JP2008019126A - Vacuum ultraviolet light-emitting element - Google Patents

Vacuum ultraviolet light-emitting element Download PDF

Info

Publication number
JP2008019126A
JP2008019126A JP2006192607A JP2006192607A JP2008019126A JP 2008019126 A JP2008019126 A JP 2008019126A JP 2006192607 A JP2006192607 A JP 2006192607A JP 2006192607 A JP2006192607 A JP 2006192607A JP 2008019126 A JP2008019126 A JP 2008019126A
Authority
JP
Japan
Prior art keywords
vacuum ultraviolet
ultraviolet light
single crystal
emitting element
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006192607A
Other languages
Japanese (ja)
Inventor
Akira Yoshikawa
彰 吉川
Kentaro Fukuda
健太郎 福田
Toshihisa Suyama
敏尚 須山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Tokuyama Corp
Original Assignee
Tohoku University NUC
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Tokuyama Corp filed Critical Tohoku University NUC
Priority to JP2006192607A priority Critical patent/JP2008019126A/en
Publication of JP2008019126A publication Critical patent/JP2008019126A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new vacuum ultraviolet light-emitting element material which emits light with high brightness, for example, in the vacuum ultraviolet region of emission wavelengths of ≤200 nm, and is suitably used for photolithography, sterilization, a large-capacity optical disk for next generation and medical treatment (ophthalmological treatment or DNA incision) or the like. <P>SOLUTION: This vacuum ultraviolet light-emitting element is characterized by comprising a barium lithium fluoride single crystal containing neodymium of about 0.001 to 1 mol% with respect to the above fluoride as an activator. The element emits the vacuum ultraviolet light by combining with a proper excitation source such as an electron beam or F2 laser. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、フォトリソグラフィー、半導体や液晶の基板洗浄、殺菌、次世代大容量光ディスク、及び医療(眼科治療、DNA切断)等に好適に使用できる新規な真空紫外発光素子材料に関する。   The present invention relates to a novel vacuum ultraviolet light emitting element material that can be suitably used for photolithography, semiconductor or liquid crystal substrate cleaning, sterilization, next-generation large-capacity optical disks, medical treatment (ophthalmic treatment, DNA cutting), and the like.

高輝度紫外発光素子は、半導体分野、情報分野、医療分野等における先端技術を支える材料であり、近年では、記録媒体への記録密度の向上を始めとする多くの需要に応えるべく、より短波長で発光する紫外発光素子の開発が進められている。この短波長で発光する紫外発光素子としては、窒化ガリウム等の材料による発光波長300nm台の発光素子が提案されており(非特許文献1参照)、また、近年では高純度六方晶窒化ホウ素単結晶による発光波長215nm台の発光素子が提案されている(特許文献1参照)。   High-intensity ultraviolet light-emitting devices are materials that support advanced technologies in the semiconductor field, information field, medical field, etc. In recent years, in order to respond to many demands such as an increase in recording density on recording media, a shorter wavelength is required. Development of ultraviolet light-emitting elements that emit light at room temperature is underway. As an ultraviolet light-emitting element that emits light at a short wavelength, a light-emitting element having a light emission wavelength in the range of 300 nm using a material such as gallium nitride has been proposed (see Non-Patent Document 1). In recent years, a high-purity hexagonal boron nitride single crystal has been proposed. Has been proposed (see Patent Document 1).

発光波長が200nm以下の真空紫外発光素子は、フォトリソグラフィー、半導体や液晶の基板洗浄、殺菌等にも好適に使用できるため、開発が望まれているが、かかる真空紫外発光素子を得ることは容易ではなく、わずかな例しか知られていないのが現状である(非特許文献2参照)。   A vacuum ultraviolet light emitting device having an emission wavelength of 200 nm or less can be suitably used for photolithography, semiconductor or liquid crystal substrate cleaning, sterilization, etc., and thus development is desired. However, it is easy to obtain such a vacuum ultraviolet light emitting device. Instead, only a few examples are known (see Non-Patent Document 2).

真空紫外発光素子の開発が困難である要因としては、真空紫外線は多くの物質に吸収されてしまうため、自己吸収を起こさない材料が限られる点が挙げられる。   A factor that makes it difficult to develop a vacuum ultraviolet light emitting element is that vacuum ultraviolet rays are absorbed by many substances, so that materials that do not cause self-absorption are limited.

