact with the melt flowing out from the pores provided at the bottom of the crucible, a moving mechanism that moves the seed holder downward, and a moving speed of the moving mechanism A unidirectional solidification growth apparatus including a control device and induction heating means for heating a crucible.
The crucible is an iridium metal or iridium alloy crucible, and an after heater, which is a heating element made of iridium metal or iridium alloy, is disposed on the outer periphery of the bottom of the crucible. The crucible and the after heater can control the heating temperature of the solid-liquid boundary phase of the melt drawn from the pores provided at the bottom of the crucible by adjusting the heat generation amount by adjusting the output of the induction heating means.
[0007]
In this apparatus, a plurality of pores are provided, and the size of the pores is such that the effective segregation coefficient k eff is about 1 and the melt does not sag (in the case of an oxide eutectic, 400 μmφ or less, preferably Is set to 200 μmφ to 300 μmφ), and a plurality of pores are arranged so that the melt that flows down joins before contacting the seed crystal.
Using this apparatus, the molded and fired raw material prepared by the above-described method is placed in a crucible. In order to control the atmosphere in the furnace, after evacuation, high purity Ar gas (99.99%) is introduced into the furnace to make the furnace an inert gas atmosphere, and high frequency power is gradually applied to the high frequency induction heating coil. Is applied to the crucible to heat the raw material in the crucible completely. In order to achieve a uniform composition of the melt, it is desirable to maintain a high frequency output for about 2 hours.
Gradually raise the seed crystal at a predetermined speed, and contact the tip with the pore at the lower end of the crucible (a plurality of pores are arranged so that the melt that flows down contacts before the seed crystal contacts) Let them get used to it. Next, the crystal is grown by lowering the pulling shaft while adjusting the melt temperature. Crystal growth ends when all of the prepared materials have crystallized and the melt is gone. The said crystal | crystallization is cooled gradually to room temperature, hold | maintaining in an after heater.
[0008]
(Method for producing niobate single crystal or tantalite single crystal)
As starting materials, purity 5N (99.999%) yttrium oxide (Y 2 O 3 ), ytterbium oxide (Yb 2 O 3 ), lutetium oxide (Lu 2 O 3 ), niobium oxide (Nb 2 O 5 ), tantalum oxide ( Ta 2 O 5 ) is used. These starting materials are weighed and mixed so as to have a target composition, and then molded and fired to produce a single crystal.
Single crystal growth is performed using a modified pulling apparatus by high-frequency induction heating as described above.
[0009]
【Example】
(Examples 1-3)
Various silicate single crystals were prepared by the micro pull-down method. Table 1 shows the production conditions of various silicate single crystals.
[0010]
[Table 1]
Table 1
Figure 2005343701
[0011]
A photograph of a single crystal of (Lu 0.85 Yb 0.15 ) 2 SiO 5 (Yb = 15 at%) obtained in Example 3 is shown in FIG. Moreover, the powder X-ray-diffraction figure of the single crystal (Yb = 15at%) obtained in Examples 1-3 is shown to FIGS.
(Examples 4 to 6)
Various niobate single crystals were prepared by the micro pull-down method. Table 2 shows conditions for producing various niobate single crystals.
[0012]
[Table 2]
Table 2
Figure 2005343701
[0013]
A photograph of the single crystal of (Lu 0.85 Yb 0.15 ) NbO 4 (Yb = 15 at%) obtained in Example 6 is shown in FIG. Moreover, the powder X-ray-diffraction figure of the single crystal (Yb = 15at%) obtained in Examples 4-6 is shown to FIGS.
