JP5994149B2 - X-ray scintillator materials - Google Patents

X-ray scintillator materials Download PDF

Info

Publication number
JP5994149B2
JP5994149B2 JP2011190353A JP2011190353A JP5994149B2 JP 5994149 B2 JP5994149 B2 JP 5994149B2 JP 2011190353 A JP2011190353 A JP 2011190353A JP 2011190353 A JP2011190353 A JP 2011190353A JP 5994149 B2 JP5994149 B2 JP 5994149B2
Authority
JP
Japan
Prior art keywords
crystal
scintillator
crucible
ray
activator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011190353A
Other languages
Japanese (ja)
Other versions
JP2012149223A (en
Inventor
吉川 彰
彰 吉川
健之 柳田
健之 柳田
藤本 裕
裕 藤本
杉山 誠
誠 杉山
大輔 戸塚
大輔 戸塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Nihon Kessho Koogaku Co Ltd
Original Assignee
Tohoku University NUC
Nihon Kessho Koogaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Nihon Kessho Koogaku Co Ltd filed Critical Tohoku University NUC
Priority to JP2011190353A priority Critical patent/JP5994149B2/en
Publication of JP2012149223A publication Critical patent/JP2012149223A/en
Application granted granted Critical
Publication of JP5994149B2 publication Critical patent/JP5994149B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Luminescent Compositions (AREA)

Description

本発明は、X線検出器などに用いるX線シンチレータの構成材料に関する。   The present invention relates to a constituent material of an X-ray scintillator used for an X-ray detector or the like.

シンチレータとは、γ線やX線などの放射線を吸収し、可視光線又は可視光線に近い波長の電磁波を放射する物質である。その用途としては、医療用のPET(陽電子放射断層撮影装置)やTOF−PET(タイム・オブ・フライト陽電子放射断層撮影装置)、X線CT(コンピュータ断層撮影装置)、さらには空港などで使用される所持品検査装置など、各種放射線検出器を挙げることができる。   A scintillator is a substance that absorbs radiation such as γ-rays and X-rays and emits visible light or electromagnetic waves having a wavelength close to visible light. As its application, it is used in medical PET (Positron Emission Tomography), TOF-PET (Time of Flight Positron Emission Tomography), X-ray CT (Computer Tomography), and airports. Various radiation detectors such as personal belongings inspection equipment.

このような放射線検出器は、一般に放射線を受光して可視光に変換するシンチレータ部と、このシンチレータ部で変換され透過してくる可視光を検知して電気信号に変換するホトマルチプライヤチューブ(以下「ホトマル」という)やフォトダイオードなどの光検出部とから構成されている。そして、この種の用途に用いるシンチレータは、ノイズを小さくして測定精度を上げるために、発光出力の高いシンチレータであることが望まれている。   Such a radiation detector generally includes a scintillator unit that receives radiation and converts it into visible light, and a photomultiplier tube (hereinafter referred to as an electrical signal) that detects visible light converted and transmitted by the scintillator unit. And a photodetection unit such as a photodiode. A scintillator used for this type of application is desired to be a scintillator with a high light emission output in order to reduce noise and increase measurement accuracy.

放射線検出器に用い得るシンチレータ用材料としては、従来、希土類酸硫化物系蛍光体Gd22S:Pr,Ce,Fなどが用いられてきた。
また、新たなシンチレータ用材料として、例えばCeを発光元素とし、Gd、Al、Ga及びOを含むガーネット構造の酸化物蛍光体が提案されている(特許文献1〜特許文献4)。
Conventionally, rare earth oxysulfide phosphors Gd 2 O 2 S: Pr, Ce, F and the like have been used as scintillator materials that can be used in radiation detectors.
As a new scintillator material, for example, an oxide phosphor having a garnet structure containing Ce as a light emitting element and containing Gd, Al, Ga, and O has been proposed (Patent Documents 1 to 4).

国際公開WO/1999/033934International Publication WO / 1999/033934 特開2001−4753号公報JP 2001-4753 A 特開2002−189080号公報JP 2002-189080 A 特開2008−24739号公報JP 2008-24739 A

本発明は、従来開示されていた材料とは異なる新たな組成のX線シンチレータ用材料であって、しかも発光出力の高いシンチレータを構成することができる、新たなX線シンチレータ用材料を提供せんとするものである。   The present invention provides a new X-ray scintillator material that is a material for X-ray scintillators having a new composition different from those conventionally disclosed and that can constitute a scintillator with high emission output. To do.

本発明は、ペロブスカイト型構造を有し、且つ(Y、Gd、Lu)(Al、Ga)O3で示される単相単結晶をホストとして含有するX線シンチレータ用材料を提案する。 The present invention proposes an X-ray scintillator material having a perovskite structure and containing a single-phase single crystal represented by (Y, Gd, Lu) (Al, Ga) O 3 as a host.

かかるX線シンチレータ用材料は、従来開示されていた材料とは異なる組成の新たな単結晶材料であり、しかも発光出力の高いシンチレータを構成することができる。よって、本発明のX線シンチレータ用材料を用いれば、高発光出力のX線検出器を得ることができる。   Such an X-ray scintillator material is a new single crystal material having a composition different from that of a conventionally disclosed material, and can constitute a scintillator having a high light emission output. Therefore, if the X-ray scintillator material of the present invention is used, an X-ray detector having a high light emission output can be obtained.

実施例において、出力の測定に用いた装置の構成(概要)を示した図である。In an Example, it is the figure which showed the structure (outline | summary) of the apparatus used for the measurement of an output. 実施例の製造において用いた結晶育成装置の構成(概要)を示した図である。It is the figure which showed the structure (outline | summary) of the crystal growth apparatus used in manufacture of an Example. 実施例1で得られた結晶体について測定されたXRDパターンである。2 is an XRD pattern measured for the crystal obtained in Example 1. FIG. 実施例2で得られた結晶体について測定されたXRDパターンである。3 is an XRD pattern measured for the crystal obtained in Example 2. FIG.

以下に本発明の実施形態について詳細に述べるが、本発明の範囲が以下に説明する実施形態に限定されるものではない。   Embodiments of the present invention will be described in detail below, but the scope of the present invention is not limited to the embodiments described below.

(シンチレータ用単結晶材料)
本実施形態のX線シンチレータ用材料(以下「本シンチレータ用材料」という)は、ホスト(母体結晶)としてのペロブスカイト型単結晶と、賦活剤(発光中心)とを含有する材料である。
(Single crystal material for scintillators)
The X-ray scintillator material of the present embodiment (hereinafter referred to as “the scintillator material”) is a material containing a perovskite single crystal as a host (matrix crystal) and an activator (emission center).

ホスト(母体結晶)としてのペロブスカイト型単結晶は、具体的には(Y、Gd、Lu)(Al、Ga)O3で示されるペロブスカイト型単相単結晶である。 The perovskite single crystal as the host (matrix) is specifically a perovskite single phase single crystal represented by (Y, Gd, Lu) (Al, Ga) O 3 .

(Y、Gd、Lu)(Al、Ga)O3で示されるペロブスカイト型単相単結晶は、例えばMBO3(M及びBに特に意味はない)で示されるペロブスカイト構造を参照すると、そのMの位置に、Y、Gd及びLuらなる群から選ばれる一種又は二種以上の組み合わせからなる元素が存在してもよく、また、前記Bの位置に、Al又はGa又はこれらの両方が存在してもよいという意味である。
より具体的には、例えばYAlO3、YGaO3、GdAlO3、GdGaO3、LuAlO3、LuGaO3、(Y、Gd)AlO3、(Y、Gd)GaO3、(Gd、Lu)AlO3、(Gd、Lu)GaO3、(Y、Lu)AlO3、(Y、Lu)GaO3、(Y、Gd、Lu)AlO3、(Y、Gd、Lu)GaO3などを挙げることができる。
A perovskite single-phase single crystal represented by (Y, Gd, Lu) (Al, Ga) O 3 can be obtained by referring to a perovskite structure represented by, for example, MBO 3 (M and B have no particular meaning). An element composed of one or a combination of two or more selected from the group consisting of Y, Gd and Lu may exist at the position, and Al or Ga or both of them exist at the position of B. It means that it is good.
More specifically, for example, YAlO 3 , YGaO 3 , GdAlO 3 , GdGaO 3 , LuAlO 3 , LuGaO 3 , (Y, Gd) AlO 3 , (Y, Gd) GaO 3 , (Gd, Lu) AlO 3 , ( Gd, Lu) GaO 3 , (Y, Lu) AlO 3 , (Y, Lu) GaO 3 , (Y, Gd, Lu) AlO 3 , (Y, Gd, Lu) GaO 3 and the like.

このペロブスカイト型単相単結晶は、立方晶ではなく、直方晶を呈するものである。   This perovskite single phase single crystal is not a cubic crystal but a tetragonal crystal.

賦活剤(発光中心)としては、Nd、Ho、Er、Tm、Ti及びCrからなる群から選ばれる一種又は二種以上の組み合わせを挙げることができる。中でも、得られる特性の観点から、Nd、Er及びTmが好ましい。   Examples of the activator (emission center) include one or a combination of two or more selected from the group consisting of Nd, Ho, Er, Tm, Ti, and Cr. Among these, Nd, Er, and Tm are preferable from the viewpoint of obtained characteristics.

賦活剤の濃度は、0.0001〜2.0000at%であるのが好ましい。賦活剤の濃度が0.0001at%以上であれば、最低限の発光量を得ることでき、0.0100at%以上であれば、発光量を得るための発光効率をより一層十分に得ることができる。他方、2.0000at%以下であれば、濃度消光のために発光量が小さくなるのを回避することができる。
かかる観点から、賦活剤の濃度は、0.0100at%以上、特に0.0500at%以上であるのがさらに好ましく、又、1.0000at%以下であるのがさらに好ましい。
具体的には、例えばNdの濃度が0.1000〜1.0000at%の場合、Tmの濃度が0.5000〜1.0000at%の場合特に好ましい。
The concentration of the activator is preferably 0.0001 to 2.0000 at%. If the concentration of the activator is 0.0001 at% or more, the minimum light emission amount can be obtained, and if it is 0.0100 at% or more, the light emission efficiency for obtaining the light emission amount can be obtained more sufficiently. . On the other hand, if it is 2.000 at% or less, it is possible to avoid a decrease in the amount of light emission due to concentration quenching.
From such a viewpoint, the concentration of the activator is more preferably 0.0100 at% or more, particularly 0.0500 at% or more, and further preferably 1.0000 at% or less.
Specifically, for example, when the concentration of Nd is 0.1000 to 1.0000 at%, it is particularly preferable when the concentration of Tm is 0.5000 to 1.0000 at%.

(用途)
本シンチレータ材料を加工してシンチレータとし、このシンチレータと、ホトマルやフォトダイオードなどの光検出部とを組み合わせてX線検出器を構成することができる。中でも、本シンチレータ材料は、医療用のPET(陽電子放射断層撮影装置)やTOF−PET(タイム・オブ・フライト陽電子放射断層撮影装置)、CT(コンピュータ断層撮影装置)などの各種X線検出器のシンチレータ用材料として好適に使用することができ、これを用いて各種X線検出器を構成することができる。
(Use)
The scintillator material can be processed into a scintillator, and an X-ray detector can be configured by combining this scintillator with a light detection unit such as a photomultiplier or a photodiode. Among them, the scintillator material is used for various X-ray detectors such as medical PET (Positron Emission Tomography), TOF-PET (Time of Flight Positron Emission Tomography), CT (Computer Tomography). It can be suitably used as a scintillator material, and various X-ray detectors can be configured using this.

