JP5127778B2 - Fluoride crystals, vacuum ultraviolet light emitting devices, and vacuum ultraviolet light emitting scintillators - Google Patents

Fluoride crystals, vacuum ultraviolet light emitting devices, and vacuum ultraviolet light emitting scintillators Download PDF

Info

Publication number
JP5127778B2
JP5127778B2 JP2009136182A JP2009136182A JP5127778B2 JP 5127778 B2 JP5127778 B2 JP 5127778B2 JP 2009136182 A JP2009136182 A JP 2009136182A JP 2009136182 A JP2009136182 A JP 2009136182A JP 5127778 B2 JP5127778 B2 JP 5127778B2
Authority
JP
Japan
Prior art keywords
vacuum ultraviolet
ultraviolet light
light emitting
luf
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009136182A
Other languages
Japanese (ja)
Other versions
JP2010280543A (en
Inventor
範明 河口
健太郎 福田
敏尚 須山
彰 吉川
健之 柳田
有為 横田
直人 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Tokuyama Corp
Original Assignee
Tohoku University NUC
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Tokuyama Corp filed Critical Tohoku University NUC
Priority to JP2009136182A priority Critical patent/JP5127778B2/en
Publication of JP2010280543A publication Critical patent/JP2010280543A/en
Application granted granted Critical
Publication of JP5127778B2 publication Critical patent/JP5127778B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Luminescent Compositions (AREA)
  • Light Receiving Elements (AREA)
  • Measurement Of Radiation (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

本発明は、新規なフッ化物結晶に関する。該フッ化物結晶はフォトリソグラフィー、半導体や液晶の基板洗浄、殺菌、次世代大容量光ディスク、及び医療(眼科治療、DNA切断)等に用いられる真空紫外発光素子、及びPETによる癌診断やX線CTに用いられる放射線検出器用真空紫外発光シンチレーターとして公的に使用できる。   The present invention relates to a novel fluoride crystal. The fluoride crystals are used in photolithography, semiconductor and liquid crystal substrate cleaning, sterilization, next-generation large-capacity optical discs, vacuum ultraviolet light emitting devices used in medicine (ophthalmic treatment, DNA cutting), etc., and PET cancer diagnosis and X-ray CT. Can be publicly used as a vacuum ultraviolet light emission scintillator for radiation detectors.

紫外線発光材料は、紫外線発光素子として利用されている。中でも高輝度紫外発光素子は、半導体分野、情報分野、医療分野等における先端技術を支える材料であり、近年では、記録媒体への記録密度の向上を始めとする多くの需要に応えるべく、より短波長で発光する紫外発光素子の開発が進められている。この短波長で発光する紫外発光素子としては、GaN等の材料による発光波長約360nmの発光素子が市販されている。   The ultraviolet light emitting material is used as an ultraviolet light emitting element. In particular, high-intensity ultraviolet light-emitting elements are materials that support advanced technologies in the semiconductor field, information field, medical field, and the like. In recent years, they have been shortened to meet many demands such as an increase in recording density on recording media. Development of an ultraviolet light emitting element that emits light at a wavelength is in progress. As the ultraviolet light-emitting element that emits light at a short wavelength, a light-emitting element having an emission wavelength of about 360 nm made of a material such as GaN is commercially available.

より短波長の発光波長200nm以下の真空紫外発光材料は、真空紫外発光素子として、フォトリソグラフィー、半導体や液晶の基板洗浄、殺菌等にも好適に使用できるため、開発が望まれているが、かかる真空紫外発光素子を得ることは容易ではなく、わずかな例しか知られていないのが現状である。   Although a vacuum ultraviolet light emitting material having a shorter wavelength of 200 nm or less can be suitably used for photolithography, semiconductor or liquid crystal substrate cleaning, sterilization, etc. as a vacuum ultraviolet light emitting element, development is desired. It is not easy to obtain a vacuum ultraviolet light emitting element, and only a few examples are known at present.

また、放射線の照射によって発光するものはシンチレーターとしても用いることができる。   Those that emit light when irradiated with radiation can also be used as scintillators.

PETによる癌診断やX線CTに用いられる放射線検出器は、シンチレーターという放射線が照射された際に発光する材料と、光電子増倍管や半導体受光素子などの微弱光検出器を組み合わせて構成される。   A radiation detector used for cancer diagnosis by PET or X-ray CT is composed of a material called a scintillator that emits light when irradiated with a weak light detector such as a photomultiplier tube or a semiconductor light receiving element. .

微弱光検出器には光電子増倍管やSi受光素子を用いるのが主流であるが、近年、ダイヤモンドやAlGaNを受光面に用いた真空紫外光受光素子が開発されており、これらの受光素子は従来のSi半導体受光素子に比べ、真空紫外光よりもエネルギーの低い可視光には感応しないため、低バックグラウンドノイズが実現可能で、放射線検出器に組み込むのに有望な受光素子である。そのため、これらの受光素子に好適な新しい真空紫外発光シンチレーターの開発が求められている。   Although the mainstream is the use of photomultiplier tubes and Si light receiving elements for weak light detectors, vacuum ultraviolet light receiving elements using diamond or AlGaN as the light receiving surface have been developed in recent years. Compared with a conventional Si semiconductor light receiving element, it is insensitive to visible light having a lower energy than vacuum ultraviolet light, so that low background noise can be realized and it is a promising light receiving element to be incorporated in a radiation detector. Therefore, development of a new vacuum ultraviolet light emission scintillator suitable for these light receiving elements is demanded.

従来は可視光受光素子が用いられてきたことから、可視光発光を示すシンチレーター結晶が主に開発されてきており、真空紫外発光シンチレーターは十分に検討されていない。   Conventionally, since a visible light receiving element has been used, scintillator crystals that emit visible light have been mainly developed, and a vacuum ultraviolet light emitting scintillator has not been sufficiently studied.

一例として、Ndを添加したフッ化ランタン結晶があるが(非特許文献1参照)、既に実用化されているLYSOやLSO(発光波長約400nmのCe添加Lu系酸化物)と比べ、175nmの短波長発光を実現しているものの、Lu(原子番号Z=71)より原子番号が低いLa(Z=57)を母材として主に含有している。Laの原子番号は全元素中では比較的高く、Ndを添加したフッ化ランタン結晶のガンマ線阻止能は良好な特性を有するものの、LYSOやLSOに比べると十分ではない。   As an example, there is a lanthanum fluoride crystal to which Nd is added (see Non-Patent Document 1), but it is 175 nm shorter than LYSO or LSO (Ce-added Lu-based oxide having an emission wavelength of about 400 nm) that has already been put to practical use. Although wavelength emission is realized, La (Z = 57) whose atomic number is lower than Lu (atomic number Z = 71) is mainly contained as a base material. The atomic number of La is relatively high among all the elements, and the gamma ray stopping power of the lanthanum fluoride crystal added with Nd has good characteristics, but is not sufficient as compared with LYSO and LSO.

真空紫外発光材料の開発が困難である要因としては、真空紫外線は多くの物質に吸収されてしまうため、自己吸収を起こさない物質が限られる点が挙げられる。   A factor that makes it difficult to develop a vacuum ultraviolet light emitting material is that vacuum ultraviolet rays are absorbed by many substances, so that substances that do not cause self-absorption are limited.

さらに、真空紫外領域における発光特性は、材料中の不純物の影響を受けやすく、また、たとえ真空紫外領域に発光のエネルギー準位を有する材料であっても、より低いエネルギー準位に基づく長波長の発光が支配的であったり、非輻射遷移による損失が甚大であったりする等の理由により、所望の真空紫外発光を得られない場合が多い。   Furthermore, the emission characteristics in the vacuum ultraviolet region are easily affected by impurities in the material, and even a material having an emission energy level in the vacuum ultraviolet region has a long wavelength based on a lower energy level. In many cases, the desired vacuum ultraviolet light emission cannot be obtained due to reasons such as light emission being dominant or loss due to non-radiative transition being significant.

したがって、真空紫外領域における発光特性を予め予測することは極めて困難であり、このことが真空紫外発光材料の開発における大きな障壁となっている。   Therefore, it is extremely difficult to predict the emission characteristics in the vacuum ultraviolet region in advance, and this is a big barrier in the development of vacuum ultraviolet light emitting materials.

P.SHOTAUS et al.、“DETECTION OF LaF3:Nd3+ SCINTILLATION LIGHT IN A PHOTOSENSITIVE MULTIWIRE CHAMBER” Nuclear Instruments and Methods in Physics Research A272,913−916(1988).P. SHOTAUS et al. , “DETECTION OF LaF3: Nd3 + SCINTILLATION LIGHT IN A PHOTOSENSITIVE MULTIWIRE CHAMBER” Nuclear Instruments and Methods in Physics16, 1987.

本発明は、真空紫外領域で高輝度発光するフッ化物結晶を提供する。また、該フッ化物結晶からなり、フォトリソグラフィー、半導体や液晶の基板洗浄、殺菌、次世代大容量光ディスク、及び医療(眼科治療、DNA切断)等に好適に使用できる新たな真空紫外発光素子及び、PETによる癌診断やX線CTに使用できる放射線検出器用真空紫外発光シンチレーターを提供することを目的とする。   The present invention provides a fluoride crystal that emits light with high brightness in the vacuum ultraviolet region. Also, a new vacuum ultraviolet light-emitting device comprising the fluoride crystal, which can be suitably used for photolithography, semiconductor and liquid crystal substrate cleaning, sterilization, next-generation large-capacity optical disk, medical treatment (ophthalmic treatment, DNA cutting), and the like, An object of the present invention is to provide a vacuum ultraviolet light emission scintillator for a radiation detector that can be used for cancer diagnosis by PET and X-ray CT.

本発明者等は、真空紫外領域で発光する材料を探索し、種々検討した結果、KLuFとKFの混合相からなる結晶を放射線で励起することにより、高輝度な真空紫外発光が得られることを見出し、本発明を完成するに至った。 As a result of searching for materials that emit light in the vacuum ultraviolet region and conducting various studies, the present inventors obtained high-intensity vacuum ultraviolet light emission by exciting crystals made of a mixed phase of K 3 LuF 6 and KF with radiation. As a result, the present invention has been completed.

即ち、本発明は、KLuFとKFの混合相からなるフッ化物結晶、及び該フッ化物結晶を用いた真空紫外発光素子及び真空紫外発光シンチレーターである。 That is, the present invention is a fluoride crystal composed of a mixed phase of K 3 LuF 6 and KF, and a vacuum ultraviolet light emitting device and a vacuum ultraviolet light emitting scintillator using the fluoride crystal.

本発明のフッ化物結晶によれば、放射線の照射により真空紫外領域における高輝度な発光を得ることができる。該フッ化物からなる真空紫外発光素は、フォトリソグラフィー、半導体や液晶の基板洗浄、殺菌、次世代大容量光ディスク、及び医療(眼科治療、DNA切断)等に好適に使用することができる。また、ダイヤモンド受光素子やAlGaN受光素子等の真空紫外用の微弱光検出器に対する真空紫外発光シンチレーターとして好適に使用できる。   According to the fluoride crystal of the present invention, high-luminance light emission in the vacuum ultraviolet region can be obtained by radiation irradiation. The vacuum ultraviolet light emitting element made of the fluoride can be suitably used for photolithography, semiconductor and liquid crystal substrate cleaning, sterilization, next-generation large-capacity optical disk, medical treatment (ophthalmic treatment, DNA cutting), and the like. Further, it can be suitably used as a vacuum ultraviolet light emission scintillator for a weak light detector for vacuum ultraviolet light such as a diamond light receiving element or an AlGaN light receiving element.

本図は、マイクロ引き下げ法による結晶製造装置の概略図である。This figure is a schematic view of an apparatus for producing a crystal by the micro pull-down method. 本図は、本発明のKLuFとKFの混合相からなるフッ化物結晶の粉末X線回折パターンである。This figure is a powder X-ray diffraction pattern of a fluoride crystal composed of a mixed phase of K 3 LuF 6 and KF of the present invention. 本図は、X線励起発光スペクトルの測定装置の概略図である。This figure is a schematic diagram of an X-ray excitation emission spectrum measuring apparatus. 本図は、本発明のKLuFとKFの混合相からなるフッ化物結晶のX線励起発光スペクトルである。This figure is an X-ray excitation emission spectrum of a fluoride crystal composed of a mixed phase of K 3 LuF 6 and KF of the present invention.

以下、本発明のKLuFとKFの混合相からなるフッ化物結晶について説明する。本発明において真空紫外発光とは200nm以下の波長の発光のことを言う。 Hereinafter, a fluoride crystal composed of a mixed phase of K 3 LuF 6 and KF of the present invention will be described. In the present invention, vacuum ultraviolet light emission means light emission having a wavelength of 200 nm or less.

本発明のKLuFとKFの混合相からなるフッ化物結晶は、一般に化学式KLuFで表されるフッ化カリウムルテシウム(以下、KLuFという)と化学式KFで表されるフッ化カリウム(以下、KFという)の混合相の結晶からなるものである。 The fluoride crystal comprising a mixed phase of K 3 LuF 6 and KF of the present invention is generally represented by potassium fluoride lutesium represented by the chemical formula K 3 LuF 6 (hereinafter referred to as K 3 LuF 6 ) and the chemical formula KF. It consists of crystals of mixed phase of potassium fluoride (hereinafter referred to as KF).

本発明のKLuFとKFの混合相のフッ化物結晶とは、KLuFとKFの相が両方存在し、粉末X線回折法によりKFの存在が確認できるKLuFの結晶である。ただし、それぞれ別々に結晶を作製してから混合するのではなく、原料の段階で単結晶KLuFを作製する場合よりもKFを過剰に混合して溶融、結晶化して作製された結晶であることが好ましい。 The fluoride crystal of a mixed phase of K 3 LuF 6 and KF of the present invention, K 3 LuF phases 6 and KF are both present, crystals of K 3 LuF 6 the presence of KF by powder X-ray diffraction method can be confirmed It is. However, it is not the case that the crystals are separately prepared and then mixed, but rather than the case where the single crystal K 3 LuF 6 is prepared at the raw material stage, KF is excessively mixed and melted and crystallized. Preferably there is.

一般的な発光材料は、粉末X線回折法によって確認できる程度に不純物を添加すると、発光強度が低減してしまうことが多いが、本発明のフッ化物結晶は例外的に発光強度が低減していない。その原理は明らかではないが、KFが粒界に効果的に分散して結晶性を高めている、などのことが考えられる。また、KLuFに対するKFの存在比は特に限定されず、粉末X線回折法によりKFとKLuFの両方が確認できれば良い。 In general light-emitting materials, when an impurity is added to an extent that can be confirmed by powder X-ray diffraction, the light emission intensity often decreases, but the fluoride crystal of the present invention has an exceptionally low light emission intensity. Absent. Although the principle is not clear, it is conceivable that KF is effectively dispersed at the grain boundaries to enhance the crystallinity. Moreover, the abundance ratio of KF for K 3 LuF 6 is not particularly limited, both KF and K 3 LuF 6 may if confirmed by powder X-ray diffraction method.

LuFとKFの混合相からなるフッ化物結晶の製造方法は特に限定されないが、チョクラルスキー法やマイクロ引き下げ法に代表される一般的な融液成長法によって製造することができる。 Method for producing a K 3 LuF 6 and mixed phase consisting of a fluoride crystal of KF is not particularly limited, may be prepared by conventional melt growth method represented by a Czochralski method or a micro pulling-down method.

マイクロ引き下げ法とは、図1に示すような装置を用いて、坩堝5の底部に設けた穴より原料融液を引き出して結晶を製造する方法である。   The micro pulling-down method is a method for producing a crystal by drawing a raw material melt from a hole provided in the bottom of the crucible 5 using an apparatus as shown in FIG.

以下、マイクロ引き下げ法によってKLuFとKFの混合相からなるフッ化物結晶を製造する際の、一般的な方法について説明する。 Hereinafter, a general method for producing a fluoride crystal composed of a mixed phase of K 3 LuF 6 and KF by the micro pull-down method will be described.

まず、所定量の原料を、底部に孔を設けた坩堝5に充填する。坩堝底部に設ける孔の形状は、特に限定されないが、直径が0.5〜4mm、長さが0〜2mmの円柱状とすることが好ましい。   First, a predetermined amount of raw material is filled into a crucible 5 having a hole at the bottom. Although the shape of the hole provided in the crucible bottom is not particularly limited, it is preferably a cylindrical shape having a diameter of 0.5 to 4 mm and a length of 0 to 2 mm.

本発明において原料は特に限定されないが、純度がそれぞれ99.99%以上のKF、LuFを混合した混合原料を用いることが好ましい。かかる混合原料を用いることにより、KLuFとKFの混合相からなる結晶の純度を高めることができ、発光の輝度等の特性が向上する。混合原料は、混合後に焼結或いは溶融固化させてから用いても良い。 In the present invention, the raw material is not particularly limited, but it is preferable to use a mixed raw material in which KF and LuF 3 having a purity of 99.99% or more are mixed. By using such a mixed raw material, the purity of the crystal composed of the mixed phase of K 3 LuF 6 and KF can be increased, and characteristics such as luminance of light emission are improved. The mixed raw material may be used after being sintered or melted and solidified after mixing.

上記混合原料におけるLuFに対するKFのモル比は、通常4.0〜6.0とする。KFの揮発性がLuFに比べて高いためである。育成雰囲気や温度など、製造の条件によってKFの揮発のしやすさは変わるため、原料仕込み時のKF混合比を一般化することは難しく、予備実験をして決めるのが望ましい。 The molar ratio of KF to LuF 3 in the mixed raw material is usually 4.0 to 6.0. This is because the volatility of KF is higher than that of LuF 3 . Since the easiness of volatilization of KF varies depending on manufacturing conditions such as the growth atmosphere and temperature, it is difficult to generalize the KF mixing ratio at the time of raw material charging, and it is desirable to determine by preliminary experiments.

次いで、上記原料を充填した坩堝5、アフターヒーター1、ヒーター2、断熱材3、及びステージ4を図1に示すようにセットする。真空排気装置を用いて、チャンバー6内を1.0×10−3Pa以下まで真空排気した後、高純度アルゴン等の不活性ガスをチャンバー6内に導入してガス置換を行う。ガス置換後のチャンバー内の圧力は特に限定されないが、大気圧が一般的である。 Next, the crucible 5 filled with the raw materials, the after heater 1, the heater 2, the heat insulating material 3, and the stage 4 are set as shown in FIG. After evacuating the inside of the chamber 6 to 1.0 × 10 −3 Pa or less using a vacuum evacuation apparatus, an inert gas such as high-purity argon is introduced into the chamber 6 to perform gas replacement. The pressure in the chamber after gas replacement is not particularly limited, but atmospheric pressure is common.

該ガス置換操作によって、原料或いはチャンバー内に付着した水分を除去することができ、かかる水分に由来する結晶の劣化を妨げることができる。上記ガス置換操作によっても除去できない水分による影響を避けるため、フッ化亜鉛等の固体スカベンジャー或いは四フッ化メタン等の気体スカベンジャーを用いることが好ましい。固体スカベンジャーを用いる場合には原料中に予め混合しておく方法が好適であり、気体スカベンジャーを用いる場合には上記不活性ガスに混合してチャンバー内に導入する方法が好適である。   By the gas replacement operation, moisture attached to the raw material or the chamber can be removed, and deterioration of crystals derived from the moisture can be prevented. In order to avoid the influence of moisture that cannot be removed by the gas replacement operation, it is preferable to use a solid scavenger such as zinc fluoride or a gas scavenger such as tetrafluoromethane. When using a solid scavenger, a method of mixing in the raw material in advance is preferable, and when using a gas scavenger, a method of mixing with the above inert gas and introducing it into the chamber is preferable.

ガス置換操作を行った後、高周波コイル7で原料を加熱して溶融せしめ、溶融した原料融液を坩堝底部の孔から引き出して、結晶の育成を開始する。   After performing the gas replacement operation, the raw material is heated and melted by the high-frequency coil 7, and the melted raw material melt is drawn out from the hole at the bottom of the crucible to start crystal growth.

ここで、金属ワイヤーを引き下げロッドの先端に設け、該金属ワイヤーを坩堝底部の孔から坩堝内部に挿入し、該金属ワイヤーに原料融液を付着せしめた後、原料融液を金属ワイヤーと共に引き下げることによって結晶の育成が可能となる。   Here, the metal wire is provided at the tip of the pull-down rod, the metal wire is inserted into the crucible through the hole at the bottom of the crucible, the raw material melt is attached to the metal wire, and then the raw material melt is pulled down together with the metal wire. This makes it possible to grow crystals.

即ち、高周波の出力を調整し、原料の温度を徐々に上げながら、該金属ワイヤーを坩堝底部の孔に挿入し、引き出しを行う。この操作を、原料融液が金属ワイヤーと共に引き出されるまで繰り返して、結晶の育成を開始する。該金属ワイヤーの材質は、原料融液と実質的に反応しない材質であれば制限無く使用できるが、W−Re合金等の高温における耐食性に優れた材質が好適である。   That is, while adjusting the output of the high frequency and gradually raising the temperature of the raw material, the metal wire is inserted into the hole at the bottom of the crucible and pulled out. This operation is repeated until the raw material melt is drawn together with the metal wire, and crystal growth is started. The material of the metal wire can be used without limitation as long as it is a material that does not substantially react with the raw material melt, but a material excellent in corrosion resistance at high temperatures such as a W-Re alloy is preferable.

上記金属ワイヤーによる原料融液の引き出しを行った後、一定の引き下げ速度で連続的に引き下げることにより、結晶を得ることができる。
該引き下げ速度は、特に限定されないが、0.5〜10mm/hrの範囲とすることが好ましい。
After pulling out the raw material melt with the metal wire, the crystal can be obtained by continuously pulling it down at a constant pulling rate.
The pulling speed is not particularly limited, but is preferably in the range of 0.5 to 10 mm / hr.

本発明のKLuFとKFの混合相からなるフッ化物結晶の製造においては、熱歪に起因する結晶欠陥を除去する目的で、製造後にアニール操作を行っても良い。 In the production of a fluoride crystal comprising a mixed phase of K 3 LuF 6 and KF of the present invention, an annealing operation may be performed after the production for the purpose of removing crystal defects caused by thermal strain.

得られたKLuFとKFの混合相からなるフッ化物結晶は、良好な加工性を有しており、所望の形状に加工して用いることが容易である。加工に際しては、公知のブレードソー、ワイヤーソー等の切断機、研削機、或いは研磨盤を何ら制限無く用いることができる。 The obtained fluoride crystal composed of a mixed phase of K 3 LuF 6 and KF has good processability and can be easily processed into a desired shape and used. In processing, a known cutting machine such as a blade saw or wire saw, a grinding machine, or a polishing machine can be used without any limitation.

LuFとKFの混合相からなるフッ化物結晶は所望の形状に加工して本発明の真空紫外発光素子、及び真空紫外発光シンチレーターとすることができる。本発明の真空紫外発光素子は、励起源である放射線源と組み合わせることにより、真空紫外光発生装置とすることができる。かかる真空紫外光発生装置は、フォトリソグラフィー、殺菌、次世代大容量光ディスク、及び医療(眼科治療、DNA切断)等の分野において、好適に使用される。また、本発明の真空紫外発光シンチレーターは、ダイヤモンド受光素子やAlGaN受光素子等の真空紫外用の微弱光検出器と組み合わせて、低バックグラウンドノイズの放射線検出器として好適に使用できる。 A fluoride crystal composed of a mixed phase of K 3 LuF 6 and KF can be processed into a desired shape to obtain the vacuum ultraviolet light emitting device and the vacuum ultraviolet light emitting scintillator of the present invention. The vacuum ultraviolet light emitting device of the present invention can be made into a vacuum ultraviolet light generator by combining with a radiation source as an excitation source. Such a vacuum ultraviolet light generator is suitably used in fields such as photolithography, sterilization, next-generation large-capacity optical disks, and medicine (ophthalmic treatment, DNA cutting). In addition, the vacuum ultraviolet light emission scintillator of the present invention can be suitably used as a radiation detector with low background noise in combination with a weak light detector for vacuum ultraviolet light such as a diamond light receiving element or an AlGaN light receiving element.

以下、本発明の実施例を挙げて具体的に説明するが、本発明はこれらの実施例によって何ら制限されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.

実施例1
図1に示す結晶製造装置を用いてKLuFとKFの混合相からなるフッ化物結晶を製造した。原料としては、純度が99.99%のKF、LuFを用いた。アフターヒーター1、ヒーター2、断熱材3、ステージ4、及び坩堝5は、高純度カーボン製のものを使用し、坩堝底部に設けた孔の形状は直径2mm、長さ0.5mmの円柱状とした。
Example 1
Fluoride crystals made of a mixed phase of K 3 LuF 6 and KF were produced using the crystal production apparatus shown in FIG. As a raw material, KF and LuF 3 having a purity of 99.99% were used. The after-heater 1, the heater 2, the heat insulating material 3, the stage 4, and the crucible 5 are made of high-purity carbon, and the shape of the hole provided at the bottom of the crucible is 2 mm in diameter and 0.5 mm in length. did.

まず、KF、LuFをそれぞれ0.546g、0.454g秤量し、よく混合した後に坩堝5に充填した。 First, 0.546 g and 0.454 g of KF and LuF 3 were weighed, mixed well, and then charged in the crucible 5.

原料を充填した坩堝5を、アフターヒーター1の上部にセットし、その周囲にヒーター2、及び断熱材3を順次セットした。次いで、油回転ポンプ及び油拡散ポンプからなる真空排気装置を用いて、チャンバー6内を1.0×10−4Paまで真空排気した後、アルゴン−四フッ化メタン混合ガスをチャンバー6内に導入してガス置換を行った。 The crucible 5 filled with the raw material was set on the upper part of the after heater 1, and the heater 2 and the heat insulating material 3 were sequentially set around the crucible. Next, the inside of the chamber 6 is evacuated to 1.0 × 10 −4 Pa using an evacuation apparatus including an oil rotary pump and an oil diffusion pump, and then an argon-tetrafluoromethane mixed gas is introduced into the chamber 6. Then, gas replacement was performed.

ガス置換後のチャンバー6内の圧力は大気圧とした後、高周波コイル7で原料を約400度まで加熱したが、原料融液の坩堝5底部の孔からの滲出は認められなかった。そこで、高周波の出力を調整して原料融液の温度を徐々に上げながら、引き下げロッド8の先端に設けたW−Reワイヤーを、上記孔に挿入し、引き下げる操作を繰り返したところ、原料の融液を上記孔より引き出すことができた。   After the gas replacement, the pressure in the chamber 6 was changed to atmospheric pressure, and then the raw material was heated to about 400 ° C. with the high-frequency coil 7. Then, while adjusting the high frequency output and gradually raising the temperature of the raw material melt, the W-Re wire provided at the tip of the pull-down rod 8 was inserted into the hole and pulled down repeatedly. The liquid could be drawn out from the hole.

この時点の温度が保たれるように高周波の出力を固定し、原料の融液を引き下げ、結晶化を開始した。6mm/hrの速度で連続的に12時間引き下げ、最終的に直径2mm、長さ約70mmの結晶を得た。   The high frequency output was fixed so that the temperature at this time was maintained, the raw material melt was lowered, and crystallization was started. The crystal was continuously pulled down at a speed of 6 mm / hr for 12 hours to finally obtain a crystal having a diameter of 2 mm and a length of about 70 mm.

得られた単結晶を、ワイヤーソーによって約10mmの長さに切断し、側面を研削して長さ10mm、幅約2mm、厚さ1mmの形状に加工した後、長さ10mm、幅約2mmの両面を鏡面研磨して発光特性測定用の試料を作製した。   The obtained single crystal was cut into a length of about 10 mm with a wire saw, the side surface was ground and processed into a shape having a length of 10 mm, a width of about 2 mm, and a thickness of 1 mm, and then a length of 10 mm and a width of about 2 mm. Both surfaces were mirror-polished to prepare a sample for measuring light emission characteristics.

X線回折法による分析の結果より、実施例1の結晶は、図2に示すKLuFとKFの混合相の粉末X線回折パターンが得られる結晶であることが確認でされた。 From the results of the analysis by the X-ray diffraction method, it was confirmed that the crystal of Example 1 was a crystal from which a powder X-ray diffraction pattern of a mixed phase of K 3 LuF 6 and KF shown in FIG. 2 was obtained.

得られた実施例1の単結晶のX線励起による真空紫外発光特性を、図3に示す測定装置を用いて以下のようにして測定した。なお、測定は室温において行った。   The vacuum ultraviolet light emission characteristics by X-ray excitation of the obtained single crystal of Example 1 were measured as follows using the measuring apparatus shown in FIG. The measurement was performed at room temperature.

測定装置内の所定の位置に本発明の試料9をセットし、装置内部全体を窒素ガスで置換した。励起源であるX線発生器10(RIGAKU SA−HFM3用X線発生装置)からのX線を60kV、35mAの出力で試料9に照射し、試料9からの発光を発光分光器11(分光計器製、KV201型極紫外分光器)で分光した。発光分光器11による分光の波長を120〜250nmの範囲で掃引し、各発光波長における発光強度を光電子増倍管12で記録した。得られた発光スペクトルを図4に示した。   The sample 9 of the present invention was set at a predetermined position in the measuring apparatus, and the entire interior of the apparatus was replaced with nitrogen gas. The sample 9 is irradiated with X-rays from the X-ray generator 10 (X-ray generator for RIGAKU SA-HFM3), which is an excitation source, at an output of 60 kV and 35 mA, and emission from the sample 9 is emitted into the emission spectrometer 11 (spectrometer instrument). Manufactured by KV201 type extreme ultraviolet spectrometer). The wavelength of the spectrum by the emission spectrometer 11 was swept in the range of 120 to 250 nm, and the emission intensity at each emission wavelength was recorded by the photomultiplier tube 12. The obtained emission spectrum is shown in FIG.

参考例1
また、参考例1として、KF、LuFをそれぞれ0.453g、0.547g秤量した以外は実施例1と同様の方法で、KLuF単相の結晶を作製し、X線励起による真空紫外発光特性を測定した。得られた発光スペクトルを図4に示した。
Reference example 1
In addition, as Reference Example 1, a K 3 LuF 6 single-phase crystal was prepared in the same manner as in Example 1 except that 0.453 g and 0.547 g of KF and LuF 3 were weighed, respectively, and a vacuum by X-ray excitation was used. Ultraviolet emission characteristics were measured. The obtained emission spectrum is shown in FIG.

比較例1
比較例1として、KFを1.000g秤量した以外は実施例1と同様の方法で、KF単相の結晶を作製し、X線励起による真空紫外発光特性を測定した。得られた発光スペクトルを図4に示した。
Comparative Example 1
As Comparative Example 1, a KF single-phase crystal was prepared in the same manner as in Example 1 except that 1.000 g of KF was weighed, and vacuum ultraviolet emission characteristics by X-ray excitation were measured. The obtained emission spectrum is shown in FIG.

図4に示す発光スペクトルから、KLuFとKFの混合相からなるフッ化物結晶は、200nm以下の波長において、KLuF単相の結晶(参考例1)及びKF単相の結晶(比較例1)とは異なる発光スペクトルを示すうえ、これらに比べて、高い発光強度を示しており、充分な輝度で発光し、真空紫外発光素子として動作することが確認された。また、放射線により励起されて真空紫外発光することから、シンチレーターとして動作することも確認された。これにより、本発明が、真空紫外発光素子及び真空紫外発光シンチレーターとして好適に利用できることがわかった。 From the emission spectrum shown in FIG. 4, a fluoride crystal composed of a mixed phase of K 3 LuF 6 and KF has a K 3 LuF 6 single-phase crystal (Reference Example 1) and a KF single-phase crystal (at a wavelength of 200 nm or less). In addition to showing an emission spectrum different from that of Comparative Example 1), the emission intensity was higher than these, and it was confirmed that the device emits light with sufficient luminance and operates as a vacuum ultraviolet light emitting device. It was also confirmed to operate as a scintillator because it emits vacuum ultraviolet light when excited by radiation. Thereby, it turned out that this invention can be utilized suitably as a vacuum ultraviolet light emitting element and a vacuum ultraviolet light emission scintillator.

1 アフターヒーター
2 ヒーター
3 断熱材
4 ステージ
5 坩堝
6 チャンバー
7 高周波コイル
8 引き下げロッド
9 試料
10 X線発生器
11 発光分光器
12 光電子増倍管
DESCRIPTION OF SYMBOLS 1 After heater 2 Heater 3 Heat insulation material 4 Stage 5 Crucible 6 Chamber 7 High frequency coil 8 Pulling rod 9 Sample 10 X-ray generator 11 Emission spectrometer 12 Photomultiplier tube

Claims (3)

KFとKLuFの混合相からなるフッ化物結晶。 A fluoride crystal composed of a mixed phase of KF and K 3 LuF 6 . 請求項1記載のフッ化物結晶からなることを特徴とする真空紫外発光素子。 A vacuum ultraviolet light emitting device comprising the fluoride crystal according to claim 1. 請求項1記載のフッ化物結晶からなることを特徴とする真空紫外発光シンチレーター。 A vacuum ultraviolet light emitting scintillator comprising the fluoride crystal according to claim 1.
JP2009136182A 2009-06-05 2009-06-05 Fluoride crystals, vacuum ultraviolet light emitting devices, and vacuum ultraviolet light emitting scintillators Expired - Fee Related JP5127778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009136182A JP5127778B2 (en) 2009-06-05 2009-06-05 Fluoride crystals, vacuum ultraviolet light emitting devices, and vacuum ultraviolet light emitting scintillators

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009136182A JP5127778B2 (en) 2009-06-05 2009-06-05 Fluoride crystals, vacuum ultraviolet light emitting devices, and vacuum ultraviolet light emitting scintillators

Publications (2)

Publication Number Publication Date
JP2010280543A JP2010280543A (en) 2010-12-16
JP5127778B2 true JP5127778B2 (en) 2013-01-23

Family

ID=43537677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009136182A Expired - Fee Related JP5127778B2 (en) 2009-06-05 2009-06-05 Fluoride crystals, vacuum ultraviolet light emitting devices, and vacuum ultraviolet light emitting scintillators

Country Status (1)

Country Link
JP (1) JP5127778B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2843088A4 (en) 2012-04-26 2015-12-16 Tokuyama Corp Metal fluoride crystal, light emitting element, scintillator, method for detecting neutrons, and method for producing metal fluoride crystal

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030094128A1 (en) * 2001-11-20 2003-05-22 Sparrow Robert W. Dispersion management optical lithography crystals for below 160nm optical lithography method thereof
CN100434933C (en) * 2003-08-25 2008-11-19 斯特拉化学株式会社 Scintillator and radiation detector, and radiation inspecting device
ATE513940T1 (en) * 2004-04-12 2011-07-15 Stella Chemifa Corp MIXED CRYSTAL MATERIAL OF RARE EARTH ELEMENT FLUORIDE (POLYCRYSTAL AND SINGLE CRYSTAL) AND RADIATION DETECTOR AND TEST APPARATUS
FR2869115B1 (en) * 2004-04-14 2006-05-26 Saint Gobain Cristaux Detecteu RARE EARTH-BASED SCINTILLATOR MATERIAL WITH REDUCED NUCLEAR BACKGROUND NOISE
JP2008019126A (en) * 2006-07-13 2008-01-31 Tohoku Univ Vacuum ultraviolet light-emitting element
JP4785198B2 (en) * 2007-02-16 2011-10-05 株式会社トクヤマ Fluoride crystal and vacuum ultraviolet light emitting device
JP2009102194A (en) * 2007-10-23 2009-05-14 Tokuyama Corp Metal fluoride single crystalline body pulling apparatus and method of manufacturing metal fluoride single crystalline body using the same apparatus

Also Published As

Publication number Publication date
JP2010280543A (en) 2010-12-16

Similar Documents

Publication Publication Date Title
JP5389328B2 (en) Single crystal for scintillator containing Pr, its manufacturing method, radiation detector and inspection apparatus
JP5858370B1 (en) Scintillator and manufacturing method thereof, and radiation detector
JP5245176B2 (en) Method for producing iodide-based single crystal
JP5566218B2 (en) Fluoride single crystal, vacuum ultraviolet light emitting device, scintillator, and method for producing fluoride single crystal
WO2012137738A1 (en) Scintillator, radiation detector, and method for detecting radiation
JP2017036160A (en) Crystal material, crystal production method, radiation detector, nondestructive testing device, and imaging device
WO2019168169A1 (en) Phosphor
JP4785198B2 (en) Fluoride crystal and vacuum ultraviolet light emitting device
JP5455881B2 (en) Fluoride single crystal, vacuum ultraviolet light emitting device and scintillator
JP5127778B2 (en) Fluoride crystals, vacuum ultraviolet light emitting devices, and vacuum ultraviolet light emitting scintillators
JP2017066245A (en) Scintillator crystal material, single crystal scintillator, radiation detector, imaging apparatus and nondestructive inspection apparatus
JP5393266B2 (en) Rare earth-containing K3LuF6, vacuum ultraviolet light emitting element and vacuum ultraviolet light emitting scintillator
JP5365720B2 (en) Single crystal for scintillator and method for producing the same
JP5055910B2 (en) Single crystal heat treatment method
JP2011184206A (en) Fluoride crystal, vacuum ultraviolet light emitting element, and vacuum ultraviolet light emitting scintillator
JP5904538B2 (en) Scintillator material and X-ray detector
JP5317952B2 (en) Fluoride crystals, vacuum ultraviolet light emitting devices, and vacuum ultraviolet light emitting scintillators
JP2010280541A (en) Vacuum ultraviolet light-emitting element and vacuum ultraviolet light-emitting scintillator
JP5611239B2 (en) Metal fluoride crystals, vacuum ultraviolet light emitting devices, and vacuum ultraviolet light emitting scintillators
JP2010073936A (en) Vacuum ultraviolet light-emitting element
JP2011190393A (en) Vacuum ultraviolet (uv) light-emitting element and scintillator
JP5729954B2 (en) Fluoride single crystal, scintillator and method for producing fluoride single crystal
WO2012026585A1 (en) Fluoride crystal, scintillator for detection of radioactive ray, and radioactive ray detector
JP2011016694A (en) Vacuum ultraviolet light emitting element
JP2017132689A (en) Crystal material, crystal manufacturing method, radiation detector, nondestructive inspection apparatus and imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121030

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees