JP5393266B2 - Rare earth-containing K3LuF6, vacuum ultraviolet light emitting element and vacuum ultraviolet light emitting scintillator - Google Patents

Rare earth-containing K3LuF6, vacuum ultraviolet light emitting element and vacuum ultraviolet light emitting scintillator Download PDF

Info

Publication number
JP5393266B2
JP5393266B2 JP2009136181A JP2009136181A JP5393266B2 JP 5393266 B2 JP5393266 B2 JP 5393266B2 JP 2009136181 A JP2009136181 A JP 2009136181A JP 2009136181 A JP2009136181 A JP 2009136181A JP 5393266 B2 JP5393266 B2 JP 5393266B2
Authority
JP
Japan
Prior art keywords
vacuum ultraviolet
ultraviolet light
light emitting
rare earth
luf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009136181A
Other languages
Japanese (ja)
Other versions
JP2010280542A (en
Inventor
範明 河口
健太郎 福田
敏尚 須山
彰 吉川
健之 柳田
有為 横田
直人 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Tokuyama Corp
Original Assignee
Tohoku University NUC
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Tokuyama Corp filed Critical Tohoku University NUC
Priority to JP2009136181A priority Critical patent/JP5393266B2/en
Publication of JP2010280542A publication Critical patent/JP2010280542A/en
Application granted granted Critical
Publication of JP5393266B2 publication Critical patent/JP5393266B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、希土類含有KLuFに関する。該化合物はフォトリソグラフィー、半導体や液晶の基板洗浄、殺菌、次世代大容量光ディスク、及び医療(眼科治療、DNA切断)等に用いられる真空紫外発光素子、及びPETによる癌診断やX線CTに用いられる放射線検出器用真空紫外発光シンチレーターとして好適に使用できる。 The present invention relates to rare earth-containing K 3 LuF 6 . The compound is used for photolithography, semiconductor and liquid crystal substrate cleaning, sterilization, next-generation large-capacity optical discs, vacuum ultraviolet light-emitting devices used for medical treatment (ophthalmic treatment, DNA cutting), and PET for cancer diagnosis and X-ray CT. It can be suitably used as a vacuum ultraviolet light emission scintillator for radiation detectors.

紫外線発光材料は、紫外線発光素子として利用されている。中でも高輝度紫外発光素子は、半導体分野、情報分野、医療分野等における先端技術を支える材料であり、近年では、記録媒体への記録密度の向上を始めとする多くの需要に応えるべく、より短波長で発光する紫外発光素子の開発が進められている。この短波長で発光する紫外発光素子としては、GaN等の材料による発光波長約360nmの発光素子が市販されている。   The ultraviolet light emitting material is used as an ultraviolet light emitting element. In particular, high-intensity ultraviolet light-emitting elements are materials that support advanced technologies in the semiconductor field, information field, medical field, and the like. In recent years, they have been shortened to meet many demands such as an increase in recording density on recording media. Development of an ultraviolet light emitting element that emits light at a wavelength is in progress. As the ultraviolet light-emitting element that emits light at a short wavelength, a light-emitting element having an emission wavelength of about 360 nm made of a material such as GaN is commercially available.

より短波長の発光波長200nm以下の真空紫外発光材料は、真空紫外発光素子として、フォトリソグラフィー、半導体や液晶の基板洗浄、殺菌等にも好適に使用できるため、開発が望まれているが、かかる真空紫外発光素子を得ることは容易ではなく、わずかな例しか知られていないのが現状である。   Although a vacuum ultraviolet light emitting material having a shorter wavelength of 200 nm or less can be suitably used for photolithography, semiconductor or liquid crystal substrate cleaning, sterilization, etc. as a vacuum ultraviolet light emitting element, development is desired. It is not easy to obtain a vacuum ultraviolet light emitting element, and only a few examples are known at present.

また、放射線の照射によって発光するものはシンチレーターとしても用いることができる。   Those that emit light when irradiated with radiation can also be used as scintillators.

PETによる癌診断やX線CTに用いられる放射線検出器は、シンチレーターという放射線が照射された際に発光する材料と、光電子増倍管や半導体受光素子などの微弱光検出器を組み合わせて構成される。   A radiation detector used for cancer diagnosis by PET or X-ray CT is composed of a material called a scintillator that emits light when irradiated with a weak light detector such as a photomultiplier tube or a semiconductor light receiving element. .

微弱光検出器には光電子増倍管やSi受光素子を用いるのが主流であるが、近年、ダイヤモンドやAlGaNを受光面に用いた真空紫外光受光素子が開発されており、これらの受光素子は従来のSi半導体受光素子に比べ、真空紫外光よりもエネルギーの低い可視光には感応しないため、低バックグラウンドノイズが実現可能で、放射線検出器に組み込むのに有望な受光素子である。そのため、これらの受光素子に好適な新しい真空紫外発光シンチレーターの開発が求められている。   Although the mainstream is the use of photomultiplier tubes and Si light receiving elements for weak light detectors, vacuum ultraviolet light receiving elements using diamond or AlGaN as the light receiving surface have been developed in recent years. Compared with a conventional Si semiconductor light receiving element, it is insensitive to visible light having a lower energy than vacuum ultraviolet light, so that low background noise can be realized and it is a promising light receiving element to be incorporated in a radiation detector. Therefore, development of a new vacuum ultraviolet light emission scintillator suitable for these light receiving elements is demanded.