(Examples 7 to 9)
Various tantalite single crystals were prepared by the micro pull-down method. Table 3 shows conditions for producing various tantalite single crystals.
[0014]
[Table 3]
Table 3
Figure 2005343701
[0015]
A photograph of the single crystal of (Lu 0.85 Yb 0.15 ) TaO 4 (Yb = 15 at%) obtained in Example 9 is shown in FIG. Moreover, the powder X-ray-diffraction figure of the single crystal (Yb = 15at%) obtained in Examples 7-9 is shown to FIGS.
[0016]
(Comparative example)
Ce: Lu 2 SiO 5 , which is a representative example of a light emitting material using Ce as an activator, was produced by the following method.
As starting materials, gadolinium oxide (Lu 2 O 3 ) and silica (SiO 2 ) having a purity of 4N (99.99%) or more were used. These starting materials were weighed and mixed so as to have the target composition, and then molded and baked to obtain materials for the light emitting material. Cerium oxide (CeO 2 ) was added to the crucible for each batch of crystal growth.
Single crystal growth was performed using a Cz apparatus by high frequency induction heating. The Cz apparatus includes a crucible and an after-heater, a seed holder for holding a seed (Lu 2 SiO 5 single crystal) in contact with the melt in the crucible, a moving mechanism for moving the seed holder downward, A unidirectional solidification growth apparatus including a moving speed control device for a moving mechanism, a rotating mechanism for the moving mechanism, a rotating speed control device, and induction heating means for heating the crucible. The crucible is an iridium metal or iridium alloy crucible, and an after heater which is a heating element made of iridium metal or iridium alloy is disposed on the outer periphery of the bottom of the crucible. The crucible and the after heater can adjust the heat generation amount by adjusting the output of the induction heating means, thereby enabling the heating temperature to be controlled.
[0017]
Using this apparatus, the raw material of the light-emitting material molded and fired prepared by the above-described method was put in a crucible. In order to control the atmosphere in the furnace, it was evacuated. Thereafter, high purity Ar gas (99.99%) was introduced into the furnace, and the inside of the furnace was made an inert gas atmosphere. The crucible was heated by gradually applying high frequency power to the high frequency induction heating coil to completely melt the raw material in the crucible. In order to make the composition of the melt uniform, high frequency output was maintained for about 5 hours.
Subsequently, the seed crystal was gradually lowered at a predetermined speed while rotating at a predetermined speed. After the tip of the seed crystal was brought into contact with the melt in the crucible and sufficiently blended, the crystal was grown by raising the pulling shaft while adjusting the melt temperature. Crystal growth was completed when the prepared material crystallized about 50% and the composition of the melt was not homogeneous. The crystals were gradually cooled to room temperature while being kept in the after heater.
[0018]
(Measurement of emission spectrum)
A Cu sealed tube (25 kV, 15 mA) was used as an X-ray source, and an emission spectrum for X-ray excitation was measured by a spectrophotometer (Spectrofluorometer 199S). The results are shown in FIGS.
FIG. 13 is an emission spectrum of a single crystal of (Lu 0.85 Yb 0.15 ) 2 SiO 5 (Yb = 15 at%) obtained in Example 3. It can be seen that the emission peak on the long wavelength side is located near the maximum sensitivity wavelength (530 nm) of the semiconductor photodiode. Further, when the strength is compared with that of the comparative example using Ce as an activator, it is found that the light emission of the crystal of the present invention is sufficiently high.
FIG. 14 is an emission spectrum of a single crystal of (Lu 0.85 Yb 0.15 ) NbO 4 (Yb = 15 at%) obtained in Example 6. When the strength is compared with that of the comparative example using Ce as an activator, it is found that the light emission of the crystal of the present invention is sufficiently high.
FIG. 15 is an emission spectrum of a single crystal of (Lu 0.85 Yb 0.15 ) TaO 4 (Yb = 15 at%) obtained in Example 9. It can be seen that the emission peak on the long wavelength side is located near the maximum sensitivity wavelength (530 nm) of the semiconductor photodiode. Further, when the strength is compared with that of the comparative example using Ce as an activator, it is found that the light emission of the crystal of the present invention is sufficiently high.
In any of the examples, the maximum strength is shown when Yb is 15 at%.
[0019]
(Measurement of segregation)
The Yb distribution in the crystal was measured using a wavelength dispersive X-ray microanalyzer (EPMA: JEOL JXA-8621MX) attached to the scanning electron microscope (JXA-8621MX). The results are shown in FIGS. Moreover, Ce distribution in the crystal of the comparative example is shown in FIG. In any of the examples, the effective segregation coefficient (C 0 / C S ) is 1, indicating that Yb is uniformly distributed in the crystal. In the comparative example, the effective segregation coefficient is about 0.002 to 0.008. However, it can be seen that it is incorporated into the single crystal and the ratio of incorporation is as large as 0.002 to 0.008.
[Brief description of the drawings]
1 is a photograph of a single crystal of (Lu 0.85 Yb 0.15 ) 2 SiO 5 (Yb = 15 at%) in Example 3. FIG.
2 is a powder X-ray diffraction pattern of (Y 0.85 Yb 0.15 ) 2 SiO 5 (Yb = 15 at%) in Example 1. FIG.
3 is a powder X-ray diffraction pattern of (Gd 0.85 Yb 0.15 ) 2 SiO 5 (Yb = 15 at%) in Example 2. FIG.
4 is a powder X-ray diffraction pattern of (Lu 0.85 Yb 0.15 ) 2 SiO 5 (Yb = 15 at%) in Example 3. FIG.
5 is a photograph of a single crystal of (Lu 0.85 Yb 0.15 ) NbO 4 (Yb = 15 at%) in Example 6. FIG.
6 is a powder X-ray diffraction pattern of (Y 0.85 Yb 0.15 ) NbO 4 (Yb = 15 at%) in Example 4. FIG.
7 is a powder X-ray diffraction pattern of (Gd 0.85 Yb 0.15 ) NbO 4 (Yb = 15 at%) in Example 5. FIG.
8 is a powder X-ray diffraction pattern of (Lu 0.85 Yb 0.15 ) NbO 4 (Yb = 15 at%) in Example 6. FIG.
9 is a photograph of a single crystal of (Lu 0.85 Yb 0.15 ) TaO 4 (Yb = 15 at%) in Example 9. FIG.
10 is a powder X-ray diffraction pattern of (Y 0.85 Yb 0.15 ) TaO 4 (Yb = 15 at%) in Example 7. FIG.
11 is a powder X-ray diffraction pattern of (Gd 0.85 Yb 0.15 ) TaO 4 (Yb = 15 at%) in Example 8. FIG.
12 is a powder X-ray diffraction pattern of (Lu 0.85 Yb 0.15 ) TaO 4 (Yb = 15 at%) in Example 9. FIG.
FIG. 13 is an emission spectrum of the single crystal of Example 3 with respect to X-ray excitation.
14 is an emission spectrum of the single crystal of Example 6 with respect to X-ray excitation. FIG.
15 is an emission spectrum of the single crystal of Example 9 with respect to X-ray excitation. FIG.
16 is a graph showing a Yb distribution of a single crystal of (Lu 0.85 Yb 0.15 ) 2 SiO 5 (Yb = 15 at%) in Example 3. FIG.
17 is a graph showing a Yb distribution of a single crystal of (Lu 0.85 Yb 0.15 ) NbO 4 (Yb = 15 at%) in Example 6. FIG.
18 is a graph showing a Yb distribution of a single crystal of (Lu 0.85 Yb 0.15 ) TaO 4 (Yb = 15 at%) in Example 9. FIG.
FIG. 19 is a graph showing the Ce distribution of a single crystal of a comparative example.

Claims (3)

(YyYbx)2SiO5、(GdyYbx)2SiO5、(LuyYbx)2SiO5、(YyYbx)NbO4、(GdyYbx)NbO4、(LuyYbx)NbO4、(YyYbx)TaO4、(GdyYbx)TaO4及び(LuyYbx)TaO4からなる群から選択される混晶酸化物単結晶。
(式中、x+y≦1.03、0≦x≦1.03、0≦y≦1.03である)
(Y y Yb x ) 2 SiO 5 , (Gd y Yb x ) 2 SiO 5 , (Lu y Yb x ) 2 SiO 5 , (Y y Yb x ) NbO 4 , (Gd y Yb x ) NbO 4 , (Lu A mixed crystal oxide single crystal selected from the group consisting of y Yb x ) NbO 4 , (Y y Yb x ) TaO 4 , (Gd y Yb x ) TaO 4 and (Lu y Yb x ) TaO 4 .
(Where x + y ≦ 1.03, 0 ≦ x ≦ 1.03, 0 ≦ y ≦ 1.03)
特許請求の範囲第1項に記載の混晶酸化物単結晶を含む発光材料。  A light emitting material comprising the mixed crystal oxide single crystal according to claim 1. 特許請求の範囲第1項に記載の混晶酸化物単結晶を製造する方法であって、
(1)酸化イットリウム(Y2O3)、酸化ガドリニウム(Gd2O3)又は酸化ルテチウム(Lu2O3)のいずれか1つと、
(2)シリカ(SiO2)、酸化ニオブ(Nb2O5)又は酸化タンタル(Ta2O5)のいずれか1つと、
(3)酸化イッテルビウム(Yb2O3)とを、
目的組成となるように秤量し、混合して融解した後、結晶成長させることを特徴とする前記方法。
A method for producing a mixed crystal oxide single crystal according to claim 1, comprising:
(1) any one of yttrium oxide (Y 2 O 3 ), gadolinium oxide (Gd 2 O 3 ) or lutetium oxide (Lu 2 O 3 );
(2) any one of silica (SiO 2 ), niobium oxide (Nb 2 O 5 ) or tantalum oxide (Ta 2 O 5 );
(3) ytterbium oxide (Yb 2 O 3 ),
The method described above, wherein the crystal is grown after being weighed to obtain a target composition, mixed and melted.
JP2002170174A 2002-06-11 2002-06-11 SINGLE CRYSTAL OF YTTERBIUM (Yb)-CONTAINING MIXED CRYSTAL OXIDE Pending JP2005343701A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002170174A JP2005343701A (en) 2002-06-11 2002-06-11 SINGLE CRYSTAL OF YTTERBIUM (Yb)-CONTAINING MIXED CRYSTAL OXIDE
AU2003242191A AU2003242191A1 (en) 2002-06-11 2003-06-10 SINGLE CRYSTAL OF MIXED CRYSTAL OXIDE CONTAINING Yb, LUMINESCENT MATERIAL CONTAINING THE SAME, Gamma-RAY DETECTOR AND POSITORON EMISSION TOMOGRAPHY UNIT
PCT/JP2003/007342 WO2003104533A1 (en) 2002-06-11 2003-06-10 SINGLE CRYSTAL OF MIXED CRYSTAL OXIDE CONTAINING Yb, LUMINESCENT MATERIAL CONTAINING THE SAME, γ-RAY DETECTOR AND POSITORON EMISSION TOMOGRAPHY UNIT
TW92115793A TW200401903A (en) 2002-06-11 2003-06-11 Mixed crystal oxide single crystal containing Yb, light emitting material containing such single crystal, γ ray detecting device and positron tomography device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002170174A JP2005343701A (en) 2002-06-11 2002-06-11 SINGLE CRYSTAL OF YTTERBIUM (Yb)-CONTAINING MIXED CRYSTAL OXIDE

Publications (1)

Publication Number Publication Date
JP2005343701A true JP2005343701A (en) 2005-12-15

Family

ID=29727756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002170174A Pending JP2005343701A (en) 2002-06-11 2002-06-11 SINGLE CRYSTAL OF YTTERBIUM (Yb)-CONTAINING MIXED CRYSTAL OXIDE

Country Status (4)

Country Link
JP (1) JP2005343701A (en)
AU (1) AU2003242191A1 (en)
TW (1) TW200401903A (en)
WO (1) WO2003104533A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100365172C (en) * 2006-04-12 2008-01-30 中国科学院上海光学精密机械研究所 Yb and Er -codoped gadolinium silicate laser crystal and preparation method therefor
AU2005261944B2 (en) * 2004-07-14 2010-08-26 Giesecke+Devrient Currency Technology Gmbh Valuable document
CN102051673A (en) * 2010-11-11 2011-05-11 福州高意通讯有限公司 Graded-index birefringent crystal growth method
JP2015040226A (en) * 2013-08-20 2015-03-02 学校法人東海大学 Upconversion type phosphor and method of manufacturing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108203844B (en) * 2018-01-09 2021-03-19 上海应用技术大学 Magnesium tantalate series crystal and its preparing process
KR102027444B1 (en) * 2019-01-25 2019-10-02 나노씨엠에스(주) Near infrared luminescent material excited by near infrared ray and method of manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4891520A (en) * 1987-09-05 1990-01-02 Hitachi, Ltd. Radiation detector
JPH0794820A (en) * 1993-09-24 1995-04-07 Ibiden Co Ltd Single-crystal thin film and solid laser element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005261944B2 (en) * 2004-07-14 2010-08-26 Giesecke+Devrient Currency Technology Gmbh Valuable document
DE102004034189B4 (en) 2004-07-14 2019-10-17 Giesecke+Devrient Currency Technology Gmbh value document
DE102004064300B3 (en) 2004-07-14 2022-02-10 Giesecke+Devrient Currency Technology Gmbh Document of value, method for its production, method for its authenticity check, security element and security paper
CN100365172C (en) * 2006-04-12 2008-01-30 中国科学院上海光学精密机械研究所 Yb and Er -codoped gadolinium silicate laser crystal and preparation method therefor
CN102051673A (en) * 2010-11-11 2011-05-11 福州高意通讯有限公司 Graded-index birefringent crystal growth method
JP2015040226A (en) * 2013-08-20 2015-03-02 学校法人東海大学 Upconversion type phosphor and method of manufacturing the same

Also Published As

Publication number Publication date
TW200401903A (en) 2004-02-01
WO2003104533A1 (en) 2003-12-18
AU2003242191A8 (en) 2003-12-22
AU2003242191A1 (en) 2003-12-22

Similar Documents

Publication Publication Date Title
JP4393511B2 (en) Rare earth fluoride solid solution material (polycrystal and / or single crystal), manufacturing method thereof, radiation detector and inspection apparatus
Yoshikawa et al. Challenge and study for developing of novel single crystalline optical materials using micro-pulling-down method
JP2009007545A (en) Single crystal for scintillator, heat treatment method for producing single crystal for scintillator and method of manufacturing single crystal for scintillator
US8778225B2 (en) Iodide single crystal, production process thereof, and scintillator comprising iodide single crystal
CZ200615A3 (en) Single crystal LuAG: Pr for manufacture scintillation detectors and solid lasers and manufacture thereof
US7347956B2 (en) Luminous material for scintillator comprising single crystal of Yb mixed crystal oxide
JP2005343701A (en) SINGLE CRYSTAL OF YTTERBIUM (Yb)-CONTAINING MIXED CRYSTAL OXIDE
CN112630818A (en) Silicon-site-doped improved rare earth orthosilicate scintillation material and preparation method and application thereof
US8013306B2 (en) Single crystal scintillator material and method for producing the same
CN112390278B (en) Strong electron-withdrawing element doped rare earth orthosilicate scintillation material and preparation method and application thereof
JP5994149B2 (en) X-ray scintillator materials
JP6232827B2 (en) Manufacturing method of ceramic composite
JP2005119952A (en) Fluoride single crystal for radiation detection and radiation detector
JPH0710694A (en) Terbium aluminate and its production
WO2023238795A1 (en) Crystal material, scintillator, and radiation detector
CN112501684B (en) Silicon ion doped gadolinium aluminum gallate scintillation material and preparation method and application thereof
CN117552106B (en) Rare earth-based zero-dimensional perovskite halide scintillation monocrystal as well as preparation method and application thereof
JP7178043B2 (en) LSO-based scintillator crystal
CN117721537A (en) Rare earth orthosilicate scintillating material competing for luminescence center, preparation method and application thereof
CN115322784A (en) Octahedral lattice site doping improved gadolinium aluminum gallate scintillation material and preparation method and application thereof
JP2005029442A (en) Production method for zinc tungstate single crystal
CZ200616A3 (en) Single crystal LYGSO: Ce employable for manufacture of scintillation detectors and process for producing such scintillation detectors