(製造方法)
次に、本シンチレータ材料を製造する方法について説明する。但し、本シンチレータ材料の製造方法が次に説明する方法に限定されるものではない。
(Production method)
Next, a method for producing the present scintillator material will be described. However, the manufacturing method of this scintillator material is not limited to the method demonstrated below.

この際の結晶育成方法は、特に限定するものではなく、例えばBridgman−Stockbarger法(「BS法」ともいう)、Czochralski(「CZ法」ともいう)、マイクロ引き下げ法、ゾーンメルト法、これらの改良法、その他の融液成長法等、公知の結晶育成方法を適宜採用することができる。
以下、代表的なBS法とCZ法について説明する。
The crystal growth method at this time is not particularly limited. For example, the Bridgman-Stockbarger method (also referred to as “BS method”), Czochralski (also referred to as “CZ method”), the micro pull-down method, the zone melt method, and improvements thereof. And other known crystal growth methods such as melt growth methods can be appropriately employed.
Hereinafter, typical BS method and CZ method will be described.

BS法は、坩堝の中に原料を入れて融解させ、坩堝を引下げながら、坩堝底から単結晶を育成させていく方法である。結晶育成装置が比較的安価であり、大口径の単結晶を比較的に容易に育成可能であるという特徴を有している。その反面、結晶成長方位の制御が困難であり、また、結晶育成時や冷却時に無理な応力がかかるため、応力分布が結晶内に残って歪や転位が誘起され易いと言われている。   The BS method is a method in which raw materials are put in a crucible and melted, and a single crystal is grown from the bottom of the crucible while pulling down the crucible. The crystal growing apparatus is relatively inexpensive and has a feature that a single crystal having a large diameter can be grown relatively easily. On the other hand, it is difficult to control the crystal growth orientation, and excessive stress is applied during crystal growth or cooling, so that it is said that the stress distribution remains in the crystal and strain and dislocations are easily induced.

他方、CZ法は、坩堝内に原料を入れて融解させ、シード(種結晶)を溶融液面に接触させて単結晶を回転引き上げながら育成(結晶化)していく方法である。CZ法は、結晶方位を特定し結晶化させることが可能であるため、目的とする結晶方位の育成が容易であると言われている。   On the other hand, the CZ method is a method in which a raw material is put in a crucible and melted, and a seed (seed crystal) is brought into contact with a molten liquid surface and grown (crystallized) while rotating a single crystal. The CZ method is said to facilitate the growth of the target crystal orientation because it is possible to identify and crystallize the crystal orientation.

結晶育成方法の一例に係るBS法の一例についてより具体的に説明すると、破砕工程で得られた溶解凝固体破砕物に、必要に応じて種結晶を混合し、この混合物を坩堝に充填し、この坩堝を結晶成長装置内に設置し、真空排気系によって結晶成長装置内部の真空度が1×10-3〜10-4Pa程度になるまで排気を行い、加熱装置によって坩堝を加熱し、坩堝に充填した原料を融解させる。
坩堝内の原料が融解した後、坩堝を0.1mm/時間〜3mm/時間程度の速度で徐々に鉛直下方に引き下げると、坩堝内で融液となった原料は底部付近から固化が始まり、単結晶が育成される。坩堝内の原料がすべて固化した段階で坩堝の引き下げを終了し、加熱装置により徐冷しつつ、坩堝を室温程度にまで冷却し、インゴット状の結晶を育成することができる。
More specifically explaining an example of the BS method according to an example of the crystal growth method, the dissolved solidified body crushed material obtained in the crushing step is mixed with a seed crystal as necessary, and this mixture is filled in a crucible, the crucible was placed in a crystal growth apparatus, crystal growing apparatus the vacuum degree by the vacuum exhaust system was evacuated until about 1 × 10 -3 ~10 -4 Pa, heating the crucible by the heating device, the crucible The raw material filled in is melted.
After the raw material in the crucible has melted, when the crucible is gradually pulled down vertically at a speed of about 0.1 mm / hour to 3 mm / hour, the raw material that has become a melt in the crucible begins to solidify from the bottom, Crystals are grown. When all the raw materials in the crucible are solidified, the lowering of the crucible is finished, and the crucible is cooled to about room temperature while being gradually cooled by a heating device, and an ingot-like crystal can be grown.

また、マイクロ引き下げ法については、例えば特開2006−347789号の段落0013〜0030に記載された方法を参照すれば、適宜実施することができる。   The micro pulling-down method can be appropriately implemented by referring to the method described in paragraphs 0013 to 0030 of JP-A-2006-347789, for example.

以上のようにして育成したインゴット状の結晶体は、必要に応じて所定の大きさ、並びに、所定の方位の表面が出現するように切り出した後、必要に応じて熱処理するのが好ましい。但し、必ずしも熱処理する必要はない。   The ingot-like crystal grown as described above is preferably cut out so that a surface having a predetermined size and a predetermined orientation appears as necessary, and then heat-treated as necessary. However, heat treatment is not necessarily required.

熱処理は、前記工程で育成された結晶体を容器に入れ、この容器を熱処理炉内に設置し、熱処理炉を900℃乃至1300℃に均熱的に加熱して、固体のまま結晶体の歪を除去するのが好ましい。
加熱温度を1140℃以上にすると構造変化などを引き起こしてしまうので好ましくはない。加熱時間は、約20時間以上、より好ましくは、約20時間乃至約30時間である。
熱処理工程では、熱処理を経ることによって結晶の転位が減少する。そして、歪がなくなった状態を維持しながら単結晶の温度を室温に戻す。
熱処理における雰囲気、すなわちアニーリングケース内の雰囲気は、真空雰囲気、或いはアルゴン(Ar)等の不活性ガス雰囲気とすればよい。中でも、アルゴン等の不活性ガス雰囲気、その中でも、アルゴンガスにフッ素系ガスを混合・注入してなる雰囲気が好ましい。また、アルゴンガス等の不活性化ガスに固体フッ化剤(例えばPbF2)の熱分解によるフッ素ガスが混合した雰囲気も好ましい一例である。
In the heat treatment, the crystal grown in the above process is put in a container, the container is placed in a heat treatment furnace, and the heat treatment furnace is heated uniformly to 900 ° C. to 1300 ° C. Is preferably removed.
A heating temperature of 1140 ° C. or higher is not preferable because it causes structural changes. The heating time is about 20 hours or more, more preferably about 20 hours to about 30 hours.
In the heat treatment step, crystal dislocations are reduced by the heat treatment. And the temperature of a single crystal is returned to room temperature, maintaining the state where distortion was lost.
The atmosphere in the heat treatment, that is, the atmosphere in the annealing case may be a vacuum atmosphere or an inert gas atmosphere such as argon (Ar). Of these, an inert gas atmosphere such as argon is preferable, and an atmosphere obtained by mixing and injecting a fluorine-based gas into argon gas is preferable. An atmosphere in which a fluorine gas obtained by thermal decomposition of a solid fluorinating agent (for example, PbF 2 ) is mixed with an inert gas such as argon gas is also a preferable example.

(用語の解説)
本発明において「X線シンチレータ」とは、X線を吸収し、可視光線又は可視光線に近い波長(光の波長域は近紫外〜近赤外にまで広がっていてもよい)の電磁波を放射する物質、並びに、そのような機能を備えた放射線検出器の構成部材を意味する。
(Glossary of terms)
In the present invention, the “X-ray scintillator” absorbs X-rays and emits electromagnetic waves having visible light or a wavelength close to visible light (the wavelength range of light may extend from near ultraviolet to near infrared). It means a substance and a component of a radiation detector having such a function.

本発明において「X〜Y」(X、Yは任意の数字)と記載した場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と記載した場合、「Xより大きいことが好ましい」或いは「Yより小さいことが好ましい」旨の意図を包含する。
In the present invention, when “X to Y” (X and Y are arbitrary numbers) is described, it means “preferably greater than X” or “preferably greater than Y” with the meaning of “X to Y” unless otherwise specified. The meaning of “small” is also included.
Further, when “X or more” (X is an arbitrary number) or “Y or less” (Y is an arbitrary number), the intention of “preferably larger than X” or “preferably smaller than Y” Is included.

以下、本発明の実施例について説明する。但し、本発明の範囲が下記実施例に限定されるものではない。   Examples of the present invention will be described below. However, the scope of the present invention is not limited to the following examples.

<出力>
図1に示す測定装置を使用して、出力を測定した。
測定サンプル(シンチレータ板)は4.5mm×4.5mm(厚みはサンプルごとに異なる)を使用した(なお、厚みのみが異なる場合、出力は略同程度になることを確認している)。
タングステン(W)からなるターゲットに、120kV、20mAの電子線を照射しX線を発生させ、このX線を測定サンプルに照射し、シンチレーション光と透過X線の出力をPINフォトダイオード(HAMAMATSU社製「S1723−5」)で測定した。次に、鉛板の穴に遮光テープを張ってシンチレーション光を遮光し、透過X線だけの出力を測定した。そして、透過X線による出力を差し引き、シンチレーション光による出力を得た。
<Output>
The output was measured using the measuring apparatus shown in FIG.
The measurement sample (scintillator plate) used was 4.5 mm × 4.5 mm (thickness differs for each sample) (in addition, when only the thickness is different, it has been confirmed that the output is approximately the same).
A target made of tungsten (W) is irradiated with an electron beam of 120 kV and 20 mA to generate X-rays. This X-rays are irradiated to a measurement sample, and the output of scintillation light and transmitted X-rays is a PIN photodiode (manufactured by HAMAMATSU). "S1723-5"). Next, a light shielding tape was put on the hole of the lead plate to shield the scintillation light, and the output of only the transmitted X-ray was measured. And the output by the transmitted X-ray was subtracted, and the output by the scintillation light was obtained.

<透過率>
測定サンプル(シンチレータ板)の上下両面を光学鏡面研磨して測定試料を作製した。
各測定サンプルについて、紫外可視分光光度計(日本分光株式会社製「V550」)を使用して直線透過率(%T)を測定した。
測定条件は、波長範囲:190nm−900nm、スキャンスピード:200nm/min、スリット幅:1nm、データモード:透過率(%T)とした。
<Transmissivity>
A measurement sample was prepared by optically polishing the upper and lower surfaces of the measurement sample (scintillator plate).
About each measurement sample, the linear transmittance (% T) was measured using the ultraviolet visible spectrophotometer ("V550" by JASCO Corporation).
The measurement conditions were as follows: wavelength range: 190 nm to 900 nm, scan speed: 200 nm / min, slit width: 1 nm, data mode: transmittance (% T).

<X線照射による発光スペクトルの測定>
次のX線照射装置と検出器を使用して、測定サンプルの発光スベクトルを測定した。
X線照射装置:RIGAKU社製「RINT−2000」(40kV、40mA)
検出器:CCD分光器「QE65000」、光ファイバー使用。
<Measurement of emission spectrum by X-ray irradiation>
Using the following X-ray irradiation apparatus and detector, the luminescence vector of the measurement sample was measured.
X-ray irradiation apparatus: “RINT-2000” (40 kV, 40 mA) manufactured by RIGAKU
Detector: CCD spectrometer “QE65000”, using optical fiber.

<XRD測定>
XRD測定は、測定装置として株式会社リガク製「RINT−2000」を使用し、線源にはCuターゲットを用い、2θが20度から80度の範囲でXRDパターンを得た(図3及び図4参照)。
<XRD measurement>
XRD measurement uses “RINT-2000” manufactured by Rigaku Corporation as a measuring device, uses a Cu target as a radiation source, and obtains an XRD pattern in the range of 2θ of 20 ° to 80 ° (FIGS. 3 and 4). reference).

<実施例1−6>
23粉原料(99.99%)、Al23粉原料(99.99%)及びNd23粉原料(99.99%)を所定量秤量し、乳鉢で混合した。得られた混合原料を、IrとReの合金からなるルツボに移し、図2に示す結晶育成装置にセットした。
この際に用いた結晶育成装置は、マイクロ引き下げ法による育成を行うためのものであり、図2に示すように、坩堝と、坩堝底部に設けた細孔から流出する溶融液に接触させる種を保持すると共に下方に移動させることのできる移動機構と、坩堝を加熱する誘導加熱手段とを備えたものである。
<Example 1-6>
Y 2 O 3 powder raw material (99.99%), Al 2 O 3 powder raw material (99.99%) and Nd 2 O 3 powder raw material (99.99%) were weighed in predetermined amounts and mixed in a mortar. The obtained mixed raw material was transferred to a crucible made of an alloy of Ir and Re, and set in a crystal growth apparatus shown in FIG.
The crystal growth apparatus used at this time is for performing growth by the micro pull-down method. As shown in FIG. 2, a seed to be brought into contact with the crucible and the melt flowing out from the pores provided at the bottom of the crucible is used. It is provided with a moving mechanism that can be held and moved downward, and induction heating means for heating the crucible.

結晶育成は、次のようなマイクロ引き下げ法により行った。すなわち、ロータリーポンプで10-1Paに真空引きした後、Arガスを充填し、Arガスを0.5L/ninでフローした。高周波電力を徐々に印加し、YAlO3の融点(1950℃)以上に加熱して原料を溶融し、その溶融液を坩堝底部に設けた細孔から流出させて、該溶融液の下端を種結晶(組成:YAlO3単結晶体)に接触させ、該溶融液が種結晶に十分馴染んで接着したら、温度を保持しつつ移動機構の引き下げ軸を0.01〜0.05mm/分で下降させ、溶融液がなくなった時点で高周波電力を徐々に下げていき、十分に時間をかけて室温まで冷却し、結晶体を得た。 Crystal growth was performed by the following micro-pulling-down method. That is, after evacuating to 10 −1 Pa with a rotary pump, Ar gas was filled and Ar gas was flowed at 0.5 L / nin. High-frequency power is gradually applied and heated to the melting point of YAlO 3 (1950 ° C.) or higher to melt the raw material, and the molten liquid is discharged from the pores provided at the bottom of the crucible, and the lower end of the molten liquid is seeded. (Composition: YAlO 3 single crystal) is contacted, and when the melt is sufficiently familiar with and adheres to the seed crystal, the lowering shaft of the moving mechanism is lowered at 0.01 to 0.05 mm / min while maintaining the temperature, When the melted liquid disappeared, the high-frequency power was gradually lowered and cooled to room temperature with sufficient time to obtain a crystal.

実施例1−6で得られた結晶体はいずれも無色透明であった。また、得られた結晶体の一部を粉砕し、XRD測定を行ったところ、実施例1−6で得られた結晶体はいずれも、化学量論組成式YAlO3で示されるイットリウム・アルミニウム・ペロブスカイト(YAP)からなる単相単結晶体であり、他の相は確認されなかった。
また、結晶体中のNd濃度(賦活剤)を、グロー放電質量分析法(GD−MS)により分析したところ、表1に示す濃度であった。
得られた結晶体を、所定の大きさ・所定の方向に切り出して、それぞれの上記の測定サンプルとした。
All the crystals obtained in Example 1-6 were colorless and transparent. Moreover, when a part of the obtained crystal was pulverized and XRD measurement was performed, all of the crystals obtained in Example 1-6 were yttrium, aluminum, and the stoichiometric composition formula YAlO 3. It was a single phase single crystal composed of perovskite (YAP), and no other phases were confirmed.
Further, when the Nd concentration (activator) in the crystal was analyzed by glow discharge mass spectrometry (GD-MS), the concentrations shown in Table 1 were obtained.
The obtained crystal was cut out in a predetermined size and a predetermined direction, and each of the above measurement samples was used.

<実施例7−19>
23粉原料(99.99%)、Al23粉原料(99.99%)及び各添加物原料を所定量秤量し、乳鉢で混合した。得られた混合原料を、IrとReの合金からなるルツボに移し、図2に示す結晶育成装置にセットした。添加物原料としては、Tm23粉原料(99.99%)、Er23粉原料(99.99%)、Ho23粉原料(99.99%)、Cr23粉原料(99.99%)を使用した。
用いた結晶育成装置は実施例1と同様であり、実施例1と同様に結晶育成を行って結晶体を得た。
<Example 7-19>
Y 2 O 3 powder raw material (99.99%), Al 2 O 3 powder raw material (99.99%) and each additive raw material were weighed in predetermined amounts and mixed in a mortar. The obtained mixed raw material was transferred to a crucible made of an alloy of Ir and Re, and set in a crystal growth apparatus shown in FIG. As additive materials, Tm 2 O 3 powder material (99.99%), Er 2 O 3 powder material (99.99%), Ho 2 O 3 powder material (99.99%), Cr 2 O 3 powder The raw material (99.99%) was used.
The crystal growth apparatus used was the same as in Example 1, and crystal growth was performed in the same manner as in Example 1 to obtain a crystal.

実施例7−19で得られた結晶体はいずれも無色透明であった。また、得られた結晶体の一部を粉砕し、XRD測定を行ったところ、実施例7−19で得られた結晶体はいずれも、化学量論組成式YAlO3で示されるイットリウム・アルミニウム・ペロブスカイト(YAP)からなる単相単結晶体であり、他の相は確認されなかった。
また、結晶体中の各添加元素(賦活剤)濃度を、グロー放電質量分析法(GD−MS)により分析したところ、表1に示す濃度であった。
得られた結晶体を、所定の大きさ・所定の方向に切り出して、それぞれの上記の測定サンプルとした。
All of the crystals obtained in Examples 7-19 were colorless and transparent. Moreover, when a part of the obtained crystal was pulverized and XRD measurement was performed, all of the crystals obtained in Example 7-19 were yttrium, aluminum, and the stoichiometric composition formula YAlO 3. It was a single phase single crystal composed of perovskite (YAP), and no other phases were confirmed.
Moreover, when the concentration of each additive element (activator) in the crystal was analyzed by glow discharge mass spectrometry (GD-MS), the concentrations shown in Table 1 were obtained.
The obtained crystal was cut out in a predetermined size and a predetermined direction, and each of the above measurement samples was used.

<実施例20−21>
Lu23粉原料(99.99%)、Y23粉原料(99.99%)、Al23粉原料(99.99%)及びNd23粉原料(99.99%)を所定量秤量し、乳鉢で混合した。得られた混合原料を、IrとReの合金からなるルツボに移し、図2に示す結晶育成装置にセットした。
用いた結晶育成装置は実施例1と同様であり、実施例1と同様に結晶育成を行って結晶体を得た。
<Example 20-21>
Lu 2 O 3 powder material (99.99%), Y 2 O 3 powder material (99.99%), Al 2 O 3 powder material (99.99%) and Nd 2 O 3 powder material (99.99%) ) Was weighed out and mixed in a mortar. The obtained mixed raw material was transferred to a crucible made of an alloy of Ir and Re, and set in a crystal growth apparatus shown in FIG.
The crystal growth apparatus used was the same as in Example 1, and crystal growth was performed in the same manner as in Example 1 to obtain a crystal.

実施例20−21で得られた結晶体はいずれも無色透明であった。また、得られた結晶体の一部を粉砕し、XRD測定を行ったところ、実施例20・21で得られた結晶体は化学量論組成式Lu0.10.9AlO3又はLu0.30.7AlO3で示されるルテチウム・イットリウム・アルミニウム・ペロブスカイトからなる単相単結晶体であり、他の相は確認されなかった。
また、結晶体中のNd濃度(賦活剤)を、グロー放電質量分析法(GD−MS)により分析したところ、表1に示す濃度であった。
得られた結晶体を、所定の大きさ・所定の方向に切り出して、それぞれの上記の測定サンプルとした。
All the crystals obtained in Example 20-21 were colorless and transparent. A part of the obtained crystal was pulverized and subjected to XRD measurement. As a result, the crystals obtained in Examples 20 and 21 were found to have the stoichiometric composition formula Lu 0.1 Y 0.9 AlO 3 or Lu 0.3 Y 0.7 AlO. It was a single-phase single crystal composed of lutetium, yttrium, aluminum, and perovskite shown in FIG. 3 , and no other phases were confirmed.
Further, when the Nd concentration (activator) in the crystal was analyzed by glow discharge mass spectrometry (GD-MS), the concentrations shown in Table 1 were obtained.
The obtained crystal was cut out in a predetermined size and a predetermined direction, and each of the above measurement samples was used.

<実施例22−24>
Lu23粉原料(99.99%)、Gd23粉原料(99.99%)、Al23粉原料(99.99%)及び各添加物原料を所定量秤量し、乳鉢で混合した。得られた混合原料を、IrとReの合金からなるルツボに移し、図2に示す結晶育成装置にセットした。添加物原料としては、Nd23粉原料(99.99%)又はTm23粉原料(99.99%)を使用した。
用いた結晶育成装置は実施例1と同様であり、実施例1と同様に結晶育成を行って結晶体を得た。
<Examples 22-24>
Lu 2 O 3 powder raw material (99.99%), Gd 2 O 3 powder raw material (99.99%), Al 2 O 3 powder raw material (99.99%) and each additive raw material are weighed in predetermined amounts, and a mortar Mixed. The obtained mixed raw material was transferred to a crucible made of an alloy of Ir and Re, and set in a crystal growth apparatus shown in FIG. As the additive material, Nd 2 O 3 powder material (99.99%) or Tm 2 O 3 powder material (99.99%) was used.
The crystal growth apparatus used was the same as in Example 1, and crystal growth was performed in the same manner as in Example 1 to obtain a crystal.

実施例22−24で得られた結晶体はいずれも無色透明であった。また、得られた結晶体の一部を粉砕し、XRD測定を行ったところ、実施例22−24で得られた結晶体は化学量論組成式Lu0.6Gd0.4AlO3、Lu0.3Gd0.19AlO3又はLu0.6Gd0.399AlO3で示されるルテチウム・ガドリニウム・アルミニウム・ペロブスカイトからなる単相単結晶体であり、他の相は確認されなかった。
また、結晶体中の添加元素(賦活剤)濃度を、グロー放電質量分析法(GD−MS)により分析したところ、表1に示す濃度であった。
得られた結晶体を、所定の大きさ・所定の方向に切り出して、それぞれの上記の測定サンプルとした。
The crystals obtained in Examples 22-24 were all colorless and transparent. A part of the obtained crystal was pulverized and subjected to XRD measurement. As a result, the crystals obtained in Examples 22-24 were found to have a stoichiometric composition formula of Lu 0.6 Gd 0.4 AlO 3 and Lu 0.3 Gd 0.19 AlO. 3 or a single phase single crystal composed of lutetium, gadolinium, aluminum, and perovskite represented by Lu 0.6 Gd 0.399 AlO 3 , and no other phases were confirmed.
Moreover, when the concentration of the additive element (activator) in the crystal was analyzed by glow discharge mass spectrometry (GD-MS), the concentrations shown in Table 1 were obtained.
The obtained crystal was cut out in a predetermined size and a predetermined direction, and each of the above measurement samples was used.

Figure 0005994149
Figure 0005994149

(考察)
この結果、実施例1−19で得られた、化学量論組成式YAlO3で示されるイットリウム・アルミニウム・ペロブスカイト(YAP)からなる単相単結晶体をホストとして含有する材料を用いることにより、発光出力の高いX線シンチレータを構成することができることが分かった。
また、実施例20−24のように、YAlO3におけるYの代わりに或いはYに加えて、GdやLuを含むペロブスカイトであっても、同様の効果を得られることが分かった。
さたにまた、Alの代わりにGaを含むペロブスカイトであっても同様の効果を期待することができると考えられるから、(Y、Gd、Lu)(Al、Ga)O3で示されるペロブスカイト型単相単結晶であれば、上記のYAlO3で示されるイットリウム・アルミニウム・ペロブスカイト(YAP)からなる単相単結晶体と同様の効果を得ることができると考えることができる。
(Discussion)
As a result, by using the material obtained in Example 1-19 and containing as a host a single-phase single crystal composed of yttrium aluminum perovskite (YAP) represented by the stoichiometric composition formula YAlO 3 , light emission was obtained. It has been found that an X-ray scintillator with high output can be constructed.
Further, it was found that the same effect can be obtained even with a perovskite containing Gd or Lu instead of Y in YAlO 3 or in addition to Y as in Example 20-24.
Moreover, since it is considered that the same effect can be expected even with a perovskite containing Ga instead of Al, the perovskite type represented by (Y, Gd, Lu) (Al, Ga) O 3 is used. If it is a single phase single crystal, it can be considered that the same effect as the single phase single crystal body made of yttrium, aluminum, and perovskite (YAP) represented by YAlO 3 can be obtained.

また、表1の結果からすると、賦活剤の濃度が0.0100〜2.0000at%であれば、発光出力の高いシンチレータを構成することができ、中でも0.0500〜1.0000at%であれば、さらに発光出力の高いX線シンチレータを構成することができることが判明した。中でも、発光出力の観点から、例えばNdの濃度が0.1000at%以上、Tmの濃度が0.5000at%以上の場合に特に好ましいことが分かった。
但し、これまでの試験結果からすると、賦活剤の濃度が0.0001at%であれば最低限の効果を得ることが出来ると考えることができる。
From the results shown in Table 1, a scintillator with a high light emission output can be formed if the concentration of the activator is 0.0100 to 2.0000 at%, and more particularly 0.0500 to 1.0000 at%. Further, it has been found that an X-ray scintillator having a higher light emission output can be configured. In particular, from the viewpoint of light emission output, for example, it was found that the Nd concentration was 0.1000 at% or more and the Tm concentration was 0.5000 at% or more.
However, based on the test results so far, it can be considered that the minimum effect can be obtained if the concentration of the activator is 0.0001 at%.

1 チャンバー
2 誘導加熱コイル
3 ジルコニア断熱材
4 アルミナステージ
5 石英管
6 坩堝
7 育成結晶
8 種結晶
9 引き下げ機構
DESCRIPTION OF SYMBOLS 1 Chamber 2 Induction heating coil 3 Zirconia heat insulating material 4 Alumina stage 5 Quartz tube 6 Crucible 7 Growing crystal 8 Seed crystal 9 Pulling mechanism

Claims (4)

ペロブスカイト型構造を有し、且つM3(式中のMはLuとY又はGdとからなるか、又は、LuとYとGdとからなる。式中のMAlとGaの組合せからなる)で示される単相単結晶をホストとして含有し、且つNd、Ho、Er、Tm、Ti及びCrからなる群から選ばれる一種又は二種以上の組み合わせからなる元素を賦活剤として含有することを特徴とするX線シンチレータ用材料。 It has a perovskite structure and M 1 M 2 O 3 (M 1 in the formula consists of Lu and Y or Gd, or Lu, Y and Gd. M 2 in the formula is Al and a combination of Ga single phase single crystal represented by.) containing as a host, and, Nd, Ho, Er, Tm, the element consisting of one or two or more combinations selected from the group consisting of Ti and Cr A material for an X-ray scintillator, which is contained as an activator . ペロブスカイト型構造を有し、且つM3(式中のMはY、Gd及びLuからなる群から選択される何れか1つ又は2つ以上の組合せからなる。式中のMはAl又はGa又はこれらの組合せからなる)で示される単相単結晶をホストとして含有し、Tmを賦活剤として含有するX線シンチレータ用材料。 M 1 M 2 O 3 (wherein M 1 is any one selected from the group consisting of Y, Gd, and Lu, or a combination of two or more. M having the perovskite structure) 2 Al or Ga, or consisting of combinations. contain single-phase single crystal as a host represented by), X-ray scintillator material which contains Tm as an activator. 賦活剤の濃度が0.0001〜2.0000at%であることを特徴とする請求項1又は2に記載のX線シンチレータ用材料。 The X-ray scintillator material according to claim 1 or 2 , wherein the concentration of the activator is 0.0001 to 2.0000 at%. 請求項1〜の何れかに記載のX線シンチレータ用材料を用いてなる放射線検出器。 A radiation detector comprising using an X-ray scintillator material according to any one of claims 1-3.
JP2011190353A 2010-12-27 2011-09-01 X-ray scintillator materials Active JP5994149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011190353A JP5994149B2 (en) 2010-12-27 2011-09-01 X-ray scintillator materials

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010289404 2010-12-27
JP2010289404 2010-12-27
JP2011190353A JP5994149B2 (en) 2010-12-27 2011-09-01 X-ray scintillator materials

Publications (2)

Publication Number Publication Date
JP2012149223A JP2012149223A (en) 2012-08-09
JP5994149B2 true JP5994149B2 (en) 2016-09-21

Family

ID=46791780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011190353A Active JP5994149B2 (en) 2010-12-27 2011-09-01 X-ray scintillator materials

Country Status (1)

Country Link
JP (1) JP5994149B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6468820B2 (en) * 2014-11-28 2019-02-13 キヤノン株式会社 Scintillator crystal and radiation detector using the same
US11396628B2 (en) * 2018-09-10 2022-07-26 Nichia Corporation Near-infrared light emitting fluorescent material
JP7277758B2 (en) * 2018-09-10 2023-05-19 日亜化学工業株式会社 Near-infrared emitting phosphor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06100360A (en) * 1992-09-21 1994-04-12 Hitachi Chem Co Ltd Method for thermally treating signal crystal
JPH06316494A (en) * 1993-04-28 1994-11-15 Shinkosha:Kk Single crystal for scintillator
JPH07286171A (en) * 1993-08-09 1995-10-31 Nichia Chem Ind Ltd Rare earth metal-aluminum oxide fluorescent material emitting near infrared rays, production of the fluorescent material and cathode-ray tube and liquid crystal light valve produced by using the fluorescent material
JPH07149599A (en) * 1993-11-30 1995-06-13 Natl Inst For Res In Inorg Mater Al oxide single crystal containing tb
US20020195565A1 (en) * 2001-06-26 2002-12-26 European Organization For Nuclear Research PET scanner
RU2389835C2 (en) * 2004-11-08 2010-05-20 Тохоку Текно Арч Ко., Лтд. Pr-CONTAINING SCINTILLATION MONOCRYSTAL, METHOD OF MAKING SAID CRYSTAL, RADIATION DETECTOR AND INSPECTION DEVICE
US7711022B2 (en) * 2005-12-13 2010-05-04 General Electric Company Polycrystalline transparent ceramic articles and method of making same
EP2133449B1 (en) * 2007-02-07 2013-09-11 Sakai Chemical Industry Co., Ltd. Iodide single crystal, method for production the iodide single crystal, and scintillator comprising the iodide single crystal

Also Published As

Publication number Publication date
JP2012149223A (en) 2012-08-09

Similar Documents

Publication Publication Date Title
JP5858370B1 (en) Scintillator and manufacturing method thereof, and radiation detector
JPWO2006049284A1 (en) Single crystal for scintillator containing Pr, manufacturing method thereof, radiation detector and inspection apparatus
JP2006233185A (en) Metal halide compound for radiation detection and method for producing the same, as well as scintillator and radiation detector
JP4702767B2 (en) Method for producing Lu3Al5O12 crystal material for radiation detection and method for producing (ZxLu1-x) 3Al5O12 crystal material for radiation detection
JP2011026547A (en) Single crystal for scintillator, method of heat treatment for manufacturing single crystal for scintillator, and method of manufacturing single crystal for scintillator
Wu et al. Fast (Ce, Gd) 3Ga2Al3O12 scintillators grown by the optical floating zone method
Zhang et al. Structural and optical properties of GdAlO3: Tb3+ crystal obtained by optical floating zone method
JP5994149B2 (en) X-ray scintillator materials
JP5566218B2 (en) Fluoride single crystal, vacuum ultraviolet light emitting device, scintillator, and method for producing fluoride single crystal
Dubovik et al. Research and Development of ZnBO_4 (B= W, Mo) Crystal Scintillators for Dark Matter and Double Beta Decay Searching
Sugiyama et al. Growth and scintillation properties of Nd-doped Lu3Al5O12 single crystals by Czochralski and micro-pulling-down methods
JP2016056378A (en) Single crystal for scintillator, heat treatment method for producing single crystal for scintillator and method for producing single crystal for scintillator
Sarukura et al. Czochralski growth of oxides and fluorides
JP4605588B2 (en) Fluoride single crystal for radiation detection, method for producing the same, and radiation detector
JP5455881B2 (en) Fluoride single crystal, vacuum ultraviolet light emitting device and scintillator
JP4905756B2 (en) Fluoride single crystal and scintillator for radiation detection and radiation detector
Fawad et al. Czochralski growth and scintillation properties of Li6LuxY1− x (BO3) 3: Ce3+ single crystals
WO2018110451A1 (en) Phosphor for detecting ionizing radiation, phosphor material containing said phosphor, and inspection apparatus and diagnostic apparatus having said phosphor material
JP7178043B2 (en) LSO-based scintillator crystal
JP5393266B2 (en) Rare earth-containing K3LuF6, vacuum ultraviolet light emitting element and vacuum ultraviolet light emitting scintillator
JP2018070769A (en) Scintillator crystal, heat treatment method for manufacturing scintillator crystal and manufacturing method of scintillator crystal
Li et al. Synthesis and characterization of cerium-doped lutetium aluminum garnet phosphors by nitrate-citrate sol-gel combustion process
JP5317952B2 (en) Fluoride crystals, vacuum ultraviolet light emitting devices, and vacuum ultraviolet light emitting scintillators
JP5611239B2 (en) Metal fluoride crystals, vacuum ultraviolet light emitting devices, and vacuum ultraviolet light emitting scintillators
JP5729954B2 (en) Fluoride single crystal, scintillator and method for producing fluoride single crystal

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20140818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160802

R150 Certificate of patent or registration of utility model

Ref document number: 5994149

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250