従来は可視光受光素子が用いられてきたことから、可視光発光を示すシンチレーター結晶が主に開発されてきており、真空紫外発光シンチレーターは十分に検討されていない。   Conventionally, since a visible light receiving element has been used, scintillator crystals that emit visible light have been mainly developed, and a vacuum ultraviolet light emitting scintillator has not been sufficiently studied.

一例として、Ndを添加したフッ化ランタン結晶があるが(非特許文献1参照)、既に実用化されているLYSOやLSO(発光波長約400nmのCe添加Lu系酸化物)と比べ、173nmの短波長発光を実現しているものの、Lu(原子番号Z=71)より原子番号が低いLa(Z=57)を母材として主に含有している。Laの原子番号は全元素中では比較的高く、Ndを添加したフッ化ランタン結晶のガンマ線阻止能は良好な特性を有するものの、LYSOやLSOに比べると十分ではない。   As an example, there is a lanthanum fluoride crystal to which Nd is added (see Non-Patent Document 1), but it is 173 nm shorter than LYSO or LSO (Ce-added Lu-based oxide having an emission wavelength of about 400 nm) that has already been put to practical use. Although wavelength emission is realized, La (Z = 57) whose atomic number is lower than Lu (atomic number Z = 71) is mainly contained as a base material. The atomic number of La is relatively high among all the elements, and the gamma ray stopping power of the lanthanum fluoride crystal added with Nd has good characteristics, but is not sufficient as compared with LYSO and LSO.

真空紫外発光材料の開発が困難である要因としては、真空紫外線は多くの物質に吸収されてしまうため、自己吸収を起こさない物質が限られる点が挙げられる。   A factor that makes it difficult to develop a vacuum ultraviolet light emitting material is that vacuum ultraviolet rays are absorbed by many substances, so that substances that do not cause self-absorption are limited.

さらに、真空紫外領域における発光特性は、材料中の不純物の影響を受けやすく、また、たとえ真空紫外領域に発光のエネルギー準位を有する材料であっても、より低いエネルギー準位に基づく長波長の発光が支配的であったり、非輻射遷移による損失が甚大であったりする等の理由により、所望の真空紫外発光を得られない場合が多い。   Furthermore, the emission characteristics in the vacuum ultraviolet region are easily affected by impurities in the material, and even a material having an emission energy level in the vacuum ultraviolet region has a long wavelength based on a lower energy level. In many cases, the desired vacuum ultraviolet light emission cannot be obtained due to reasons such as light emission being dominant or loss due to non-radiative transition being significant.

したがって、真空紫外領域における発光特性を予め予測することは極めて困難であり、このことが真空紫外発光素子の開発における大きな障壁となっている。   Therefore, it is extremely difficult to predict the light emission characteristics in the vacuum ultraviolet region in advance, and this is a big barrier in the development of vacuum ultraviolet light emitting elements.

P.SHOTAUS et al.、“DETECTION OF LaF3:Nd3+ SCINTILLATION LIGHT IN A PHOTOSENSITIVE MULTIWIRE CHAMBER” Nuclear Instruments and Methods in Physics Research A272,913−916(1988).P. SHOTAUS et al. , “DETECTION OF LaF3: Nd3 + SCINTILLATION LIGHT IN A PHOTOSENSITIVE MULTIWIRE CHAMBER” Nuclear Instruments and Methods in Physics16, 1987.

本発明は、真空紫外領域で高輝度発光するフッ化物を提供することを目的とする。また、該フッ化物からなり、フォトリソグラフィー、半導体や液晶の基板洗浄、殺菌、次世代大容量光ディスク、及び医療(眼科治療、DNA切断)等に好適に使用できる新たな真空紫外発光素子及び、PETによる癌診断やX線CTに使用する放射線検出器用の真空紫外発光シンチレーターを提供することを目的とする。   An object of the present invention is to provide a fluoride that emits light with high brightness in the vacuum ultraviolet region. Also, a new vacuum ultraviolet light-emitting element made of the fluoride, which can be suitably used for photolithography, semiconductor and liquid crystal substrate cleaning, sterilization, next-generation large-capacity optical disk, medical treatment (ophthalmic treatment, DNA cutting), and PET An object of the present invention is to provide a vacuum ultraviolet light scintillator for radiation detectors used for cancer diagnosis and X-ray CT.

本発明者等は、真空紫外領域で発光する材料を探索し、種々検討した結果、希土類元素を含有するKLuFを放射線で励起することにより、真空紫外領域の波長で高輝度発光することを見出し、本発明を完成するに至った。 As a result of searching for materials that emit light in the vacuum ultraviolet region and conducting various studies, the inventors of the present invention can emit light with high brightness at a wavelength in the vacuum ultraviolet region by exciting K 3 LuF 6 containing a rare earth element with radiation. As a result, the present invention has been completed.

即ち、本発明は、Nd、Er、Tmから選ばれた少なくとも1種の希土類元素を含有するKLuF並びに該KLuFからなること特徴とする真空紫外発光素子及び真空紫外発光シンチレーターである。

That is, the present invention relates to a vacuum ultraviolet light emitting device and a vacuum ultraviolet light emitting scintillator comprising K 3 LuF 6 containing at least one rare earth element selected from Nd, Er, and Tm , and the K 3 LuF 6. is there.

本発明のLuを除く希土類を含有するKLuFによれば、放射線の照射により真空紫外領域における高輝度な発光を得ることができる。該KLuFからなる真空紫外発光素は、フォトリソグラフィー、半導体や液晶の基板洗浄、殺菌、次世代大容量光ディスク、及び医療(眼科治療、DNA切断)等に好適に使用することができる。また、ダイヤモンド受光素子やAlGaN受光素子等の真空紫外用の微弱光検出器に対するシンチレーターとして好適に使用できる。 According to the K 3 LuF 6 containing a rare earth other than Lu of the present invention, high-luminance emission in the vacuum ultraviolet region can be obtained by irradiation with radiation. The vacuum ultraviolet light emitting element made of K 3 LuF 6 can be suitably used for photolithography, semiconductor and liquid crystal substrate cleaning, sterilization, next-generation large-capacity optical disk, medical treatment (ophthalmic treatment, DNA cutting), and the like. Further, it can be suitably used as a scintillator for a weak light detector for vacuum ultraviolet, such as a diamond light receiving element or an AlGaN light receiving element.

本図は、マイクロ引き下げ法による結晶製造装置の概略図である。This figure is a schematic view of an apparatus for producing a crystal by the micro pull-down method. 本図は、X線励起発光スペクトルの測定装置の概略図である。This figure is a schematic diagram of an X-ray excitation emission spectrum measuring apparatus. 本図は、本発明のNdを含有させたKLuFのX線励起発光スペクトルである。This figure is an X-ray excited emission spectrum of K 3 LuF 6 containing Nd of the present invention. 本図は、本発明のTmを含有させたKLuFのX線励起発光スペクトルである。This figure is an X-ray excitation emission spectrum of K 3 LuF 6 containing Tm of the present invention. 本図は、本発明のErを含有させたKLuFのX線励起発光スペクトルである。This figure is an X-ray excited emission spectrum of K 3 LuF 6 containing Er of the present invention. 本図は、本発明の、Tm含有量を変化させたKLuFのX線励起発光スペクトルである。This figure is an X-ray excitation emission spectrum of K 3 LuF 6 with varying Tm content according to the present invention.

以下、本発明のLuを除く希土類を含有するKLuFについて説明する。本発明において真空紫外発光とは200nm以下の波長の発光のことを言う。 Hereinafter, K 3 LuF 6 containing rare earths excluding Lu according to the present invention will be described. In the present invention, vacuum ultraviolet light emission means light emission having a wavelength of 200 nm or less.

本発明のLuを除く希土類を含有するKLuFは、一般に化学式KLuFで表されるフッ化カリウムルテシウム(以下、KLuFという)に付活剤としてLuを除く希土類元素(Tm、Nd、Er、Yb、Sc、Y、La、Ce、Pr、Pm、Sm、Eu、Gd、Tb、Dy、Ho)の内少なくとも一種を含有させた(以下、ドープともいう)ものである。 K 3 LuF 6 containing rare earths excluding Lu of the present invention is generally a rare earth element excluding Lu as an activator to potassium lutesium fluoride represented by the chemical formula K 3 LuF 6 (hereinafter referred to as K 3 LuF 6 ). (Tm, Nd, Er, Yb, Sc, Y, La, Ce, Pr, Pm, Sm, Eu, Gd, Tb, Dy, Ho) containing at least one (hereinafter also referred to as dope) is there.

本発明のLuを除く希土類元素を含有させたKLuFにおいては、含有させる希土類元素の含有割合が高過ぎると真空紫外発光が低減することがあるため、含有させる希土類元素とLuのモル数の和に対する含有させる希土類元素のモル数の割合を0.5モル%〜50モル%とすることが好ましい。尚、結晶中において、ドープされた希土類元素はLu原子と置換されて存在すると考えられるものの、正確な存在状態は明らかではない。 In K 3 LuF 6 containing rare earth elements excluding Lu of the present invention, if the content ratio of the rare earth elements contained is too high, the vacuum ultraviolet emission may be reduced. Therefore, the number of moles of rare earth elements to be contained and Lu The ratio of the number of moles of the rare earth element to be contained with respect to the sum of is preferably 0.5 mol% to 50 mol%. In the crystal, the doped rare earth element is considered to be substituted for Lu atoms, but the exact existence state is not clear.

本発明のLuを除く希土類を含有するKLuFは単結晶、多結晶、あるいは結晶粉末のいずれの状態でもよく、いずれの状態であっても真空紫外発光を起こすことができるが、単結晶の場合は一般的に光の透過性が高く、大きなサイズの固体サンプルであっても内部からの発光を減衰させずに取り出しやすいため、真空紫外発光素子、真空紫外発光シンチレーターのいずれの用途にも好適である。 K 3 LuF 6 containing rare earths excluding Lu of the present invention may be in any state of single crystal, polycrystal, or crystal powder, and can emit vacuum ultraviolet light in any state. In general, light transmittance is high, and even large-sized solid samples can be easily taken out without attenuating light emitted from the inside, so it can be used for both vacuum ultraviolet light emitting devices and vacuum ultraviolet light emitting scintillators. Is preferred.

製造方法は特に限定されないが、チョクラルスキー法やマイクロ引き下げ法に代表される一般的な融液成長法によって単結晶を製造することができる。   The production method is not particularly limited, but a single crystal can be produced by a general melt growth method typified by the Czochralski method or the micro pulling down method.

マイクロ引き下げ法とは、図1に示すような装置を用いて、坩堝5の底部に設けた穴より原料融液を引き出して結晶を製造する方法である。   The micro pulling-down method is a method for producing a crystal by drawing a raw material melt from a hole provided in the bottom of the crucible 5 using an apparatus as shown in FIG.

以下、マイクロ引き下げ法によってLuを除く希土類フッ化物を含有させたKLuF単結晶を製造する際の、一般的な方法について説明する。 Hereinafter, a general method for producing a K 3 LuF 6 single crystal containing rare earth fluoride excluding Lu by the micro-pulling-down method will be described.

まず、所定量の原料を、底部に孔を設けた坩堝5に充填する。坩堝底部に設ける孔の形状は、特に限定されないが、直径が0.5〜4mm、長さが0〜2mmの円柱状とすることが好ましい。   First, a predetermined amount of raw material is filled into a crucible 5 having a hole at the bottom. Although the shape of the hole provided in the crucible bottom is not particularly limited, it is preferably a cylindrical shape having a diameter of 0.5 to 4 mm and a length of 0 to 2 mm.

本発明において原料は特に限定されないが、純度がそれぞれ99.99%以上のKF、LuF、及び含有させたいLuを除く希土類フッ化物を混合した混合原料を用いることが好ましい。かかる混合原料を用いることにより、Luを除く希土類元素を含有させたKLuF単結晶の純度を高めることができ、発光の輝度等の特性が向上する。混合原料は、混合後に焼結或いは溶融固化させてから用いても良い。 In the present invention, the raw material is not particularly limited, but it is preferable to use a mixed raw material in which KF, LuF 3 having a purity of 99.99% or more and a rare earth fluoride excluding Lu to be contained are mixed. By using such a mixed material, the purity of the K 3 LuF 6 single crystal containing rare earth elements excluding Lu can be increased, and characteristics such as luminance of light emission are improved. The mixed raw material may be used after being sintered or melted and solidified after mixing.

上記混合原料におけるLuFと含有させる希土類フッ化物の合計に対するKFのモル比は、通常3.0〜4.0とする。KFの揮発性がLuFに比べて高いためである。育成雰囲気や温度など、製造の条件によってKFの揮発のしやすさは変わるため、原料仕込み時のKF混合比を一般化することは難しく、予備実験をして決めるのが望ましい。 The molar ratio of KF to the total of LuF 3 and the rare earth fluoride to be contained in the mixed raw material is usually 3.0 to 4.0. This is because the volatility of KF is higher than that of LuF 3 . Since the easiness of volatilization of KF varies depending on manufacturing conditions such as the growth atmosphere and temperature, it is difficult to generalize the KF mixing ratio at the time of raw material charging, and it is desirable to determine by preliminary experiments.

次いで、上記原料を充填した坩堝5、アフターヒーター1、ヒーター2、断熱材3、及びステージ4を図1に示すようにセットする。真空排気装置を用いて、チャンバー6内を1.0×10−3Pa以下まで真空排気した後、高純度アルゴン等の不活性ガスをチャンバー6内に導入してガス置換を行う。ガス置換後のチャンバー内の圧力は特に限定されないが、大気圧が一般的である。 Next, the crucible 5 filled with the raw materials, the after heater 1, the heater 2, the heat insulating material 3, and the stage 4 are set as shown in FIG. After evacuating the inside of the chamber 6 to 1.0 × 10 −3 Pa or less using a vacuum evacuation apparatus, an inert gas such as high-purity argon is introduced into the chamber 6 to perform gas replacement. The pressure in the chamber after gas replacement is not particularly limited, but atmospheric pressure is common.

該ガス置換操作によって、原料或いはチャンバー内に付着した水分を除去することができ、かかる水分に由来する単結晶の劣化を妨げることができる。上記ガス置換操作によっても除去できない水分による影響を避けるため、フッ化亜鉛等の固体スカベンジャー或いは四フッ化メタン等の気体スカベンジャーを用いることが好ましい。固体スカベンジャーを用いる場合には原料中に予め混合しておく方法が好適であり、気体スカベンジャーを用いる場合には上記不活性ガスに混合してチャンバー内に導入する方法が好適である。   By the gas replacement operation, moisture attached to the raw material or the chamber can be removed, and deterioration of the single crystal derived from the moisture can be prevented. In order to avoid the influence of moisture that cannot be removed by the gas replacement operation, it is preferable to use a solid scavenger such as zinc fluoride or a gas scavenger such as tetrafluoromethane. When using a solid scavenger, a method of mixing in the raw material in advance is preferable, and when using a gas scavenger, a method of mixing with the above inert gas and introducing it into the chamber is preferable.

ガス置換操作を行った後、高周波コイル7で原料を加熱して溶融せしめ、溶融した原料融液を坩堝底部の孔から引き出して、結晶の育成を開始する。   After performing the gas replacement operation, the raw material is heated and melted by the high-frequency coil 7, and the melted raw material melt is drawn out from the hole at the bottom of the crucible to start crystal growth.

ここで、金属ワイヤーを引き下げロッドの先端に設け、該金属ワイヤーを坩堝底部の孔から坩堝内部に挿入し、該金属ワイヤーに原料融液を付着せしめた後、原料融液を金属ワイヤーと共に引き下げることによって結晶の育成が可能となる。   Here, the metal wire is provided at the tip of the pull-down rod, the metal wire is inserted into the crucible through the hole at the bottom of the crucible, the raw material melt is attached to the metal wire, and then the raw material melt is pulled down together with the metal wire. This makes it possible to grow crystals.

即ち、高周波の出力を調整し、原料の温度を徐々に上げながら、該金属ワイヤーを坩堝底部の孔に挿入し、引き出しを行う。この操作を、原料融液が金属ワイヤーと共に引き出されるまで繰り返して、結晶の育成を開始する。該金属ワイヤーの材質は、原料融液と実質的に反応しない材質であれば制限無く使用できるが、W−Re合金等の高温における耐食性に優れた材質が好適である。   That is, while adjusting the output of the high frequency and gradually raising the temperature of the raw material, the metal wire is inserted into the hole at the bottom of the crucible and pulled out. This operation is repeated until the raw material melt is drawn together with the metal wire, and crystal growth is started. The material of the metal wire can be used without limitation as long as it is a material that does not substantially react with the raw material melt, but a material excellent in corrosion resistance at high temperatures such as a W-Re alloy is preferable.

上記金属ワイヤーによる原料融液の引き出しを行った後、一定の引き下げ速度で連続的に引き下げることにより、単結晶を得ることができる。
該引き下げ速度は、特に限定されないが、0.5〜10mm/hrの範囲とすることが好ましい。
After pulling out the raw material melt with the metal wire, a single crystal can be obtained by continuously pulling it down at a constant pulling rate.
The pulling speed is not particularly limited, but is preferably in the range of 0.5 to 10 mm / hr.

Luを除く希土類元素を含有させたKLuFの製造においては、熱歪に起因する単結晶の結晶欠陥を除去する目的で、単結晶の製造後にアニール操作を行っても良い。 In the production of K 3 LuF 6 containing rare earth elements other than Lu, an annealing operation may be performed after the production of the single crystal for the purpose of removing crystal defects of the single crystal caused by thermal strain.

得られたLuを除く希土類元素を含有させたKLuF単結晶は、良好な加工性を有しており、所望の形状に加工して用いることが容易である。加工に際しては、公知のブレードソー、ワイヤーソー等の切断機、研削機、或いは研磨盤を何ら制限無く用いることができる。 The obtained K 3 LuF 6 single crystal containing rare earth elements excluding Lu has good workability and can be easily processed into a desired shape. In processing, a known cutting machine such as a blade saw or wire saw, a grinding machine, or a polishing machine can be used without any limitation.

Luを除く希土類元素を含有させたKLuF単結晶は所望の形状に加工して本発明の真空紫外発光素子、及び真空紫外発光シンチレーターとすることができる。本発明の真空紫外発光素子は、励起源である放射線源と組み合わせることにより、真空紫外光発生装置とすることができる。かかる真空紫外光発生装置は、フォトリソグラフィー、殺菌、次世代大容量光ディスク、及び医療(眼科治療、DNA切断)等の分野において、好適に使用される。また、本発明の真空紫外発光シンチレーターは、ダイヤモンド受光素子やAlGaN受光素子等の真空紫外用の微弱光検出器と組み合わせて、低バックグラウンドノイズの放射線検出器として好適に使用できる。 The K 3 LuF 6 single crystal containing rare earth elements excluding Lu can be processed into a desired shape to obtain the vacuum ultraviolet light emitting device and the vacuum ultraviolet light emitting scintillator of the present invention. The vacuum ultraviolet light emitting device of the present invention can be made into a vacuum ultraviolet light generator by combining with a radiation source as an excitation source. Such a vacuum ultraviolet light generator is suitably used in fields such as photolithography, sterilization, next-generation large-capacity optical disks, and medicine (ophthalmic treatment, DNA cutting). In addition, the vacuum ultraviolet light emission scintillator of the present invention can be suitably used as a radiation detector with low background noise in combination with a weak light detector for vacuum ultraviolet light such as a diamond light receiving element or an AlGaN light receiving element.