さらに、真空紫外領域における発光特性は、材料中の不純物の影響を受けやすく、また、たとえ真空紫外領域に発光のエネルギー準位を有する材料であっても、より低いエネルギー準位に基づく長波長での発光が支配的であったり、非輻射遷移による損失が甚大である等の理由により、所望の真空紫外発光を得られない場合が数多く見受けられる。   Furthermore, the emission characteristics in the vacuum ultraviolet region are easily affected by impurities in the material, and even a material having an energy level of light emission in the vacuum ultraviolet region has a long wavelength based on a lower energy level. There are many cases in which the desired vacuum ultraviolet light emission cannot be obtained due to the fact that the light emission is dominant or the loss due to non-radiative transition is significant.

したがって、真空紫外領域における発光特性を予め予測することは極めて困難であり、このことが真空紫外発光素子の開発における大きな障壁となっている。   Therefore, it is extremely difficult to predict the light emission characteristics in the vacuum ultraviolet region in advance, and this is a big barrier in the development of vacuum ultraviolet light emitting elements.

フッ化バリウムリチウム単結晶は、波長が約130nm以上の真空紫外線に対して透明であるため、上記自己吸収の問題を克服できる材料として有望である。しかしながら、フッ化バリウムリチウムはインコングルーエントな融液から結晶を育成する必要があり、高品質な結晶を得ることが困難であった。   Since the barium lithium fluoride single crystal is transparent to vacuum ultraviolet rays having a wavelength of about 130 nm or more, it is promising as a material that can overcome the above self-absorption problem. However, since lithium barium fluoride needs to grow crystals from an incongruent melt, it is difficult to obtain high-quality crystals.

インコングルーエントな融液から結晶を育成する方法として、坩堝底部に設けた孔から融液を滲出させ、この滲出した融液を引き下げる方法が提案されている(特許文献2参照)。この方法は現在ではマイクロ引き下げ法として知られており、インコングルーエントな融液から結晶を育成できるばかりでなく、ドーピングを行う場合には、より高濃度な不純物をドープできるという利点をも有する方法である。   As a method for growing crystals from an incongruent melt, a method has been proposed in which the melt is leached from a hole provided in the bottom of the crucible and the leached melt is pulled down (see Patent Document 2). This method is now known as a micro-pulling method, and not only can crystals be grown from incongruent melts, but also has the advantage of being able to dope higher concentrations of impurities when doping. It is.

しかしながら、フッ化バリウムリチウムは坩堝に対する濡れ性が悪く、坩堝底部の孔から融液が滲出しないため、従来上記マイクロ引き下げ法を適用することが困難であった。   However, since barium lithium fluoride has poor wettability to the crucible and the melt does not exude from the hole at the bottom of the crucible, it has been difficult to apply the above-described micro-pulling-down method.

特開2005−228886号公報JP 2005-228886 A 特開平6−345588号公報JP-A-6-345588 Iwaya.M et al、“High−power UV−light−emitting diode on sapphire” Japanese Journal of Applied Physics Part1−Regular Papers Short Notes & Review Papers 42,400(2003).Iwaya. M et al, “High-power UV-light-emitting diode on sapphire” Japan Journal of Applied Physics Part1-Regular Papers Shorts & Re: 400 & Res. A.C. Cefalas et al、“Intense vacuum ultraviolet emission at 172 nm from LaF3:Nd3+ crystals” Microelectronic Engineering 57,93(2001)A. C. Cefalas et al, "Intense vacuum ultraviolet emission at 172 nm from LaF3: Nd3 + crystals" Microelectronic Engineering 57, 93 (2001)

本発明は、真空紫外領域で高輝度発光し、フォトリソグラフィー、半導体や液晶の基板洗浄、殺菌、次世代大容量光ディスク、及び医療(眼科治療、DNA切断)等に好適に使用できる新たな真空紫外発光素子を提供することを目的とする。   The present invention is a new vacuum ultraviolet light that emits high brightness in the vacuum ultraviolet region and can be suitably used for photolithography, semiconductor and liquid crystal substrate cleaning, sterilization, next-generation large-capacity optical disks, and medical treatment (ophthalmic treatment, DNA cutting). An object is to provide a light-emitting element.

本発明者等は、真空紫外領域で発光し、且つ発光した真空紫外線を自身が吸収しない材料につき種々検討した結果、付活剤としてネオジウムを含有するフッ化バリウムリチウム単結晶を適当な手段で励起することにより、真空紫外発光が得られることを見出し、本発明を完成するに至った。   As a result of various studies on materials that emit light in the vacuum ultraviolet region and do not absorb the emitted vacuum ultraviolet light, the present inventors have excited a barium lithium fluoride single crystal containing neodymium as an activator by appropriate means. As a result, it was found that vacuum ultraviolet emission can be obtained, and the present invention has been completed.

即ち、本発明は、付活剤としてネオジウムを含有するフッ化バリウムリチウム単結晶からなることを特徴とする真空紫外発光素子である。   That is, the present invention is a vacuum ultraviolet light emitting element characterized by comprising a barium lithium fluoride single crystal containing neodymium as an activator.

本発明によって得られるネオジウムを含有してなるフッ化バリウムリチウム単結晶からなる真空紫外発光素子によれば、真空紫外領域における高輝度な発光を得ることができる。かかる真空紫外発光素子は、フォトリソグラフィー、半導体や液晶の基板洗浄、殺菌、次世代大容量光ディスク、及び医療(眼科治療、DNA切断)等に好適に使用することができる。   According to the vacuum ultraviolet light-emitting element comprising a barium lithium fluoride single crystal containing neodymium obtained by the present invention, it is possible to obtain light emission with high brightness in the vacuum ultraviolet region. Such a vacuum ultraviolet light-emitting device can be suitably used for photolithography, semiconductor and liquid crystal substrate cleaning, sterilization, next-generation large-capacity optical disks, medical treatment (ophthalmic treatment, DNA cutting), and the like.

以下、本発明のネオジウムを含有してなるフッ化バリウムリチウム単結晶およびその真空紫外発光特性について説明する。   Hereinafter, the barium lithium fluoride single crystal containing neodymium according to the present invention and its vacuum ultraviolet emission characteristics will be described.

本発明の真空紫外発光素子は、一般に化学式BaLiF3で表されるフッ化バリウムリチウム(以下、BaLiF3ともいう)の結晶中に付活剤としてネオジウム(以下、Ndともいう)を含有させた(以下、ドープともいう)単結晶(以下、NdドープBaLiF3単結晶ともいう)からなるものである。   The vacuum ultraviolet light emitting device of the present invention contains neodymium (hereinafter also referred to as Nd) as an activator in a crystal of barium lithium fluoride (hereinafter also referred to as BaLiF3) generally represented by the chemical formula BaLiF3 (hereinafter referred to as Nd). It is made of a single crystal (also referred to as a dope) (hereinafter also referred to as an Nd-doped BaLiF3 single crystal).

本発明の単結晶においては、BaLiF3に対するNdの含有量が高いほど、高輝度の発光を得ることができる。しかしながら、該含有量が高すぎる場合には、該単結晶の真空紫外領域における透明性が低下し、発光した真空紫外光を単結晶自身が吸収してしまうため、結果として発光の輝度が低下する。従って、BaLiF3に対するネオジウムNdの含有量は、BaLiF3を基準にして0.001〜1モル%であることが好ましい。含有量を0.001モル%以上とすることにより、高輝度な発光を得ることができ、また、1モル%以下とすることにより、真空紫外領域における透明性が高いNdドープBaLiF3単結晶を得ることができる。尚、単結晶中において、ドープされたNdは結晶格子間に存在するかあるいはBa原子と置換されて存在すると考えられるが、正確な存在状態は明らかではない。   In the single crystal of the present invention, the higher the Nd content relative to BaLiF3, the higher the luminance can be obtained. However, if the content is too high, the transparency of the single crystal in the vacuum ultraviolet region is reduced, and the emitted vacuum ultraviolet light is absorbed by the single crystal itself, resulting in a decrease in luminance of light emission. . Therefore, the content of neodymium Nd with respect to BaLiF3 is preferably 0.001 to 1 mol% based on BaLiF3. By setting the content to 0.001 mol% or more, it is possible to obtain light emission with high luminance, and by setting the content to 1 mol% or less, an Nd-doped BaLiF 3 single crystal having high transparency in the vacuum ultraviolet region is obtained. be able to. In a single crystal, it is considered that doped Nd exists between crystal lattices or is replaced with Ba atoms, but the exact existence state is not clear.

本発明のNdドープBaLiF3単結晶は、無色ないしは薄紫色の透明な結晶であって、立方晶系結晶に属する。良好な化学的安定性を有しており、通常の使用においては短期間での性能の劣化は認められない。また、機械的強度、及び加工性も良好であり、所望の形状に加工して用いることが容易である。   The Nd-doped BaLiF3 single crystal of the present invention is a colorless or light purple transparent crystal and belongs to a cubic crystal. It has good chemical stability, and in normal use there is no degradation of performance in a short period of time. Moreover, mechanical strength and workability are also good, and it is easy to process and use it in a desired shape.

当該NdドープBaLiF3単結晶の製造方法は特に限定されなく、公知の結晶製造方法によって製造することができるが、好ましくはマイクロ引き下げ法によって製造することができる。   The production method of the Nd-doped BaLiF3 single crystal is not particularly limited, and can be produced by a known crystal production method, but can be preferably produced by a micro pull-down method.

マイクロ引き下げ法で製造することにより、真空紫外領域における透明性等の品質に優れたNdドープBaLiF3単結晶を、インコングルーエントな融液から育成することが可能となる。また、より高濃度のネオジウムをドープすることができ、高輝度発光を実現することができる。   By producing by the micro pull-down method, it becomes possible to grow an Nd-doped BaLiF 3 single crystal having excellent quality such as transparency in the vacuum ultraviolet region from an incongruent melt. Moreover, higher concentration neodymium can be doped and high-luminance light emission can be realized.

マイクロ引き下げ法とは、図2に示すような装置を用いて、坩堝5の底部に設けた孔より原料融液を引き出して結晶を製造する方法である。   The micro pull-down method is a method for producing a crystal by drawing a raw material melt from a hole provided in the bottom of the crucible 5 using an apparatus as shown in FIG.

以下、マイクロ引き下げ法によってNdドープBaLiF3単結晶を製造する際の、一般的な方法について説明する。   Hereinafter, a general method for producing an Nd-doped BaLiF3 single crystal by the micro pulling method will be described.

まず、所定量の原料を、底部に孔を設けた坩堝5に充填する。坩堝底部に設ける孔の形状は、特に限定されないが、直径が0.5〜4mm、長さが0〜2mmの円柱状とすることが好ましい
本発明において原料は特に限定されないが、純度がそれぞれ99.99%以上のフッ化バリウム、フッ化リチウム、及びフッ化ネオジウムを混合した混合原料を用いることが好ましい。かかる混合原料を用いることにより、NdドープBaLiF3単結晶の純度を高めることができ、発光の輝度等の特性が向上する。混合原料は、混合後に焼結或いは溶融固化させてから用いても良い。
First, a predetermined amount of raw material is filled into a crucible 5 having a hole at the bottom. The shape of the hole provided at the bottom of the crucible is not particularly limited, but is preferably a cylindrical shape having a diameter of 0.5 to 4 mm and a length of 0 to 2 mm. In the present invention, the raw material is not particularly limited, but the purity is 99. It is preferable to use a mixed raw material in which 99% or more of barium fluoride, lithium fluoride, and neodymium fluoride are mixed. By using such a mixed raw material, the purity of the Nd-doped BaLiF3 single crystal can be increased, and characteristics such as luminance of light emission are improved. The mixed raw material may be used after being sintered or melted and solidified after mixing.

上記混合原料におけるフッ化リチウムのフッ化バリウムに対するモル比は、1〜1.5とすることが好ましく、かかるモル比とすることによって、フッ化バリウム或いはフッ化リチウムの相分離による結晶の白濁を抑制できる。   The molar ratio of lithium fluoride to barium fluoride in the mixed raw material is preferably 1 to 1.5, and by making such a molar ratio, crystal turbidity due to phase separation of barium fluoride or lithium fluoride can be prevented. Can be suppressed.

次いで、上記原料を充填した坩堝5、アフターヒーター1、ヒーター2、断熱材3、及びステージ4を図2に示すようにセットする。真空排気装置を用いて、チャンバー6内を1.0×10−3Pa以下まで真空排気した後、高純度アルゴン等の不活性ガスをチャンバー6内に導入してガス置換を行う。ガス置換後のチャンバー内の圧力は特に限定されないが、大気圧が一般的である。   Next, the crucible 5 filled with the raw material, the after heater 1, the heater 2, the heat insulating material 3, and the stage 4 are set as shown in FIG. After evacuating the inside of the chamber 6 to 1.0 × 10 −3 Pa or less using a vacuum evacuating apparatus, an inert gas such as high-purity argon is introduced into the chamber 6 to perform gas replacement. The pressure in the chamber after gas replacement is not particularly limited, but atmospheric pressure is common.

該ガス置換操作によって、原料或いはチャンバー内に付着した水分を除去することができ、かかる水分に由来する単結晶の劣化を妨げることができる。上記ガス置換操作によっても除去できない水分による影響を避けるため、フッ化亜鉛等の固体スカベンジャー或いは四フッ化メタン等の気体スカベンジャーを用いることが好ましい。固体スカベンジャーを用いる場合には原料中に予め混合しておく方法が好適であり、気体スカベンジャーを用いる場合には上記不活性ガスに混合してチャンバー内に導入する方法が好適である。   By the gas replacement operation, moisture attached to the raw material or the chamber can be removed, and deterioration of the single crystal derived from the moisture can be prevented. In order to avoid the influence of moisture that cannot be removed by the gas replacement operation, it is preferable to use a solid scavenger such as zinc fluoride or a gas scavenger such as tetrafluoromethane. When using a solid scavenger, a method of mixing in the raw material in advance is preferable, and when using a gas scavenger, a method of mixing with the above inert gas and introducing it into the chamber is preferable.

ガス置換操作を行った後、高周波コイル7で原料を加熱して溶融せしめ、溶融した原料融液を坩堝底部の孔から引き出して、結晶の育成を開始する。   After performing the gas replacement operation, the raw material is heated and melted by the high-frequency coil 7, and the melted raw material melt is drawn out from the hole at the bottom of the crucible to start crystal growth.

ここで、NdドープBaLiF3単結晶をマイクロ引き下げ法で製造する場合、原料融液の坩堝に対する濡れ性が悪く、坩堝底部の孔から融液が滲出しないため、特別の手段を講じる必要がある。本発明者らは、金属ワイヤーを引き下げロッドの先端に設け、該金属ワイヤーを坩堝底部の孔から坩堝内部に挿入し、該金属ワイヤーに原料融液を付着せしめた後、原料融液を金属ワイヤーと共に引き下げることによって結晶の育成を可能とした。   Here, when the Nd-doped BaLiF3 single crystal is manufactured by the micro pull-down method, the wettability of the raw material melt with respect to the crucible is poor and the melt does not exude from the hole at the bottom of the crucible, so special measures must be taken. The present inventors provided a metal wire at the tip of the pull-down rod, inserted the metal wire into the crucible through the hole at the bottom of the crucible, attached the raw material melt to the metal wire, and then supplied the raw material melt to the metal wire. The crystal can be grown by pulling it down together.

即ち、高周波の出力を調整し、原料の温度をBaLiF3の融点である860℃から徐々に上げながら、該金属ワイヤーを坩堝底部の孔に挿入し、引き出しを行う。この操作を、原料融液が金属ワイヤーと共に引き出されるまで繰り返して、結晶の育成を開始する。該金属ワイヤーの材質は、原料融液と実質的に反応しない材質であれば制限無く使用できるが、W−Re合金等の高温における耐食性に優れた材質が好適である。   That is, the high frequency output is adjusted, and the metal wire is inserted into the hole at the bottom of the crucible while the temperature of the raw material is gradually increased from 860 ° C., which is the melting point of BaLiF 3, and the drawing is performed. This operation is repeated until the raw material melt is drawn together with the metal wire, and crystal growth is started. The material of the metal wire can be used without limitation as long as it is a material that does not substantially react with the raw material melt, but a material excellent in corrosion resistance at high temperatures such as a W-Re alloy is preferable.

上記金属ワイヤーによる原料融液の引き出しを行った後、一定の引き下げ速度で連続的に引き下げることにより、単結晶を得ることができる。
該引き下げ速度は、特に限定されないが、0.5〜10mm/hrの範囲とすることが好ましい。
After pulling out the raw material melt with the metal wire, a single crystal can be obtained by continuously pulling it down at a constant pulling rate.
The pulling speed is not particularly limited, but is preferably in the range of 0.5 to 10 mm / hr.

本発明のNdドープBaLiF3単結晶の製造においては、熱歪に起因する単結晶の結晶欠陥を除去する目的で、単結晶の製造後にアニール操作を行っても良い。   In the production of the Nd-doped BaLiF3 single crystal of the present invention, an annealing operation may be performed after the production of the single crystal for the purpose of removing crystal defects of the single crystal caused by thermal strain.

得られたNdドープBaLiF3単結晶は、良好な加工性を有しており、所望の形状に加工して用いることが容易である。加工に際しては、公知のブレードソー、ワイヤーソー等の切断機、研削機、或いは研磨盤を何ら制限無く用いる事ができる。   The obtained Nd-doped BaLiF3 single crystal has good workability and can be easily processed into a desired shape. For processing, a known cutting machine such as a blade saw or wire saw, a grinding machine, or a polishing machine can be used without any limitation.

NdドープBaLiF3単結晶は所望の形状に加工しての真空紫外発光素子とすることができる。この真空紫外発光素子は、電子線或いはF2レーザー等の適当な励起源と組み合わせることにより、真空紫外光発生装置とすることができる。かかる真空紫外光発生装置は、フォトリソグラフィー、殺菌、次世代大容量光ディスク、及び医療(眼科治療、DNA切断)等の分野において、好適に使用される。   The Nd-doped BaLiF3 single crystal can be processed into a desired shape to obtain a vacuum ultraviolet light emitting device. This vacuum ultraviolet light emitting element can be made into a vacuum ultraviolet light generator by combining with an appropriate excitation source such as an electron beam or F2 laser. Such a vacuum ultraviolet light generator is suitably used in fields such as photolithography, sterilization, next-generation large-capacity optical disks, and medicine (ophthalmic treatment, DNA cutting).

以下、本発明の実施例を挙げて具体的に説明するが、本発明はこれらの実施例によって何ら制限されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.

実施例1
図2に示す結晶製造装置を用いて、ネオジウムをドープしてなるフッ化バリウムリチウム単結晶を製造した。原料としては、純度が99.99%のフッ化バリウム、フッ化リチウム、及びフッ化ネオジウムを用いた。アフターヒーター1、ヒーター2、断熱材3、ステージ4、及び坩堝5は、高純度カーボン製のものを使用し、坩堝底部に設けた孔の形状は直径2.2mm、長さ0.5mmの円柱状とした。
Example 1
A barium lithium fluoride single crystal doped with neodymium was manufactured using the crystal manufacturing apparatus shown in FIG. As raw materials, barium fluoride, lithium fluoride, and neodymium fluoride having a purity of 99.99% were used. The after heater 1, the heater 2, the heat insulating material 3, the stage 4, and the crucible 5 are made of high-purity carbon, and the shape of the hole provided at the bottom of the crucible is a circle having a diameter of 2.2 mm and a length of 0.5 mm. It was columnar.

まず、フッ化バリウム 2g、フッ化リチウム 0.4g、及びフッ化ネオジウム 0.01gをそれぞれ秤量し、よく混合した後に坩堝5に充填した。フッ化バリウムリチウムに対するネオジウムの含有量は、0.5モル%とした。   First, 2 g of barium fluoride, 0.4 g of lithium fluoride, and 0.01 g of neodymium fluoride were weighed, mixed well, and then charged in the crucible 5. The neodymium content relative to barium lithium fluoride was 0.5 mol%.

原料を充填した坩堝5を、アフターヒーター1の上部にセットし、その周囲にヒーター2、及び断熱材3を順次セットした。次いで、油回転ポンプ及び油拡散ポンプからなる真空排気装置を用いて、チャンバー6内を1.0×10−4Paまで真空排気した後、アルゴン−四フッ化メタン混合ガスをチャンバー6内に導入してガス置換を行った。   The crucible 5 filled with the raw material was set on the upper part of the after heater 1, and the heater 2 and the heat insulating material 3 were sequentially set around the crucible. Next, the inside of the chamber 6 is evacuated to 1.0 × 10 −4 Pa using an evacuation apparatus including an oil rotary pump and an oil diffusion pump, and then an argon-tetrafluoromethane mixed gas is introduced into the chamber 6. Gas replacement was performed.

ガス置換後のチャンバー6内の圧力は大気圧とした後、高周波コイル7で原料をBaLiF3の融点まで加熱して溶融せしめたが、原料融液の坩堝5底部の孔からの滲出は認められなかった。そこで、高周波の出力を調整して原料融液の温度を徐々に上げながら、引き下げロッド8の先端に設けたW−Reワイヤーを、上記孔に挿入し、引き下げる操作を繰り返したところ、原料の融液を上記孔より引き出すことができた。   After the pressure in the chamber 6 after gas replacement was changed to atmospheric pressure, the raw material was heated to the melting point of BaLiF 3 with the high-frequency coil 7 and melted, but no leaching of the raw material melt from the bottom of the crucible 5 was observed. It was. Then, while adjusting the high frequency output and gradually raising the temperature of the raw material melt, the W-Re wire provided at the tip of the pull-down rod 8 was inserted into the hole and pulled down repeatedly. The liquid could be drawn out from the hole.

この時点の温度が保たれるように高周波の出力を固定し、原料の融液を引き下げ、結晶化を開始した。3mm/hrの速度で連続的に20時間引き下げ、最終的に直径2.2mm、長さ60mmの単結晶を得た。   The high frequency output was fixed so that the temperature at this time was maintained, the raw material melt was lowered, and crystallization was started. It was continuously pulled down at a speed of 3 mm / hr for 20 hours, and finally a single crystal having a diameter of 2.2 mm and a length of 60 mm was obtained.

得られた単結晶を、ダイヤモンド切断砥石を備えたブレードソーによって約20mmの長さに切断し、側面を研削して長さ20mm、幅2mm、厚さ1mmの形状に加工した後、各面を鏡面研磨して本発明の真空紫外発光素子を得た。   The obtained single crystal was cut into a length of about 20 mm by a blade saw equipped with a diamond cutting grindstone, and the side surface was ground to be processed into a shape having a length of 20 mm, a width of 2 mm, and a thickness of 1 mm. The vacuum ultraviolet light emitting device of the present invention was obtained by mirror polishing.

得られたNdドープBaLiF3単結晶からなる真空紫外発光素子の真空紫外発光特性は、図3に示す測定装置を用いて以下のようにして測定した。なお、測定は室温において行った。   The vacuum ultraviolet light emission characteristics of the obtained vacuum ultraviolet light emitting element composed of the Nd-doped BaLiF3 single crystal were measured as follows using the measuring apparatus shown in FIG. The measurement was performed at room temperature.

測定装置内の所定の位置に本発明の真空紫外発光素子9をセットし、装置内部全体を窒素ガスで置換した。励起光源である重水素ランプ10からの励起光を、励起分光器11(分光計器製、KV201型極紫外分光器)で分光し、152nmの単色光とした。該152nmの励起光を真空紫外発光素子9に照射し、該真空紫外発光素子9からの発光を発光分光器12(分光計器製、KV201型極紫外分光器)で分光した。発光分光器12による分光の波長を、170〜250nmの範囲で掃引し、各発光波長における発光強度を光電子増倍管13で記録した。   The vacuum ultraviolet light emitting element 9 of the present invention was set at a predetermined position in the measuring apparatus, and the entire interior of the apparatus was replaced with nitrogen gas. Excitation light from a deuterium lamp 10 as an excitation light source was dispersed with an excitation spectrometer 11 (manufactured by Spectrometer Co., Ltd., KV201 type extreme ultraviolet spectrometer) to obtain a monochromatic light of 152 nm. The 152 nm excitation light was irradiated to the vacuum ultraviolet light emitting element 9, and the light emitted from the vacuum ultraviolet light emitting element 9 was dispersed with an emission spectrometer 12 (KV201 type extreme ultraviolet spectrometer manufactured by Spectrometer Co., Ltd.). The wavelength of the spectrum by the emission spectrometer 12 was swept in the range of 170 to 250 nm, and the emission intensity at each emission wavelength was recorded by the photomultiplier tube 13.

上記測定の結果、図1に示す発光スペクトルが得られ、本発明の真空紫外発光素子は、183nmの波長において充分な輝度で発光することが確認された。   As a result of the above measurement, the emission spectrum shown in FIG. 1 was obtained, and it was confirmed that the vacuum ultraviolet light emitting device of the present invention emitted light with sufficient luminance at a wavelength of 183 nm.

本図は、本発明の真空紫外発光素子の発光スペクトルである。This figure is an emission spectrum of the vacuum ultraviolet light emitting device of the present invention. 本図は、マイクロ引き下げ法による結晶製造装置の概略図である。This figure is a schematic view of an apparatus for producing a crystal by the micro pull-down method. 本図は、発光スペクトルの測定装置の概略図である。This figure is a schematic view of an emission spectrum measuring apparatus.

符号の説明Explanation of symbols

1 アフターヒーター
2 ヒーター
3 断熱材
4 ステージ
5 坩堝
6 チャンバー
7 高周波コイル
8 引き下げロッド
9 真空紫外発光素子
10 重水素ランプ
11 励起分光器
12 発光分光器
13 光電子増倍管
DESCRIPTION OF SYMBOLS 1 After heater 2 Heater 3 Heat insulating material 4 Stage 5 Crucible 6 Chamber 7 High frequency coil 8 Pulling rod 9 Vacuum ultraviolet light emitting element 10 Deuterium lamp 11 Excitation spectrometer 12 Emission spectrometer 13 Photomultiplier tube

Claims (2)

付活剤としてネオジウムを含有するフッ化バリウムリチウム単結晶からなることを特徴とする真空紫外発光素子。 A vacuum ultraviolet light emitting element comprising a barium lithium fluoride single crystal containing neodymium as an activator. ネオジウムの含有量が、フッ化バリウムリチウムに対して、0.001〜1モル%であることを特徴とする請求項1記載の真空紫外発光素子。
The vacuum ultraviolet light-emitting device according to claim 1, wherein the content of neodymium is 0.001 to 1 mol% with respect to barium lithium fluoride.
JP2006192607A 2006-07-13 2006-07-13 Vacuum ultraviolet light-emitting element Pending JP2008019126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006192607A JP2008019126A (en) 2006-07-13 2006-07-13 Vacuum ultraviolet light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006192607A JP2008019126A (en) 2006-07-13 2006-07-13 Vacuum ultraviolet light-emitting element

Publications (1)

Publication Number Publication Date
JP2008019126A true JP2008019126A (en) 2008-01-31

Family

ID=39075387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006192607A Pending JP2008019126A (en) 2006-07-13 2006-07-13 Vacuum ultraviolet light-emitting element

Country Status (1)

Country Link
JP (1) JP2008019126A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010280543A (en) * 2009-06-05 2010-12-16 Tokuyama Corp Fluoride crystal, vacuum ultraviolet light emitting element, and vacuum ultraviolet light emitting scintillator
JP2013043823A (en) * 2011-08-26 2013-03-04 Tokuyama Corp Vacuum ultraviolet light emitting element and scintillator for neutron detection

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003171198A (en) * 2001-09-28 2003-06-17 Furuya Kinzoku:Kk Crucible for manufacturing single crystal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003171198A (en) * 2001-09-28 2003-06-17 Furuya Kinzoku:Kk Crucible for manufacturing single crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010280543A (en) * 2009-06-05 2010-12-16 Tokuyama Corp Fluoride crystal, vacuum ultraviolet light emitting element, and vacuum ultraviolet light emitting scintillator
JP2013043823A (en) * 2011-08-26 2013-03-04 Tokuyama Corp Vacuum ultraviolet light emitting element and scintillator for neutron detection

Similar Documents

Publication Publication Date Title
JP5532435B2 (en) Pretreatment metal fluoride and method for producing fluoride crystal
JP5245176B2 (en) Method for producing iodide-based single crystal
JP4785198B2 (en) Fluoride crystal and vacuum ultraviolet light emitting device
JP5566218B2 (en) Fluoride single crystal, vacuum ultraviolet light emitting device, scintillator, and method for producing fluoride single crystal
JP2008019126A (en) Vacuum ultraviolet light-emitting element
JP2010073936A (en) Vacuum ultraviolet light-emitting element
RU2241081C2 (en) Method for producing tungstate mono-crystal
JP5455881B2 (en) Fluoride single crystal, vacuum ultraviolet light emitting device and scintillator
JP5170502B2 (en) Fluoride bulk single crystal material for upconversion
US11437773B2 (en) Wavelength conversion device
JP5219949B2 (en) Metal fluoride crystal and vacuum ultraviolet light emitting device
JP2008050240A (en) Method for producing cesium boric acid compound crystal and cesium boric acid compound obtained by the same
JP2016175780A (en) Fluoride crystal and optical component
JP2011016694A (en) Vacuum ultraviolet light emitting element
JP2011207660A (en) Metal fluoride crystal and vacuum ultraviolet light emitting element
JP5127778B2 (en) Fluoride crystals, vacuum ultraviolet light emitting devices, and vacuum ultraviolet light emitting scintillators
JP5393266B2 (en) Rare earth-containing K3LuF6, vacuum ultraviolet light emitting element and vacuum ultraviolet light emitting scintillator
JP4484208B2 (en) Method for producing metal fluoride single crystal
JP5408860B2 (en) Solid state laser equipment
JPWO2004101711A1 (en) Transition metal doped spinel type MgAl2O4 phosphor, laser device using the same, and method for producing the phosphor
JP5317952B2 (en) Fluoride crystals, vacuum ultraviolet light emitting devices, and vacuum ultraviolet light emitting scintillators
JP2011184206A (en) Fluoride crystal, vacuum ultraviolet light emitting element, and vacuum ultraviolet light emitting scintillator
JP2010280533A (en) METHOD FOR PRODUCING EXCITON LIGHT EMISSION TYPE ZnO SCINTILLATOR BY LIQUID PHASE EPITAXIAL GROWTH METHOD
JP2010280541A (en) Vacuum ultraviolet light-emitting element and vacuum ultraviolet light-emitting scintillator
JP5713810B2 (en) Metal fluoride crystal, light emitting device and scintillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090116

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100823

A131 Notification of reasons for refusal

Effective date: 20120207

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120605