以下、本発明の実施例を挙げて具体的に説明するが、本発明はこれらの実施例によって何ら制限されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.

実施例1〜6
図1に示す結晶製造装置を用いて、Luを除く希土類元素を含有させたKLuF結晶を製造した。原料としては、純度が99.99%のKF、LuF、TmF、ErF、NdFを用いた。アフターヒーター1、ヒーター2、断熱材3、ステージ4、及び坩堝5は、高純度カーボン製のものを使用し、坩堝底部に設けた孔の形状は直径2mm、長さ0.5mmの円柱状とした。
Examples 1-6
Using the crystal manufacturing apparatus shown in FIG. 1, K 3 LuF 6 crystals containing rare earth elements excluding Lu were manufactured. As raw materials, KF, LuF 3 , TmF 3 , ErF 3 , and NdF 3 having a purity of 99.99% were used. The after-heater 1, the heater 2, the heat insulating material 3, the stage 4, and the crucible 5 are made of high-purity carbon, and the shape of the hole provided at the bottom of the crucible is 2 mm in diameter and 0.5 mm in length. did.

まず、各原料を表1に示すとおりそれぞれ秤量し、よく混合した後に坩堝5に充填した。   First, each raw material was weighed as shown in Table 1, mixed well, and then charged in the crucible 5.

Figure 0005393266
Figure 0005393266

原料を充填した坩堝5を、アフターヒーター1の上部にセットし、その周囲にヒーター2、及び断熱材3を順次セットした。次いで、油回転ポンプ及び油拡散ポンプからなる真空排気装置を用いて、チャンバー6内を1.0×10−4Paまで真空排気した後、アルゴン−四フッ化メタン混合ガスをチャンバー6内に導入してガス置換を行った。 The crucible 5 filled with the raw material was set on the upper part of the after heater 1, and the heater 2 and the heat insulating material 3 were sequentially set around the crucible. Next, the inside of the chamber 6 is evacuated to 1.0 × 10 −4 Pa using an evacuation apparatus including an oil rotary pump and an oil diffusion pump, and then an argon-tetrafluoromethane mixed gas is introduced into the chamber 6. Then, gas replacement was performed.

ガス置換後のチャンバー6内の圧力は大気圧とした後、高周波コイル7で原料を約400度まで加熱したが、原料融液の坩堝5底部の孔からの滲出は認められなかった。そこで、高周波の出力を調整して原料融液の温度を徐々に上げながら、引き下げロッド8の先端に設けたW−Reワイヤーを、上記孔に挿入し、引き下げる操作を繰り返したところ、原料の融液を上記孔より引き出すことができた。   After the gas replacement, the pressure in the chamber 6 was changed to atmospheric pressure, and then the raw material was heated to about 400 ° C. with the high-frequency coil 7, but no leaching of the raw material melt from the bottom of the crucible 5 was observed. Then, while adjusting the high frequency output and gradually raising the temperature of the raw material melt, the W-Re wire provided at the tip of the pull-down rod 8 was inserted into the hole and pulled down repeatedly. The liquid could be drawn out from the hole.

この時点の温度が保たれるように高周波の出力を固定し、原料の融液を引き下げ、結晶化を開始した。6mm/hrの速度で連続的に12時間引き下げ、最終的に直径2mm、長さ約70mmの結晶を得た。   The high frequency output was fixed so that the temperature at this time was maintained, the raw material melt was lowered, and crystallization was started. The crystal was continuously pulled down at a speed of 6 mm / hr for 12 hours, and finally a crystal having a diameter of 2 mm and a length of about 70 mm was obtained.

得られた結晶を、ワイヤーソーによって約10mmの長さに切断し、側面を研削して長さ10mm、幅約2mm、厚さ1mmの形状に加工した後、長さ10mm、幅約2mmの面の両面を鏡面研磨して発光特性測定用の試料を作製した。   The obtained crystal is cut into a length of about 10 mm with a wire saw, the side surface is ground and processed into a shape having a length of 10 mm, a width of about 2 mm, and a thickness of 1 mm, and then a surface having a length of 10 mm and a width of about 2 mm. Both surfaces were mirror-polished to prepare a sample for measuring the light emission characteristics.

得られた結晶を粉砕して粉末にし、粉末X線回折測定を行った。粉末X線回折法による分析の結果より、実施例1〜6の結晶は、KLuF単相と同様の粉末X線回折パターンが得られる結晶であることが確認された。 The obtained crystals were pulverized into powder and subjected to powder X-ray diffraction measurement. From the results of analysis by the powder X-ray diffraction method, it was confirmed that the crystals of Examples 1 to 6 were crystals from which a powder X-ray diffraction pattern similar to that of the K 3 LuF 6 single phase was obtained.

得られた実施例1〜6の結晶のX線励起による真空紫外発光特性は、図2に示す測定装置を用いて以下のようにして測定した。なお、測定は室温において行った。   The vacuum ultraviolet emission characteristics by X-ray excitation of the obtained crystals of Examples 1 to 6 were measured as follows using a measuring apparatus shown in FIG. The measurement was performed at room temperature.

測定装置内の所定の位置に本発明の試料9をセットし、装置内部全体を窒素ガスで置換した。励起源であるX線発生器10(RIGAKU SA−HFM3用X線発生装置)からのX線を60kV、35mAの出力で試料9に照射し、試料9からの発光を発光分光器11(分光計器製、KV201型極紫外分光器)で分光した。発光分光器11による分光の波長を100〜280nmの範囲で掃引し、各発光波長における発光強度を光電子増倍管12で記録した。実施例1〜6の結晶の発光スペクトルを図3〜6に示した。   The sample 9 of the present invention was set at a predetermined position in the measuring apparatus, and the entire interior of the apparatus was replaced with nitrogen gas. The sample 9 is irradiated with X-rays from the X-ray generator 10 (X-ray generator for RIGAKU SA-HFM3), which is an excitation source, at an output of 60 kV and 35 mA, and emission from the sample 9 is emitted into the emission spectrometer 11 (spectrometer instrument). Manufactured by KV201 type extreme ultraviolet spectrometer). The wavelength of the spectrum by the emission spectrometer 11 was swept in the range of 100 to 280 nm, and the emission intensity at each emission wavelength was recorded by the photomultiplier tube 12. The emission spectra of the crystals of Examples 1 to 6 are shown in FIGS.

上記測定の結果、それぞれNd、Tm及びErを含有する実施例1、2、3に対し、それぞれ図3、図4、図5に示す発光スペクトルが得られ、Luを除く希土類元素から選ばれた少なくとも1種を含有させたKLuFは200nm以下の波長において、充分な輝度で発光し、真空紫外発光素子として動作することが確認された。また、放射線により励起されて真空紫外発光することから、シンチレーターとして動作することも確認された。 As a result of the above measurement, the emission spectra shown in FIGS. 3, 4 and 5 were obtained for Examples 1, 2, and 3 containing Nd, Tm and Er, respectively, and selected from rare earth elements excluding Lu. It was confirmed that K 3 LuF 6 containing at least one kind emits light with sufficient luminance at a wavelength of 200 nm or less and operates as a vacuum ultraviolet light emitting element. It was also confirmed to operate as a scintillator because it emits vacuum ultraviolet light when excited by radiation.

また、図6はTm含有量を変えた実施例2、4、5、6の結晶の発光スペクトルである。秤量した原料粉末の重量から計算されるTmのモル濃度(LuとTmのモル数の和に対するTmのモル数の割合)は実施例2、4、5、6でそれぞれ0.5モル%、14モル%、43モル%、57モル%であった。   FIG. 6 shows the emission spectra of the crystals of Examples 2, 4, 5, and 6 with different Tm contents. The molar concentration of Tm (ratio of the number of moles of Tm to the sum of the number of moles of Lu and Tm) calculated from the weight of the weighed raw material powder was 0.5 mol% and 14 in Examples 2, 4, 5, and 6, respectively. Mol%, 43 mol%, and 57 mol%.

1 アフターヒーター
2 ヒーター
3 断熱材
4 ステージ
5 坩堝
6 チャンバー
7 高周波コイル
8 引き下げロッド
9 試料
10 X線発生器
11 発光分光器
12 光電子増倍管
DESCRIPTION OF SYMBOLS 1 After heater 2 Heater 3 Heat insulation material 4 Stage 5 Crucible 6 Chamber 7 High frequency coil 8 Pulling rod 9 Sample 10 X-ray generator 11 Emission spectrometer 12 Photomultiplier tube

Claims (3)

Nd、Er、Tmから選ばれた少なくとも1種の希土類元素を含有するKLuFK 3 LuF 6 containing at least one rare earth element selected from Nd, Er, and Tm . 請求項1記載のKLuFからなることを特徴とする真空紫外発光素子。 A vacuum ultraviolet light emitting element comprising K 3 LuF 6 according to claim 1. 請求項1記載のKLuFからなることを特徴とする真空紫外発光シンチレーター。 A vacuum ultraviolet light scintillator comprising K 3 LuF 6 according to claim 1.
JP2009136181A 2009-06-05 2009-06-05 Rare earth-containing K3LuF6, vacuum ultraviolet light emitting element and vacuum ultraviolet light emitting scintillator Expired - Fee Related JP5393266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009136181A JP5393266B2 (en) 2009-06-05 2009-06-05 Rare earth-containing K3LuF6, vacuum ultraviolet light emitting element and vacuum ultraviolet light emitting scintillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009136181A JP5393266B2 (en) 2009-06-05 2009-06-05 Rare earth-containing K3LuF6, vacuum ultraviolet light emitting element and vacuum ultraviolet light emitting scintillator

Publications (2)

Publication Number Publication Date
JP2010280542A JP2010280542A (en) 2010-12-16
JP5393266B2 true JP5393266B2 (en) 2014-01-22

Family

ID=43537676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009136181A Expired - Fee Related JP5393266B2 (en) 2009-06-05 2009-06-05 Rare earth-containing K3LuF6, vacuum ultraviolet light emitting element and vacuum ultraviolet light emitting scintillator

Country Status (1)

Country Link
JP (1) JP5393266B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105293921A (en) * 2015-11-27 2016-02-03 宁波大学 Rare earth ion doped K3LuCl6 glass ceramic and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004137489A (en) * 2002-09-24 2004-05-13 Hokushin Ind Inc Fluoride single crystal material for radiation detection and radiation detector
JP4905756B2 (en) * 2003-09-24 2012-03-28 シンジーテック株式会社 Fluoride single crystal and scintillator for radiation detection and radiation detector
JP4605588B2 (en) * 2003-09-24 2011-01-05 シンジーテック株式会社 Fluoride single crystal for radiation detection, method for producing the same, and radiation detector
EP1754808B1 (en) * 2004-04-12 2011-06-22 Stella Chemifa Corporation Solid solution material of rare earth element fluoride (polycrystal and single crystal), and radiation detector and test device
CN102888652B (en) * 2004-11-08 2016-09-21 东北泰克诺亚奇股份有限公司 Single crystal for scintillator containing Pr and manufacture method and radiation detector and check device
JP2006233185A (en) * 2005-01-27 2006-09-07 Hokushin Ind Inc Metal halide compound for radiation detection and method for producing the same, as well as scintillator and radiation detector
JP2007045869A (en) * 2005-08-08 2007-02-22 Stella Chemifa Corp Low hygroscopic halogen-substituted fluoride scintillator material, radiation detector and inspection device
US7541589B2 (en) * 2006-06-30 2009-06-02 General Electric Company Scintillator compositions based on lanthanide halides, and related methods and articles

Also Published As

Publication number Publication date
JP2010280542A (en) 2010-12-16

Similar Documents

Publication Publication Date Title
JP5378356B2 (en) Neutron detection scintillator and neutron detector
JP5858370B1 (en) Scintillator and manufacturing method thereof, and radiation detector
JP4770337B2 (en) Single crystal heat treatment method
JP5245176B2 (en) Method for producing iodide-based single crystal
WO2012137738A1 (en) Scintillator, radiation detector, and method for detecting radiation
JP5566218B2 (en) Fluoride single crystal, vacuum ultraviolet light emitting device, scintillator, and method for producing fluoride single crystal
JP2017036160A (en) Crystal material, crystal production method, radiation detector, nondestructive testing device, and imaging device
JP4785198B2 (en) Fluoride crystal and vacuum ultraviolet light emitting device
JP5393266B2 (en) Rare earth-containing K3LuF6, vacuum ultraviolet light emitting element and vacuum ultraviolet light emitting scintillator
JP5455881B2 (en) Fluoride single crystal, vacuum ultraviolet light emitting device and scintillator
JP5994149B2 (en) X-ray scintillator materials
JP5127778B2 (en) Fluoride crystals, vacuum ultraviolet light emitting devices, and vacuum ultraviolet light emitting scintillators
JP2017066245A (en) Scintillator crystal material, single crystal scintillator, radiation detector, imaging apparatus and nondestructive inspection apparatus
JP5317952B2 (en) Fluoride crystals, vacuum ultraviolet light emitting devices, and vacuum ultraviolet light emitting scintillators
JP2011184206A (en) Fluoride crystal, vacuum ultraviolet light emitting element, and vacuum ultraviolet light emitting scintillator
JP5611239B2 (en) Metal fluoride crystals, vacuum ultraviolet light emitting devices, and vacuum ultraviolet light emitting scintillators
JP2008007391A (en) Method for heat treating single crystal
JP2010280541A (en) Vacuum ultraviolet light-emitting element and vacuum ultraviolet light-emitting scintillator
WO2012026585A1 (en) Fluoride crystal, scintillator for detection of radioactive ray, and radioactive ray detector
JP2005206640A (en) Inorganic scintillator
JP2011190393A (en) Vacuum ultraviolet (uv) light-emitting element and scintillator
JP5729954B2 (en) Fluoride single crystal, scintillator and method for producing fluoride single crystal
Pejchal et al. Luminescence and Scintillation Properties of Scintillators Based on Orthorhombic and Monoclinic BaLu $ _ {2} $ F $ _ {8} $ Single Crystals
WO2012026584A1 (en) Neutron-detecting scintillator and neutron ray detector
JP2017132689A (en) Crystal material, crystal manufacturing method, radiation detector, nondestructive inspection apparatus and imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131015

R150 Certificate of patent or registration of utility model

Ref document number: 5393266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees