JP2009102194A - Metal fluoride single crystalline body pulling apparatus and method of manufacturing metal fluoride single crystalline body using the same apparatus - Google Patents

Metal fluoride single crystalline body pulling apparatus and method of manufacturing metal fluoride single crystalline body using the same apparatus Download PDF

Info

Publication number
JP2009102194A
JP2009102194A JP2007275261A JP2007275261A JP2009102194A JP 2009102194 A JP2009102194 A JP 2009102194A JP 2007275261 A JP2007275261 A JP 2007275261A JP 2007275261 A JP2007275261 A JP 2007275261A JP 2009102194 A JP2009102194 A JP 2009102194A
Authority
JP
Japan
Prior art keywords
single crystal
metal fluoride
crucible
pulling
ceiling plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007275261A
Other languages
Japanese (ja)
Inventor
Masami Kudo
雅己 工藤
Katsuya Ogawa
勝也 小川
Takeshi Yasumura
健 安村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2007275261A priority Critical patent/JP2009102194A/en
Publication of JP2009102194A publication Critical patent/JP2009102194A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus of pulling a single crystal which is easy to manufacture a high grade metal fluoride single crystalline body small in crystal defect such as bubbles or negative crystal by decreasing a fallen material falling down into a raw material molten liquid. <P>SOLUTION: The single crystal pulling apparatus is provided with a gas flow passage 023 through which a gas flows out of a chamber in the direction of side part above a single crystal pulling chamber surrounded by a ceiling plate 019 and a heat insulating wall 010 arranged between a heater 009 and the chamber 008. As a result, it is extremely suppressed that the metal fluoride gas volatilized from the raw material molten liquid 004 during pulling the single crystal 018 is condensed and solidified on the lower surface of the ceiling plate 019, is peeled off by some reason and falls down into the raw material molten liquid 004. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光学材料等に用いられるフッ化金属単結晶体を製造するために用いる引上げ装置、及び該装置を用いたフッ化金属単結晶体の製造方法に関する。   The present invention relates to a pulling apparatus used for manufacturing a metal fluoride single crystal used for an optical material and the like, and a method for manufacturing the metal fluoride single crystal using the apparatus.

フッ化カルシウムやフッ化バリウム等のフッ化金属の単結晶体は、広範囲の波長帯域にわたって高い透過率を有し、低分散で化学的安定性にも優れることから、紫外波長または真空紫外波長のレーザーを用いた各種機器、カメラ、CVD装置等のレンズ、窓材等の光学材料として需要が広がってきている。とりわけ、フッ化カルシウム単結晶体は、光リソグラフィー技術において次世代の短波長光源として開発が進められているArFレーザ(193nm)やFレーザ(157nm)での光源の窓材、光源系レンズ、投影系レンズとして期待が寄せられている。 Single crystal of metal fluoride such as calcium fluoride and barium fluoride has high transmittance over a wide wavelength band, low dispersion and excellent chemical stability. Demand is expanding as optical materials such as various devices using lasers, lenses for cameras, CVD devices, and window materials. In particular, a calcium fluoride single crystal is a light source window material, a light source lens, an ArF laser (193 nm) or an F 2 laser (157 nm), which is being developed as a next-generation short wavelength light source in the photolithography technology. Expectation is expected as a projection system lens.

従来、こうしたフッ化金属の単結晶体は、ブリッジマン法(坩堝降下法)やチョクラルスキー法(単結晶引上げ法)により製造するのが一般的である。ここで、ブリッジマン法とは、坩堝中の単結晶製造原料の溶融液を、坩堝ごと徐々に下降させながら冷却することにより、坩堝中に単結晶を成長させる方法である。一方、チョクラルスキー法とは、坩堝中の単結晶製造原料の溶融液面に、目的とする単結晶からなる種結晶を接触させ、次いで、その種結晶を坩堝の加熱域から徐々に引上げて冷却することにより、該種結晶の下方に単結晶を成長させる方法である。   Conventionally, such a single crystal of a metal fluoride is generally produced by the Bridgeman method (crucible descent method) or the Czochralski method (single crystal pulling method). Here, the Bridgman method is a method of growing a single crystal in a crucible by cooling the molten liquid of the single crystal production raw material in the crucible while gradually lowering the whole crucible. On the other hand, the Czochralski method is a method in which a seed crystal made of a target single crystal is brought into contact with the melt surface of the single crystal production raw material in the crucible, and then the seed crystal is gradually pulled up from the heating region of the crucible. In this method, a single crystal is grown under the seed crystal by cooling.

チョクラルスキー法は、製造される単結晶体が坩堝壁に接触することなく育成できる(成長する)ため、多結晶化してしまう可能性が低く、また大型で歪の少ない単結晶体を効率よく製造することができる優れた方法である(例えば、特許文献1〜4参照)。   In the Czochralski method, the produced single crystal can be grown (grown) without contacting the crucible wall, so there is a low possibility that it will be polycrystallized, and a large single crystal with little strain is efficiently produced. It is the outstanding method which can be manufactured (for example, refer patent documents 1-4).

チョクラルスキー法でフッ化金属単結晶体を製造する場合、従来より図1に示したような単結晶引上げ装置100が用いられている(例えば、特許文献1〜4)。   In the case of producing a metal fluoride single crystal by the Czochralski method, a single crystal pulling apparatus 100 as shown in FIG. 1 has been conventionally used (for example, Patent Documents 1 to 4).

この図1に示す引上げ装置では、原料フッ化金属を溶融させる坩堝が外坩堝101と内坩堝102からなる二重構造坩堝であり、該内坩堝102の壁部(底壁及び/又は側壁)には、該壁部を貫通して内坩堝内と外坩堝内とで原料フッ化金属溶融液104の流通可能な貫通孔103が設けられている。結晶を引上げると、引上げた結晶量に相当する分だけ、坩堝内の原料溶融液が減少、即ち、坩堝内における原料溶融液面が低下する。図示した態様では内坩堝は所定の位置(高さ)に固定されており、原料溶融液面の相対的な下降分に相当するだけ外坩堝を上昇させる。これにより内坩堝内の原料溶融液を一定とし、原料溶融液面(=結晶成長界面)位置が変化しないようにすることが可能である。   In the pulling apparatus shown in FIG. 1, the crucible for melting the raw material metal fluoride is a double-structure crucible composed of an outer crucible 101 and an inner crucible 102, and the inner crucible 102 has a wall (bottom wall and / or side wall). Is provided with a through-hole 103 through which the raw material metal fluoride melt 104 can flow in the inner crucible and the outer crucible through the wall. When the crystal is pulled up, the raw material melt in the crucible is reduced by an amount corresponding to the pulled crystal amount, that is, the raw material melt level in the crucible is lowered. In the illustrated embodiment, the inner crucible is fixed at a predetermined position (height), and the outer crucible is raised by an amount corresponding to the relative lowering of the raw material melt surface. As a result, the raw material melt in the inner crucible can be kept constant, and the position of the raw material melt surface (= crystal growth interface) can be prevented from changing.

外坩堝の上昇及び回転は、上下動及び回転が可能な外坩堝支持軸105により行われる。   The outer crucible is raised and rotated by an outer crucible support shaft 105 that can move up and down and rotate.

坩堝の加熱は、ヒーター109により行われる。結晶引上げ炉のチャンバー108とヒーター109の間には、断熱壁110が、ヒーター109を環囲するように配設され、さらに通常は、断熱壁は坩堝の下方にも設けられる。この断熱壁110を配設することによって、ヒーター109の輻射熱からチャンバー108を保護するとともに、熱が外部へ散逸するのを防ぎ、坩堝周辺の温度を保ちやすくしている。   The crucible is heated by the heater 109. A heat insulating wall 110 is disposed between the crystal pulling furnace chamber 108 and the heater 109 so as to surround the heater 109, and more usually, the heat insulating wall is also provided below the crucible. By disposing the heat insulating wall 110, the chamber 108 is protected from the radiant heat of the heater 109, the heat is prevented from being dissipated to the outside, and the temperature around the crucible is easily maintained.

該断熱壁110の上部の開口部は通常、該断熱壁の上端に接触するように配設された天井板119で覆われており、これらに囲繞された単結晶引上げ室が形成されている。この天井板119を設置することにより、(1)上方への熱の散逸を抑制し、断熱壁110と天井板119とで囲繞された単結晶引上げ室の保温性を向上させるとともに単結晶引上げ室内に適度な温度勾配を与え、(2)溶融液や引上げ中の単結晶体からの輻射熱がチャンバー108に直接到達することを防ぎ、さらには(3)上方からゴミ等が落下して溶融液に混入することを防ぐことができる。   The upper opening of the heat insulating wall 110 is usually covered with a ceiling plate 119 disposed so as to contact the upper end of the heat insulating wall, and a single crystal pulling chamber surrounded by these is formed. By installing the ceiling plate 119, (1) heat dissipation in the upper direction is suppressed, the heat retention of the single crystal pulling chamber surrounded by the heat insulating wall 110 and the ceiling plate 119 is improved, and the single crystal pulling chamber is (2) Prevents radiant heat from the melt and the single crystal being pulled directly from reaching the chamber 108, and (3) Dust falls from above to the melt. Mixing can be prevented.

なおこの天井板119には、単結晶引上げ棒115を挿入するための挿入孔120が穿孔されている。また必要に応じて、引上げ中の単結晶体や坩堝内の溶融液の状態を観察するための窓穴122が穿孔される場合もある。   The ceiling plate 119 has an insertion hole 120 through which the single crystal pulling rod 115 is inserted. Further, if necessary, a window hole 122 for observing the state of the single crystal being pulled up or the state of the melt in the crucible may be drilled.

坩堝の中心軸上には、種結晶116を保持する種結晶保持具117と、該保持具を上下動かつ回転可能に支持する結晶引上げ軸115が配置されている。チョクラルスキー法では通常、坩堝内の十分に溶融した原料に、該保持具117に保持された種結晶116を接触させた後、回転させながら徐々に引上げて所定の直径を有する単結晶体118を成長させる。   On the center axis of the crucible, a seed crystal holder 117 that holds the seed crystal 116 and a crystal pulling shaft 115 that supports the holder so as to move up and down and rotate are arranged. In the Czochralski method, the seed crystal 116 held by the holder 117 is brought into contact with the sufficiently melted raw material in the crucible, and then the single crystal 118 having a predetermined diameter is gradually pulled up while being rotated. Grow.

特開2004−182587号公報JP 2004-182587 A 特開2004−182588号公報JP 2004-182588 A 特開2005−029455号公報JP 2005-029455 A 特開2006−347834号公報JP 2006-347834 A

しかしながら本発明者らの検討によれば、上記の如き構造を有する単結晶引上げ装置を用いて、フッ化カルシウムなどのフッ化金属単結晶体の製造を行うと、引上げ途中に結晶が急成長したり、内坩堝底で石筍状に溶融液が固化し、該石筍が引上げ中の単結晶体と衝突したり、あるいは、引上げた単結晶体中に筋状に気泡が混入しているなどの様々なトラブルをしばしば生じることが明らかとなった。   However, according to the study by the present inventors, when a single crystal pulling apparatus having the structure as described above is used to produce a metal fluoride single crystal such as calcium fluoride, the crystals grow rapidly during the pulling. And the melt is solidified in the shape of a stalagmite at the bottom of the inner crucible, the stalagmite collides with the single crystal being pulled up, or bubbles are mixed into the pulled single crystal. It has become clear that troubles often occur.

そして本発明者らが、このようなトラブルを生じる原因について調査したところ、その原因の一つは、溶融液から揮発したフッ化金属が天井板の下面で凝結・固化し、この固化物が何らかの要因で溶融液中に落下することであることが明らかとなった。   And when the present inventors investigated the cause of such trouble, one of the causes is that the metal fluoride volatilized from the melt is condensed and solidified on the lower surface of the ceiling board, and this solidified product is somehow It became clear that it was falling into the melt due to the factor.

即ち、本発明者らが従来構造を有する単結晶引上げ装置でフッ化金属単結晶体を製造し、その引上げ終了後の装置内を観察したところ、装置内には多量の薄片状の固形物が散乱しており、他方、天井板下面には、白色の固形物が付着しているとともに、その固形物の一部が剥離したような形跡が観察された。これら固形物はフッ化金属であった。そこでさらに本発明者らが、結晶引上げ中に溶融液中に落下物があった場合にどのような影響があるかについてのモデル実験(後述の参考例参照)を行ったところ、比較的質量の大きな落下物があった場合、前述したような石筍状の固化物の生成や気泡の混入が生じることがわかった。これらの結果から、前記結論に到達したものである。   That is, when the present inventors manufactured a metal fluoride single crystal with a single crystal pulling apparatus having a conventional structure and observed the inside of the apparatus after the pulling was completed, a large amount of flaky solid matter was found in the apparatus. On the other hand, a white solid was adhered to the lower surface of the ceiling board, and a trace of part of the solid was peeled off was observed. These solids were metal fluoride. Therefore, the present inventors further conducted a model experiment (see Reference Example described later) about the effect of falling objects in the melt during crystal pulling. When there was a large fallen object, it was found that the formation of stalagmite-like solidified material and the inclusion of bubbles occurred as described above. From these results, the above conclusion has been reached.

さらに特開2006−347792号公報に開示されている如く、スキャッタリングセンター(SC)と呼ばれる負結晶からなる欠陥を生じ難くする目的で、結晶成長時の炉内圧力を減圧状態で行うことがしばしば行われるが、このように炉内を減圧とするとフッ化金属の揮発がより起こりやすく、よって天井板への凝集固化物の付着量及び落下量がよりいっそう多くなってしまう。   Further, as disclosed in Japanese Patent Application Laid-Open No. 2006-347792, the furnace pressure during crystal growth is often performed in a reduced pressure state for the purpose of making it difficult to produce a defect consisting of a negative crystal called a scattering center (SC). However, if the pressure in the furnace is reduced as described above, the volatilization of the metal fluoride is more likely to occur, and thus the amount of the agglomerated solidified material attached to the ceiling plate and the amount of the fall are further increased.

そこで本発明は、溶融液から揮発したフッ化金属が天井板の下面で凝結・固化し、これが溶融液中に落下することを抑止し、よって高品質のフッ化金属単結晶体を安定的に製造し得る装置を提供することを目的とする。   Therefore, the present invention prevents the metal fluoride volatilized from the melt from condensing and solidifying on the lower surface of the ceiling plate and falling into the melt, thereby stably producing a high-quality metal fluoride single crystal. An object is to provide an apparatus that can be manufactured.

本発明者らは、上記課題に鑑み鋭意検討を行った。その結果、断熱壁の上端と天井板を密着させずに、天井板を少し持ち上げた状態とすることによって、原料溶融液から揮発した成分を含むガスの流れを側方に向けることにより、天井板に付着するフッ化金属の凝集固化物が大幅に減少することを見出し、更に検討を進めた結果、本発明を完成した。   The present inventors have conducted intensive studies in view of the above problems. As a result, the ceiling plate is directed to the side by directing the flow of gas containing components volatilized from the raw material melt by bringing the ceiling plate into a slightly lifted state without bringing the upper end of the heat insulating wall into contact with the ceiling plate. As a result of finding that the agglomerated solidified product of the metal fluoride adhering to the material is greatly reduced and further studying it, the present invention was completed.

即ち本発明は、
結晶成長炉を構成するチャンバーと、
該チャンバー内に配置され、単結晶製造原料の融液が収容される坩堝と、
該坩堝の周囲を取り囲むように配設された溶融ヒーターと、
先端に種結晶保持部を備え、該種結晶保持部に保持された種結晶が、坩堝内に収容された単結晶製造原料の融液と接触可能なように上下動可能な単結晶引上げ軸と、
前記坩堝の少なくとも上方の単結晶引上げ域の側周部を取り囲むように前記チャンバー内に配設された断熱壁と、
該断熱壁の上部の開口部を覆い、かつ前記単結晶引上げ棒を挿入するための挿入孔が少なくとも穿孔された天井板と、
を備えたフッ化金属用単結晶引上げ装置であって、
上記断熱壁を側壁、天井板を天井壁として構成される単結晶引上げ室の上方側部に、該単結晶引上げ室内から室外へのガス流通が可能なガス流通部が設けられていることを特徴とするフッ化金属用単結晶引上げ装置である。
That is, the present invention
A chamber constituting a crystal growth furnace;
A crucible disposed in the chamber and containing a melt of a raw material for producing a single crystal;
A melting heater disposed so as to surround the periphery of the crucible;
A single crystal pulling shaft which is provided with a seed crystal holding part at the tip, and which can move up and down so that the seed crystal held in the seed crystal holding part can come into contact with the melt of the single crystal production raw material housed in the crucible; ,
A heat insulating wall disposed in the chamber so as to surround a side periphery of the single crystal pulling region at least above the crucible;
A ceiling plate that covers the opening at the top of the heat insulation wall and has at least an insertion hole for inserting the single crystal pulling rod;
A single crystal pulling apparatus for metal fluoride comprising:
A gas flow part capable of flowing gas from the single crystal pulling chamber to the outside is provided on an upper side portion of the single crystal pulling chamber configured with the heat insulating wall as a side wall and the ceiling plate as a ceiling wall. This is a single crystal pulling apparatus for metal fluoride.

本発明の引上げ装置を用いてフッ化金属単結晶体の製造(引上げ)を行うと、原料溶融液面から揮発したフッ化金属が、天井板で凝集・固化することが少ない。そのため、フッ化金属の凝集固化物が天井板から剥離・脱落して溶融液中に落下することを抑制できる。これによりフッ化金属単結晶体の引上げ中の溶融液の乱れの要因を減らすことができ、よって高性能のフッ化金属単結晶体を安定的に製造することが容易となる。   When the metal fluoride single crystal is produced (pulled) using the pulling apparatus of the present invention, the metal fluoride volatilized from the raw material melt surface is less likely to aggregate and solidify on the ceiling plate. Therefore, it can suppress that the aggregation solidification thing of a metal fluoride peels and drops | omits from a ceiling board, and falls in a melt. Thereby, the factor of the disorder of the melt during the pulling of the metal fluoride single crystal can be reduced, and hence it becomes easy to stably produce a high performance metal fluoride single crystal.

以下、本発明の実施の形態を図面に基づいてより詳細に説明する。   Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings.

図2は、本発明の単結晶引上げ装置の代表的な実施態様を示す概略図である。この単結晶引上げ装置は、単結晶引上げ室の上方側部に、引上げ室内から室外へのガス流通の可能なガス流通部が設けられている点を除けば、従来公知のフッ化金属用単結晶引上げ装置と同様である。   FIG. 2 is a schematic view showing a typical embodiment of the single crystal pulling apparatus of the present invention. This single crystal pulling apparatus is a conventionally known single crystal for metal fluoride, except that a gas flow part capable of flowing gas from the pulling chamber to the outside is provided on the upper side of the single crystal pulling chamber. It is the same as the pulling device.

この単結晶引き上げ装置は、結晶成長炉を構成するチャンバー008内に外坩堝001と内坩堝002とからなる二重構造坩堝を備えており、チャンバー008の底壁を貫通してチャンバー外に伸びている外坩堝支持軸005が、外坩堝001を上下動及び回転可能なように支持している。   This single crystal pulling apparatus includes a double-structure crucible including an outer crucible 001 and an inner crucible 002 in a chamber 008 constituting a crystal growth furnace, and extends outside the chamber through the bottom wall of the chamber 008. The outer crucible support shaft 005 supports the outer crucible 001 so that it can move up and down and rotate.

内坩堝002の壁部(底壁及び/又は側壁)には、該壁部を貫通して内坩堝内と外坩堝内とで原料フッ化金属溶融液004の流通可能な貫通孔003が設けられている。結晶を引上げると、引上げた結晶量に相当する分だけ、坩堝内の原料溶融液が減少する。図示した態様では内坩堝002は所定の位置(高さ)に固定されており、原料溶融液面の相対的な下降分に相当するだけ外坩堝を上昇させる。これにより内坩堝内の原料溶融液を一定とし、原料溶融液面(=結晶成長界面)位置が変化しないようにすることが可能となっている。なお上記実施態様では二重構造坩堝を採用しているが、単坩堝構造の単結晶引上げ炉に本発明を適用してもよく、同様にその効果が得られる。   The wall portion (bottom wall and / or side wall) of the inner crucible 002 is provided with a through-hole 003 through which the raw material metal fluoride melt 004 can flow in the inner crucible and in the outer crucible. ing. When the crystal is pulled up, the raw material melt in the crucible is reduced by an amount corresponding to the pulled crystal amount. In the illustrated embodiment, the inner crucible 002 is fixed at a predetermined position (height), and the outer crucible is raised by an amount corresponding to the relative lowering of the raw material melt surface. Thereby, it is possible to keep the raw material melt in the inner crucible constant and not to change the position of the raw material melt surface (= crystal growth interface). Although the double-structure crucible is adopted in the above embodiment, the present invention may be applied to a single crystal pulling furnace having a single crucible structure, and the same effect can be obtained.

外坩堝001内壁と内坩堝002外壁との間の間隙は、開口部遮蔽部材007を配設して原料溶融液004からの原料溶融液の揮発を防止するとともに、上部からの落下物の混入を防止する手段が講じられている。なお内坩堝002の内側壁に同様に開口部を遮蔽する部材を設けることも不可能ではない。しかしながら、該部材を区切りとして、その上方と下方とで極端な温度差を生じやすくなるため、高品質の結晶を安定的に製造することが困難となる場合が多くなる。さらに、このように内坩堝の内側壁側に遮蔽部材を設けると、該遮蔽部材の下面でフッ化金属が凝結・固化し、これが落下するという問題も生じ得る。   The gap between the inner wall of the outer crucible 001 and the outer wall of the inner crucible 002 is provided with an opening shielding member 007 to prevent volatilization of the raw material melt from the raw material melt 004 and to prevent falling substances from entering from above. Measures are taken to prevent it. It is not impossible to provide a member for shielding the opening on the inner wall of the inner crucible 002 in the same manner. However, since it becomes easy to produce an extreme temperature difference between the upper part and the lower part of the member as a partition, it is often difficult to stably produce high-quality crystals. Furthermore, when the shielding member is provided on the inner wall side of the inner crucible in this way, there may be a problem that the metal fluoride condenses and solidifies on the lower surface of the shielding member and falls.

外坩堝001の周囲を取り囲むように溶融ヒーター009が配設されており、坩堝(内のフッ化金属原料溶融液)の加熱は該ヒーターにより行われる。   A melting heater 009 is disposed so as to surround the outer crucible 001, and the crucible (the molten metal fluoride raw material melt) is heated by the heater.

溶融ヒーター009とチャンバー008との間には、断熱壁010が、溶融ヒーターを環囲するように配置される。また通常、坩堝の下方にも断熱壁が設けられる。この断熱壁010を設けることにより、チャンバーが高温にさらされることから保護するとともに、該断熱壁010及び後述する天井板019により囲繞された単結晶引上げ室内の保温性を高めている。   A heat insulating wall 010 is disposed between the melting heater 009 and the chamber 008 so as to surround the melting heater. Usually, a heat insulating wall is also provided below the crucible. By providing the heat insulating wall 010, the chamber is protected from being exposed to high temperatures, and the heat retention in the single crystal pulling chamber surrounded by the heat insulating wall 010 and a ceiling plate 019 described later is enhanced.

溶融ヒーター009は通常は棒状のものが複数配置される。この溶融ヒーターから坩堝に到達する輻射熱を均一化するために、隔離壁011が周設されている。そして溶融ヒーター109の熱が上方に逃失するのを防止するために、隔離壁111の上端をヒーターの上端よりも高くし、該上端と断熱壁110との間に、隔離壁と断熱壁との間隙を閉塞するリッド材112を横架し、この間隙を閉塞させている。   A plurality of rod heaters are usually arranged as the melting heater 009. In order to make uniform the radiant heat reaching the crucible from the melting heater, an isolation wall 011 is provided around. In order to prevent the heat of the melting heater 109 from escaping upward, the upper end of the isolation wall 111 is made higher than the upper end of the heater, and the isolation wall and the thermal insulation wall are interposed between the upper end and the thermal insulation wall 110. A lid member 112 that closes the gap is horizontally mounted to close the gap.

図4においては、前述した内坩堝002の所定の高さにおける固定は、このリッド材112上に円環板上の連結部材113を配置し、この連結部材から吊下した内坩堝吊り下げ棒114により内坩堝002を支持させることにより行っている。   In FIG. 4, the above-described inner crucible 002 is fixed at a predetermined height by disposing a connecting member 113 on an annular plate on the lid material 112, and an inner crucible hanging rod 114 suspended from the connecting member. This is done by supporting the inner crucible 002.

上下動可能な結晶引上げ軸015が、坩堝の中心軸上に配設され、その先端に種結晶016を保持する種結晶保持具017が取り付けられている。チョクラルスキー法では通常、坩堝内の十分に溶融した原料に、該保持具に保持された種結晶を接触させた後、回転させながら徐々に引き上げて単結晶体018を成長させる。   A crystal pulling shaft 015 that can move up and down is disposed on the center axis of the crucible, and a seed crystal holder 017 that holds a seed crystal 016 is attached to the tip thereof. In the Czochralski method, a seed crystal held in the holder is brought into contact with a sufficiently melted raw material in a crucible, and the single crystal 018 is grown by gradually pulling it up while rotating.

溶融ヒーターを環囲する断熱壁010の上端開口部は、天井板019により覆われている。該天井板019の中央部には、上記結晶引上げ軸015を挿入するための挿入孔020が形成されている。さらに天井板019には、覗き窓021から結晶引上げ室内の原料溶融液や単結晶体等の状態を確認するための窓孔022も穿設されている。なお図1では天井板は1重であるが、放熱性の制御等の目的で複数枚を多段に設けた構造としてもよい。   The upper end opening of the heat insulating wall 010 surrounding the melting heater is covered with a ceiling plate 019. An insertion hole 020 for inserting the crystal pulling shaft 015 is formed at the center of the ceiling plate 019. Further, the ceiling plate 019 is also provided with a window hole 022 for confirming the state of the raw material melt or single crystal in the crystal pulling chamber from the observation window 021. In FIG. 1, the ceiling plate is single, but a plurality of sheets may be provided in multiple stages for the purpose of controlling heat dissipation.

この天井板019を設けることにより、原料溶融液面や単結晶体からの輻射熱が直接チャンバー008に到達することを防止でき、また該天井板019を天井壁とし、前記断熱壁010を側壁として構成される結晶引上げ室内の保温性を向上させるとともに、該室内に適度な温度勾配を付与することが容易となる。さらに、天井板019よりも上方の空間からゴミが落下して溶融液内に混入することを防ぐという効果も有する。これらの効果を得るために、天井板019が有する前記挿入孔020や窓孔022等の全ての開口の総面積は、該天井板が覆う断熱壁の上端の開口部面積の20%以下であることが好ましく、10%以下であることがより好ましい。   By providing this ceiling plate 019, it is possible to prevent the radiant heat from the raw material melt surface and the single crystal from directly reaching the chamber 008, and the ceiling plate 019 is used as a ceiling wall and the heat insulating wall 010 is used as a side wall. It is easy to improve the heat retention in the crystal pulling chamber and to impart an appropriate temperature gradient in the chamber. Furthermore, it has an effect of preventing dust from falling from the space above the ceiling plate 019 and mixing into the melt. In order to obtain these effects, the total area of all the openings such as the insertion hole 020 and the window hole 022 of the ceiling plate 019 is 20% or less of the opening area of the upper end of the heat insulating wall covered by the ceiling plate. It is preferably 10% or less.

本発明の特徴は上記断熱壁010を側壁とし、天井板019を天井壁として構成される単結晶引上げ室の上方側部に、該室内から室外へガスが流通することが可能なガス流通部023が設けられている点にある。なお本発明において当該単結晶引上げ室の底壁は通常、底部断熱壁により構成されるが、これに限定されるものではなく、例えばチャンバー底部が単結晶引上げ室の底壁を構成していてもよし、他の部材により構成されていてもよい。また単結晶引上げ室の側壁は断熱壁010のみによって構成されている必要はなく、断熱壁の外側に配設されるチャンバー等の部材を熱的に保護するという該断熱壁配設の目的を逸脱しない範囲で、非断熱性の部材により構成されていてもよい。天井板019についても同様である。   A feature of the present invention is that a gas circulation portion 023 capable of flowing gas from the room to the outside of the single crystal pulling chamber having the heat insulating wall 010 as a side wall and the ceiling plate 019 as a ceiling wall. Is in the point provided. In the present invention, the bottom wall of the single crystal pulling chamber is usually composed of a bottom heat insulating wall, but is not limited to this. For example, the bottom of the chamber may constitute the bottom wall of the single crystal pulling chamber. However, you may be comprised by the other member. Further, the side wall of the single crystal pulling chamber does not need to be constituted only by the heat insulating wall 010, and deviates from the purpose of the heat insulating wall arrangement for thermally protecting members such as a chamber arranged outside the heat insulating wall. As long as it is not, it may be made of a non-insulating member. The same applies to the ceiling plate 019.

溶融液から揮発したフッ化金属は、上昇流として天井板019まで到達する。一部のフッ化金属ガスは単結晶引上げ棒挿入孔020や窓孔022から結晶引上げ室外へ流れ出るが、一部は天井板019により冷却され、該天井板の下面で凝結・固化する。通常、チョクラルスキー法によるフッ化金属単結晶の引上げは、長尺の単結晶体を得るために数十時間以上かけて行われるが、その期間中、上記凝集固化物が天井板下面に徐々に堆積し厚みを増していく。ある程度以上の厚みを生じた凝集固化物は、わずかな刺激によって自重により天井板から剥離し、場合により溶融液中に落下することになる。   The metal fluoride volatilized from the melt reaches the ceiling plate 019 as an upward flow. A part of the metal fluoride gas flows out of the crystal pulling chamber from the single crystal pulling rod insertion hole 020 and the window hole 022, but a part is cooled by the ceiling plate 019 and is condensed and solidified on the lower surface of the ceiling plate. Usually, the pulling of the metal fluoride single crystal by the Czochralski method is performed for several tens of hours or more in order to obtain a long single crystal, and during the period, the aggregated solidified product is gradually applied to the lower surface of the ceiling plate. It accumulates in and increases in thickness. The agglomerated solid product having a thickness of a certain level or more is peeled off from the ceiling plate by its own weight under a slight stimulus, and in some cases falls into the melt.

このような落下物があると、溶融液が部分的に温度低下を起こしたり、固化物が落下した衝撃による溶融液表面の物理的な乱れ(波)が生じたりするためであると思われるが、内坩堝底での石筍状の固化物の生成や気泡の混入が生じることが極端に多くなる。   If there is such a fallen object, the temperature of the melt may partially decrease, or it may be due to physical disturbance (waves) on the melt surface due to the impact of the fall of the solidified product. The formation of stalagmite-like solidified material at the bottom of the inner crucible and the mixing of bubbles are extremely increased.

天井板019を設けなかったり、あるいは一般的な挿入孔や窓孔による開口面積よりも遥かに面積の大きな開口を天井板に設けて、ガスが速やかに上方に流出しやすくすれば、天井板下面でのフッ化金属の凝集固化及びその落下は防げるが、一方で前述したような天井板を設ける効果が得られなくなるため、この方法は現実的ではない。   If the ceiling plate 019 is not provided, or if an opening having an area far larger than the opening area of a general insertion hole or window hole is provided in the ceiling plate so that the gas can easily flow out upward, the bottom surface of the ceiling plate However, this method is not practical because the effect of providing the ceiling plate as described above cannot be obtained.

そこで本発明では、天井板019は設けたままとし、単結晶引上げ室の側部上方にガス流通の可能なガス流通部023を設けることにより、該ガス流通部(空隙)を通じてフッ化金属ガスを側方から室外へ流出させ、これにより天井板下面でのフッ化金属ガスの滞留を減じさせて、天井板下面でのフッ化金属の凝集固化量を減少させるものである。   Therefore, in the present invention, the ceiling plate 019 is kept provided, and a gas circulation part 023 capable of gas circulation is provided above the side part of the single crystal pulling chamber so that the metal fluoride gas can be supplied through the gas circulation part (gap). By flowing out of the room from the side, the retention of the metal fluoride gas on the lower surface of the ceiling plate is reduced, and the amount of coagulation and solidification of the metal fluoride on the lower surface of the ceiling plate is reduced.

また単結晶引上げ室内と室外とは少なくともその一部が断熱材で仕切られているため、室内外で大きな温度差がある。従って、ガス流通部023から単結晶引上げ室外へ流出したフッ化金属ガスは多くが室外で凝集・固化し、再度室内へ戻ってきて、天井板019で凝集・固化する可能性は少ない。   In addition, since at least a part of the single crystal pulling room and the outside is partitioned by a heat insulating material, there is a large temperature difference between the room and the outside. Therefore, most of the metal fluoride gas that has flowed out of the single crystal pulling chamber out of the gas circulation section 023 is less likely to aggregate and solidify outside, return to the room again, and aggregate and solidify on the ceiling plate 019.

上記の目的及び効果から理解されるように、ガス流通部は単結晶引上げ室の側部でもより上方に設けることがより高い効果が得られ、結晶引上げ中の坩堝(二重構造坩堝の場合は内坩堝)上端から天井板下面までの距離を1としたとき、ガス流通部としての開口部下端の位置が、上からの距離が1/2となる位置よりも上に設けることが好ましく、同1/3となる位置よりも上に設けることがより好ましく、同1/5となる位置よりも上に設けることがさらに好ましい。また、ガス流通部としての開口部上端の位置もより上方に設けられていることが好ましく、特に側部の最上端に相当する位置となっていることが好ましい。   As can be understood from the above objects and effects, it is possible to obtain a higher effect by providing the gas circulation part at the upper side even at the side of the single crystal pulling chamber, and in the case of a crucible during crystal pulling (in the case of a double structure crucible) Inner crucible) When the distance from the upper end to the lower surface of the ceiling plate is 1, it is preferable that the position of the lower end of the opening as the gas circulation part is provided above the position where the distance from the top is ½. It is more preferable to provide it above the position that becomes 1/3, and it is even more preferable to provide it above the position that becomes 1/5. Moreover, it is preferable that the position of the upper end of the opening as the gas circulation part is also provided higher, and it is particularly preferable that the position corresponds to the uppermost end of the side part.

当該ガス流通部を形成する方法は特に限定されないが、図2に示す如く、断熱壁010の上端部に天井板019を密着させることなく、少し持ち上げた(浮かした)状態とする方法が簡便で、かつガス流通部の位置を側部の最上端にできる点で好ましい。さらにこのようにして形成すれば、実質的に単結晶引上げ室の全周にわたって空隙を生じさせることになるため、フッ化金属ガスが満遍なく室外へ流出する。これにより、ガス流通部から遠い部分でフッ化金属ガスが滞留し、そのため該部分で天井板下面に凝集固化物を生じやすくなる可能性も低減できる。   Although the method for forming the gas circulation part is not particularly limited, as shown in FIG. 2, a method of slightly lifting (floating) the ceiling plate 019 without being in close contact with the upper end of the heat insulating wall 010 is simple. And it is preferable at the point which can make the position of a gas distribution part into the uppermost end of a side part. Furthermore, if formed in this way, voids are generated substantially over the entire circumference of the single crystal pulling chamber, so that the metal fluoride gas flows out of the chamber evenly. As a result, the metal fluoride gas stays in a portion far from the gas circulation portion, and therefore, the possibility that agglomerated solidified product is easily generated on the lower surface of the ceiling plate in the portion can be reduced.

このように天井板を浮かした状態する方法は特に限定されるものではないが、例えば、図3に示すように、天井板019の数箇所にピン状の部材024を嵌着し、天井板下面に突出させた部分で、天井板019と断熱壁010の上端とに空隙を生じさせる方法、図4に示すように天井板019下面と断熱壁010の上端との間に、小片状の部材025を挿設する方法、図5に示すように、チャンバー等から吊下げ部材026を懸吊し、該部材により天井板を保持する方法などが挙げられる。無論、上記例以外の方法によって天井板を持ち上げて(浮かして)もよい。どのような方法で天井板019を浮かした状態とするかは、引上げ装置自体の製造のコストや難易度、結晶引上げ時やその準備、後処理の際の操作性などに応じて適宜決定すればよい。   The method of floating the ceiling board in this way is not particularly limited. For example, as shown in FIG. 3, pin-like members 024 are fitted in several places on the ceiling board 019, and the lower surface of the ceiling board is placed. A small piece-shaped member between the bottom surface of the ceiling plate 019 and the upper end of the heat insulating wall 010 as shown in FIG. Examples include a method of inserting 025, and a method of suspending a suspension member 026 from a chamber or the like and holding a ceiling plate by the member, as shown in FIG. Of course, the ceiling board may be lifted (floated) by a method other than the above example. The method of floating the ceiling plate 019 can be determined appropriately according to the manufacturing cost and difficulty of the pulling device itself, the crystal pulling and preparation, the operability during post-processing, etc. Good.

また単結晶引上げ室の側部上方にガス流通部023を設ける他の方法としては、断熱壁010の上端に溝部や凸部027(図6参照)を設けたり、あるいは上方(好ましくは上端近く)に貫通孔を形成したりする方法も挙げられる。   Further, as another method of providing the gas circulation part 023 above the side of the single crystal pulling chamber, a groove or a convex part 027 (see FIG. 6) is provided at the upper end of the heat insulating wall 010, or the upper part (preferably near the upper end). A method of forming a through-hole is also mentioned.

当該ガス流通部を設けた際の、該ガス流通面積は特に限定されるものではない。大面積である方が、より側方へフッ化金属のガスが流出しやすいが、面積を大きくしすぎると、天井板及び/又は断熱壁を設けた効果が減殺される虞がある。このような理由から、断熱壁の上部の開口部面積を100%としたとき、ガス流通部の最も狭隘な部分の断面積の合計が5〜50%相当であることが好ましく、10〜45%相当であることがより好ましい。例えば、断熱壁の上部の開口部が直径1000mmの円形であるとき(開口部面積7850cm)に、前述の天井板を浮かせる方法で空隙を設ける場合には、断熱壁上端と天井板下面の距離を12.5〜125mm程度とすることが好ましく、25〜112.5mm程度とすることがより好ましい。 The gas circulation area when the gas circulation part is provided is not particularly limited. The larger the area, the easier the metal fluoride gas flows out to the side. However, if the area is too large, the effect of providing the ceiling plate and / or the heat insulating wall may be reduced. For these reasons, when the area of the opening at the top of the heat insulating wall is 100%, the total cross-sectional area of the narrowest part of the gas flow part is preferably 5 to 50%, preferably 10 to 45%. More preferably, it is considerable. For example, when the opening at the upper part of the heat insulating wall is a circle having a diameter of 1000 mm (opening area: 7850 cm 2 ), the distance between the upper end of the heat insulating wall and the lower surface of the ceiling board is provided when the gap is provided by the method of floating the ceiling plate. Is preferably about 12.5 to 125 mm, and more preferably about 25 to 112.5 mm.

また天井板を浮かせる方法を採用した場合、断熱壁上端と天井板下面の距離が近すぎると抵抗が大きくなって、ガスが流れ難くなる一方、距離が離れすぎると前記天井板を設ける効果が減殺される場合がある。そのため、該方法では開口部面積にかかわらず、絶対値として下限を3mm以上とすることが好ましく、5mm以上がより好ましく、10mm以上とすることが特に好ましい。一方、上限は150mm以下であることが好ましく、125mm以下がより好ましく、100mm以下が特に好ましい。   Also, when the method of floating the ceiling plate is adopted, if the distance between the upper end of the heat insulation wall and the lower surface of the ceiling plate is too close, the resistance increases and the gas does not flow easily, but if the distance is too far away, the effect of providing the ceiling plate is reduced. May be. Therefore, in this method, the lower limit of the absolute value is preferably 3 mm or more, more preferably 5 mm or more, and particularly preferably 10 mm or more, regardless of the opening area. On the other hand, the upper limit is preferably 150 mm or less, more preferably 125 mm or less, and particularly preferably 100 mm or less.

上記の如き本発明の単結晶引上げ装置を構成する部材の材質は、フッ化金属単結晶体を製造する際に用いられる公知のチョクラルスキー炉の材質と同様である。例えば、チャンバー内に設置される部材には、黒鉛、硝子状黒鉛、炭化珪素蒸着黒鉛等の黒鉛系材料や、白金、白金−ロジウム合金、モリブデン等の高融点金属等が使用できる。原料フッ化金属の溶融温度において安定であり、フッ化金属を汚染する可能性がほとんどなく、さらには安価な点で、黒鉛系の材料で作製することが特に好ましい。   The material of the member constituting the single crystal pulling apparatus of the present invention as described above is the same as the material of a known Czochralski furnace used when producing a metal fluoride single crystal. For example, as a member installed in the chamber, graphite materials such as graphite, vitreous graphite, and silicon carbide-deposited graphite, and refractory metals such as platinum, platinum-rhodium alloy, and molybdenum can be used. It is particularly preferable that the material is made of a graphite-based material because it is stable at the melting temperature of the raw material metal fluoride, has little possibility of contaminating the metal fluoride, and is inexpensive.

上記本発明の単結晶引上げ装置を用いて単結晶を製造する方法は、公知の方法に従えばよい。代表的な製造方法を以下に簡単に述べる。   The method for producing a single crystal by using the single crystal pulling apparatus of the present invention may follow a known method. A typical manufacturing method is briefly described below.

本発明の単結晶引き上げ装置で製造することのできるフッ化金属単結晶は、チョクラルスキー法で製造可能な単結晶であれば特に制限されるものではない。当該フッ化金属を具体的に例示すると、フッ化リチウム、フッ化ナトリウム、フッ化カリウム、フッ化ルビジウム、フッ化マグネシウム、フッ化カルシウム、フッ化バリウム、フッ化ストロンチウム、フッ化アルミニウム、フッ化バリウムリチウム、フッ化マグネシウムカリウム、フッ化アルミニウムリチウム、フッ化カルシウムストロンチウム、フッ化カリウムマグネシウム、フッ化ストロンチウムリチウム、フッ化セシウムカルシウム、フッ化リチウムカルシウムアルミニウム、フッ化リチウムストロンチウムアルミニウム、及びフッ化ランタノイド類等が挙げられる。なかでもフッ化マグネシウム、フッ化カルシウム、フッ化バリウム等のフッ化アルカリ土類金属の製造に用いることが好ましい。   The metal fluoride single crystal that can be produced by the single crystal pulling apparatus of the present invention is not particularly limited as long as it is a single crystal that can be produced by the Czochralski method. Specific examples of the metal fluoride include lithium fluoride, sodium fluoride, potassium fluoride, rubidium fluoride, magnesium fluoride, calcium fluoride, barium fluoride, strontium fluoride, aluminum fluoride, and barium fluoride. Lithium, potassium magnesium fluoride, lithium aluminum fluoride, calcium strontium fluoride, potassium magnesium fluoride, lithium strontium fluoride, cesium calcium fluoride, lithium calcium aluminum fluoride, lithium strontium aluminum fluoride, lanthanoid fluorides, etc. Is mentioned. Among these, it is preferable to use for production of alkaline earth metal fluorides such as magnesium fluoride, calcium fluoride, and barium fluoride.

原料として用いるフッ化金属としては、可能な限り不純物が少ないものが好ましい。通常、フッ化亜鉛、フッ化鉛、四フッ化炭素等のスカベンジャー存在下に加熱溶融して酸化物や水分等の不純物の大部分を除去したフッ化金属を原料として単結晶引上げ炉内の坩堝中に装入する。   As the metal fluoride used as a raw material, those having as few impurities as possible are preferable. A crucible in a single crystal pulling furnace using as a raw material metal fluoride, which is usually heated and melted in the presence of a scavenger such as zinc fluoride, lead fluoride, or carbon tetrafluoride to remove most of impurities such as oxides and moisture. Insert inside.

該坩堝内に装入した原料フッ化金属は、溶融させるに先立って減圧下で加熱処理を施してさらに吸着水分を除去することが好ましい。十分に加熱を行って吸着水分を除去した後、原料フッ化金属を溶融させる。   The raw material metal fluoride charged in the crucible is preferably subjected to a heat treatment under reduced pressure prior to melting to further remove adsorbed moisture. After sufficiently heating to remove adsorbed moisture, the raw material metal fluoride is melted.

上記加熱及び溶融に際しては、原料を外坩堝内に装入することが好ましい。この場合、外坩堝001は下方に引き下げておき、内坩堝002の外壁と閉塞部材007により形成される半密閉空間中で加熱、溶融することが好ましい。   During the heating and melting, it is preferable to charge the raw material into the outer crucible. In this case, it is preferable that the outer crucible 001 is pulled down and heated and melted in a semi-enclosed space formed by the outer wall of the inner crucible 002 and the closing member 007.

原料が十分に溶融した後、外坩堝001を上昇させ、貫通孔003から内坩堝002の内部へ原料溶融液004を流入させる。その後、結晶引上げ軸015先端の種結晶保持具017に装着された種結晶を該原料溶融液面に接触させ、ついで徐々に引上げて単結晶体018を成長させる。   After the raw material is sufficiently melted, the outer crucible 001 is raised, and the raw material melt 004 is caused to flow into the inner crucible 002 from the through hole 003. Thereafter, the seed crystal mounted on the seed crystal holder 017 at the tip of the crystal pulling shaft 015 is brought into contact with the surface of the raw material melt, and then gradually pulled to grow a single crystal body 018.

単結晶の引き上げの際の温度は、対象となるフッ化金属に応じて決定され、例えば、外坩堝底部の測定温度において、フッ化カルシウムの場合は、1440℃以上、好適には1440〜1520℃の温度で実施することが好ましく、フッ化バリウムの場合は、1300〜1400℃の温度で実施することが好ましい。また、該温度への昇温速度は10〜500℃/時間であることが好ましい。   The temperature at which the single crystal is pulled is determined in accordance with the target metal fluoride. For example, at the measurement temperature at the bottom of the outer crucible, in the case of calcium fluoride, 1440 ° C. or higher, preferably 1440-1520 ° C. In the case of barium fluoride, it is preferably carried out at a temperature of 1300 to 1400 ° C. Moreover, it is preferable that the temperature increase rate to this temperature is 10-500 degreeC / hour.

上記加熱による水分の除去及び引上げの実施は、残留する水分の影響をなくすため、スカベンジャーの存在下で実施することが好ましい。スカベンジャーとしては、原料フッ化金属と共に仕込まれるフッ化亜鉛、フッ化鉛、ポリ四フッ化エチレンなどの固体スカベンジャーや、チャンバー内に雰囲気として導入される四フッ化炭素、三フッ化炭素、六フッ化エタンなどの気体スカベンジャーが使用される。固体スカベンジャーを使用することが好ましく、その使用量は、原料フッ化金属100重量部に対して0.005〜5重量部が好適である。   In order to eliminate the influence of residual moisture, the removal of water and the pulling up by the heating are preferably performed in the presence of a scavenger. Scavengers include solid scavengers such as zinc fluoride, lead fluoride, and polytetrafluoroethylene that are charged together with the raw metal fluoride, as well as carbon tetrafluoride, carbon trifluoride, and hexafluoride introduced into the chamber as an atmosphere. A gas scavenger such as ethane fluoride is used. It is preferable to use a solid scavenger, and the amount used is preferably 0.005 to 5 parts by weight with respect to 100 parts by weight of the raw metal fluoride.

引き上げ法に用いる種結晶016は、フッ化金属の単結晶であり、種結晶の育成面は、製造するアズグロウン単結晶の結晶主成長面に応じて、〔111〕面、〔100〕面等を原料溶融液との接触面とすればよい。種結晶を原料溶融液面に接触させた後、0.1〜20mm/hの速度で徐々に引き上げることにより単結晶体を成長させることができる。単結晶体018が成長するにつれて、内坩堝002中の原料溶融液が消費されるが、外坩堝001を上昇させることにより、当該減少分に想到する量の原料溶融液を、貫通孔003を通して徐々に内坩堝中に供給することにより、溶融液表面、即ち結晶成長面の位置を一定とすることができる。   The seed crystal 016 used for the pulling method is a single crystal of metal fluoride, and the growth surface of the seed crystal is the [111] plane, the [100] plane, etc. according to the crystal main growth plane of the as-grown single crystal to be produced. A contact surface with the raw material melt may be used. After bringing the seed crystal into contact with the raw material melt surface, the single crystal can be grown by gradually pulling it up at a speed of 0.1 to 20 mm / h. As the single crystal body 018 grows, the raw material melt in the inner crucible 002 is consumed. By raising the outer crucible 001, an amount of the raw material melt reaching the reduced amount is gradually passed through the through-hole 003. By supplying it to the inner crucible, the position of the melt surface, that is, the crystal growth surface can be made constant.

単結晶の育成中において、種結晶016は、引上げ軸015を中心として回転させることが好ましく、回転速度は5〜30回/分であることが好ましい。また、上記種結晶の回転に併せて外坩堝も、該種結晶の回転方向と反対方向に同様の回転速度で回転させてもよい。   During the growth of the single crystal, the seed crystal 016 is preferably rotated about the pulling shaft 015, and the rotation speed is preferably 5 to 30 times / minute. In addition to the rotation of the seed crystal, the outer crucible may be rotated at the same rotational speed in the direction opposite to the rotation direction of the seed crystal.

単結晶体引上げ中の炉内圧力は、加圧下、常圧下、減圧下のいずれでもよいが、前述の通り一般にスキャッタリングセンターと呼ばれる負結晶からなる欠陥を生じにくい点で、減圧下に行うことが好ましい。減圧下に結晶成長を行わせる場合には、炉内圧力を0.5〜70kPaとすることが好ましく、5〜50kPaとすることがより好ましい。このように減圧下で結晶成長を行わせる場合、原料溶融液からのフッ化金属の揮発量が多くなる。本発明の製造装置は、このようなフッ化金属の揮発量が多くなる条件下でのフッ化金属単結晶の製造に対して特に有用である。   The furnace pressure during pulling up of the single crystal may be under pressure, normal pressure, or reduced pressure. However, as described above, the pressure inside the furnace is generally reduced under reduced pressure because it is less likely to cause a negative crystal called a scattering center. Is preferred. When crystal growth is performed under reduced pressure, the furnace pressure is preferably 0.5 to 70 kPa, and more preferably 5 to 50 kPa. Thus, when crystal growth is performed under reduced pressure, the volatilization amount of the metal fluoride from the raw material melt increases. The production apparatus of the present invention is particularly useful for the production of a metal fluoride single crystal under such conditions that the amount of volatilization of the metal fluoride increases.

このようにして所望の大きさの単結晶体018を引き上げた後、炉内から取り出せる程度の温度まで降温する。降温速度としては、0.01〜3℃/分が好ましく、以下に記す加工に際して、割れや欠けの発生し難いアズグロウン単結晶とするために、0.1〜0.5℃/分とすることがより好ましい。   After pulling up the single crystal 018 having a desired size in this way, the temperature is lowered to a temperature at which it can be taken out from the furnace. The temperature decreasing rate is preferably 0.01 to 3 ° C./min. In order to obtain an as-grown single crystal which is less likely to be cracked or chipped during the processing described below, it is set to 0.1 to 0.5 ° C./min. Is more preferable.

このようにして単結晶体を引き上げた後、必要に応じて研磨・研削加工や熱処理加工を行って、レンズブランク、レンズ、窓材等の最終製品とすることができる。   After pulling up the single crystal in this manner, polishing / grinding or heat treatment can be performed as necessary to obtain final products such as lens blanks, lenses, window materials, and the like.

以下、具体的な実験例を挙げて本発明の実施態様をより詳しく説明するが、本発明はこれらに限定されるものではない。   Hereinafter, embodiments of the present invention will be described in more detail with specific experimental examples, but the present invention is not limited thereto.

泡/SCの観察方法:
暗室内において、ハロゲン光源(SCHOTT社製MegaLight100:ランプ12V100W最大出力)を、得られたアズグロウン単結晶体の表面に密着させ、各方向から照射して光散乱点(欠陥)の有無及びその位置を目視で観察した。その際、光源の照射角度を変えても見え方が変化しないものを泡、照射角度によって見え方が変化するものをSCとした。
Foam / SC observation method:
In a dark room, a halogen light source (MegaLight 100 manufactured by SCHOTT: lamp 12V100W maximum output) was brought into close contact with the surface of the obtained as-grown single crystal, and irradiated from each direction to determine the presence and position of light scattering points (defects) and their positions. It was observed visually. At that time, bubbles that do not change the appearance even when the irradiation angle of the light source is changed are bubbles, and those that change the appearance depending on the irradiation angle are SC.

参考例:原料溶融液への落下物の影響を調べるモデル実験を行った。   Reference example: A model experiment was conducted to investigate the effect of falling objects on the raw material melt.

図1に概略図を示す単結晶引上げ装置を用いてフッ化カルシウムの単結晶体の引き上げを行った。引上げ速度4mm/Hrで直胴部の直径165mmの単結晶体を育成しつつ、直胴長さ35mm、50mm及び80mm到達時点に、各々0.1g、1g及び7gのフッ化カルシウムを原料溶融液中に落下させた。0.1gのフッ化カルシウムを落下させた直後は特に異常な育成挙動は見られなかったが、1gのフッ化カルシウムを落下させた場合は、数分後に制御直径に対して+6mm程度の一時的な急成長が発生した。また、7gのフッ化カルシウム結晶を落下させて2分後に内坩堝底に石筍状結晶が生成したため、その時点で結晶成長を中止し、冷却後、取り出した単結晶体を観察した。   The single crystal pulling apparatus shown in FIG. 1 was used to pull up the calcium fluoride single crystal. While growing a single crystal body with a diameter of 165 mm in the straight body at a pulling speed of 4 mm / Hr, 0.1 g, 1 g and 7 g of calcium fluoride were respectively added to the raw material melt when the straight body length reached 35 mm, 50 mm and 80 mm. Let it fall inside. Immediately after 0.1 g of calcium fluoride was dropped, no abnormal growth behavior was observed, but when 1 g of calcium fluoride was dropped, a temporary increase of about +6 mm to the control diameter after a few minutes. Rapid growth occurred. Further, since 7 g of calcium fluoride crystal was dropped and a stalagmite-like crystal was formed on the bottom of the inner crucible 2 minutes later, the crystal growth was stopped at that time, and the cooled single crystal was observed after cooling.

その結果、0.1gのフッ化カルシウムを落下させた時点の部位には特に異常は見られなかったが、1gのフッ化カルシウムを落下させた時点の部位には、結晶成長界面(と推測されるライン)の形状に沿って、多数の泡の混入が確認された。   As a result, no abnormalities were observed at the site when 0.1 g of calcium fluoride was dropped, but at the site when 1 g of calcium fluoride was dropped, it was estimated that the crystal growth interface ( A large number of bubbles were found along the shape of the line.

この結果から、結晶成長を行っている間に原料溶融液中に比較的大きな落下物があると、単結晶体の製造に悪影響があることが明らかとなった。一方、微量であれば、大きな問題とはなりにくいこともわかった。   From this result, it has been clarified that if there is a relatively large fallen object in the raw material melt during crystal growth, the production of the single crystal is adversely affected. On the other hand, it was also found that a small amount would not be a big problem.

実施例1
図2に示すような、断熱壁上端と天井板下面との間に空隙を設けた単結晶引上げ装置を用いてフッ化カルシウム単結晶体の製造を行った。内坩堝は内径360mm、中心深さ127mm、外坩堝内径は500mmで、断熱壁は内径が680mmでいずれも上から見た断面形状は円形である。断熱壁上端の位置は、内坩堝の上端位置から335mm高い位置にあり、天井板は図5に模式図を示すようなピン状部材を用い、断熱壁上端から20mm浮かした状態とした。なお天井板にはその中心部に直径140mm(面積15394mm)の結晶引上げ軸挿入孔と、4898mmの覗き窓が穿孔されたものを用いた。
Example 1
A calcium fluoride single crystal was manufactured using a single crystal pulling apparatus in which a gap was provided between the upper end of the heat insulating wall and the lower surface of the ceiling plate as shown in FIG. The inner crucible has an inner diameter of 360 mm, the center depth is 127 mm, the outer crucible has an inner diameter of 500 mm, and the heat insulating wall has an inner diameter of 680 mm. The position of the upper end of the heat insulation wall was 335 mm higher than the position of the upper end of the inner crucible, and the ceiling plate was a pin-like member as shown in the schematic diagram of FIG. The ceiling plate used was a crystal pulling shaft insertion hole with a diameter of 140 mm (area 15394 mm 2 ) and a 4898 mm 2 viewing window at the center.

フッ化亜鉛の存在下に炉内を十分に空焼きした後、内坩堝外壁、外坩堝内壁及び遮蔽部材とで構成される空間内に原料フッ化金属80kgと、スカベンジャーとしてのフッ化亜鉛10gを装入し、真空引きを開始した。内圧が5×10−3Pa以下に達した時点で、真空引きを継続しながらヒーターに通電し原料の加熱を開始した。約50℃/Hrで坩堝底部の温度が250℃になるまで昇温し、この温度で24時間保持した。そのときのチャンバー内の真空度は5×10−4Paであった。その後、約50℃/Hrで再び昇温を開始し、600℃に達した後、さらに12時間保持し、その後に真空排気ラインを遮断して高純度アルゴンをチャンバー内に供給し、内圧(炉内雰囲気圧力)を30kPa(abs)まで復圧して、引上げが終了して室温付近に降温するまでガスの導入を行わなかった。 After the furnace is fully baked in the presence of zinc fluoride, 80 kg of raw material metal fluoride and 10 g of zinc fluoride as a scavenger are placed in the space formed by the outer wall of the inner crucible, the inner wall of the outer crucible and the shielding member. The evacuation was started. When the internal pressure reached 5 × 10 −3 Pa or less, the heater was energized while evacuation was continued to start heating the raw material. The temperature was raised at about 50 ° C./Hr until the temperature at the bottom of the crucible reached 250 ° C., and this temperature was maintained for 24 hours. The degree of vacuum in the chamber at that time was 5 × 10 −4 Pa. Thereafter, the temperature was raised again at about 50 ° C./Hr, and after reaching 600 ° C., the temperature was further maintained for 12 hours. Thereafter, the vacuum exhaust line was shut off, and high-purity argon was supplied into the chamber. The gas was not introduced until the internal pressure was reduced to 30 kPa (abs) and the pulling was completed and the temperature was lowered to around room temperature.

30kPaへの復圧後、1500℃付近まで昇温して3時間保持して原料を溶融させた。この状態で外坩堝の位置を上昇させて溶融液の一部を貫通孔を通じて内坩堝の内空部に流入させ、内坩堝内にもフッ化カルシウム原料の溶融液が収容された状態とした。   After returning to 30 kPa, the temperature was raised to around 1500 ° C. and held for 3 hours to melt the raw material. In this state, the position of the outer crucible was raised and a part of the melt was caused to flow into the inner space of the inner crucible through the through hole, so that the melt of calcium fluoride raw material was also stored in the inner crucible.

原料溶融液面の温度がフッ化カルシウムの溶融温度とほぼ等しくなるまで融液の温度を低下させた後、種結晶を溶融液表面に接触させ、4mm/Hrで引き上げて育成を行った。直胴部の直径225mm、直胴部長さが150mmの単結晶体を育成し、結晶を融液から切り離し、常温まで降温した。   After the temperature of the melt was lowered until the temperature of the raw material melt surface level became substantially equal to the melting temperature of calcium fluoride, the seed crystal was brought into contact with the melt surface and pulled up at 4 mm / Hr for growth. A single crystal having a diameter of the straight body portion of 225 mm and a length of the straight body portion of 150 mm was grown, the crystal was separated from the melt, and the temperature was lowered to room temperature.

上記単結晶育成中、約1時間毎に覗き窓から炉内の単結晶を観察し、単結晶体の肩部の様相に変化(落下物の付着やその増加)があった場合はその時間帯を記録するようにした。   During the above single crystal growth, observe the single crystal in the furnace from the viewing window about every hour, and if there is a change in the appearance of the shoulder of the single crystal (attachment of fallen objects or its increase), the time zone Was recorded.

その結果、肩部を形成してから結晶を融液から切り離すまでの間、落下物の肩部への付着はほとんど観察されず、制御直径に対して±1mm以下の偏差で育成を行うことができた。また、取り出した単結晶体ついて泡やSCを目視で観察したが、いずれもほとんど存在しなかった(図7)。   As a result, during the period from when the shoulder is formed to when the crystal is separated from the melt, the fallen object is hardly observed to adhere to the shoulder, and can be grown with a deviation of ± 1 mm or less with respect to the control diameter. did it. Moreover, although the bubble and SC were visually observed about the taken-out single crystal body, all hardly existed (FIG. 7).

比較例1
図1に示すような断熱壁上端と天井板下面が密着させることにより、空隙の形成されていない装置を用いた以外は、実施例1と同様にしてフッ化カルシウム単結晶体の引き上げを行い、ほぼ同じ形状の単結晶体を得た。
Comparative Example 1
By adhering the upper end of the heat insulating wall and the lower surface of the ceiling plate as shown in FIG. 1, the calcium fluoride single crystal is pulled up in the same manner as in Example 1 except that an apparatus in which no gap is formed is used. A single crystal having substantially the same shape was obtained.

実施例1と同様に、約1時間毎に覗き窓から炉内の単結晶を観察して単結晶体の肩部の様相を観察していたところ、引上げ開始から約29.5時間後(直胴長さが約29mm時点)及び約46.5時間後(同97mm時点)に肩部の様相が著しく変化したのを2回観察した。また、同23時間40分後に制御直径に対して+11mm程度の一時的な急成長が発生したのが確認された。この急成長は、肩部の様相に変化があった2回目の時間帯とほぼ一致するため、落下物が原因と考えられる。   As in Example 1, when the single crystal inside the furnace was observed from the observation window about every hour to observe the appearance of the shoulder of the single crystal, about 29.5 hours after the start of pulling (directly) It was observed twice that the aspect of the shoulder portion changed significantly after the trunk length of about 29 mm) and after about 46.5 hours (at the time of 97 mm). Further, it was confirmed that a rapid growth of about +11 mm with respect to the control diameter occurred after 23 hours and 40 minutes. This rapid growth almost coincides with the second time zone in which the appearance of the shoulder has changed, and is considered to be caused by falling objects.

また、図7として模式的に示すように、取り出した単結晶体ついて泡やSCを目視で観察したところ、肩部の様相が著しく変化した時間帯に対応する部位に結晶成長界面(と推測されるライン)の形状に沿って、多数のSC及び泡の混入が確認された。   Further, as schematically shown in FIG. 7, when the bubbles and SC were visually observed with respect to the single crystal taken out, it was estimated that the crystal growth interface (at the site corresponding to the time zone when the appearance of the shoulder changed significantly). A large number of SCs and bubbles were mixed along the shape of the line.

比較例2
1500℃付近まで昇温する前に復圧する圧力(炉内雰囲気圧力)を60kPa(abs)とした以外は比較例1と同様にしてフッ化カルシウム単結晶体の引き上げを行い、ほぼ同じ形状の単結晶体を得た。
Comparative Example 2
The calcium fluoride single crystal was pulled up in the same manner as in Comparative Example 1 except that the pressure (pressure in the furnace) for returning before raising the temperature to around 1500 ° C. was 60 kPa (abs). A crystal was obtained.

その結果、育成中に一時的な急成長は発生しなかったものの、引上げ開始から約50.5時間経過後(直胴長さが約113mm時点)に肩部の様相が著しく変化したのが1回観察された。取り出した単結晶体ついて泡やSCを目視で観察したところ、肩部の様相が著しく変化した時間帯に対応する部位に、比較例1ほど多くはなかったが、結晶成長界面(と推測されるライン)の形状に沿って、SC及び泡の混入が確認された。   As a result, although the temporary rapid growth did not occur during the growth, the appearance of the shoulder changed significantly after about 50.5 hours from the start of the pulling (when the straight body length was about 113 mm). Observed once. When the bubbles and SC were visually observed with respect to the single crystal taken out, the amount corresponding to the time zone in which the appearance of the shoulder portion changed significantly was not as much as in Comparative Example 1, but it was assumed that the crystal growth interface ( Along the shape of the (line), mixing of SC and foam was confirmed.

実施例2
実施例1において、天井板を断熱壁上端から60mm浮かした状態とした以外は、実施例1と同様にしてフッ化カルシウム単結晶体の引き上げを行い、ほぼ同じ形状の単結晶体を得た。
Example 2
In Example 1, the calcium fluoride single crystal was pulled up in the same manner as in Example 1 except that the ceiling plate was lifted 60 mm from the upper end of the heat insulating wall to obtain a single crystal having substantially the same shape.

その結果、放熱が大きくなったためか、出力が多少変化したものの、実施例1と同様、育成中に落下物による肩部への付着はほとんど観察されず、制御直径に対して±1mm以下の偏差で育成を行うことができた。また、取り出した単結晶体ついて泡やSCを目視で観察したが、いずれもほとんど存在しなかった。   As a result, although the heat dissipation increased, the output slightly changed, but as in Example 1, almost no adhesion to the shoulder due to falling objects was observed during the growth, and the deviation of ± 1 mm or less with respect to the control diameter I was able to train with. Moreover, although the bubble and SC were visually observed about the taken-out single crystal body, all were hardly existing.

実施例3
実施例1において、以下に挙げる点を変更した以外は、実施例1と同様にしてフッ化カルシウム単結晶体の引き上げを行った。
・内坩堝:内径250mm、中心深さ114mm
・外坩堝:内径360mm
・断熱材壁:内径550mm
・断熱材上端と内坩堝の上端の距離:430mm
・断熱壁上端と天井板下面の距離:20mm
・天井板の覗き窓穿孔:面積7000mm
・原料フッ化金属装入量:30kg
・フッ化亜鉛装入量:3g
・結晶直胴部:直径130mm、長さ320mm
その結果、実施例1と同様、育成中に落下物による肩部への付着はほとんど観察されず、制御直径に対して±1mm以下の偏差で育成を行うことができた。また、取り出した単結晶体ついて泡やSCを目視で観察したが、いずれもほとんど存在しなかった。
Example 3
In Example 1, the calcium fluoride single crystal was pulled up in the same manner as in Example 1 except that the following points were changed.
・ Inner crucible: inner diameter 250mm, center depth 114mm
・ Outer crucible: 360mm inner diameter
・ Insulation wall: inner diameter 550mm
・ Distance between the upper end of the heat insulating material and the upper end of the inner crucible: 430 mm
・ Distance between heat insulation wall top and ceiling board bottom: 20mm
・ Peeping hole in ceiling plate: area 7000mm 2
・ Raw metal fluoride charge: 30kg
・ Zinc fluoride charge: 3g
・ Crystal straight body: Diameter 130mm, length 320mm
As a result, as in Example 1, almost no adhesion of the fallen object to the shoulder was observed during the growth, and the growth could be performed with a deviation of ± 1 mm or less with respect to the control diameter. Moreover, although the bubble and SC were visually observed about the taken-out single crystal body, all were hardly existing.

比較例3
図1に示すような断熱壁上端と天井板下面が密着させることにより、空隙の形成されていない装置を用いた以外は、実施例3と同様にしてフッ化カルシウム単結晶体の引き上げを行い、ほぼ同じ形状の単結晶体を得た。
Comparative Example 3
By adhering the upper end of the heat insulating wall and the lower surface of the ceiling plate as shown in FIG. 1, the calcium fluoride single crystal is pulled up in the same manner as in Example 3 except that an apparatus in which no gap is formed is used. A single crystal having substantially the same shape was obtained.

実施例1と同様に、約1時間毎に覗き窓から炉内の単結晶を観察して単結晶体の肩部の様相を観察していたところ、引上げ開始から約34時間後(直胴長さが約78mm時点)に肩部の様相が著しく変化したのを1回観察した。変化を観察した直後に一時的な急成長は発生しなかったが、肩部を形成してから40時間後(直胴長さが約100mm時点)に制御直径に対して+6mm程度の一時的な急成長が発生した。また、取り出した単結晶体ついて泡やSCを目視で観察したところ、肩部の様相が著しく変化した時間帯および一時的な急成長が発生した時間帯に対応する部位に結晶成長界面(と推測されるライン)の形状に沿って、多数のSC及び泡の混入が確認された。   As in Example 1, when the single crystal inside the furnace was observed from the observation window about every hour to observe the appearance of the shoulder of the single crystal, about 34 hours after the start of pulling (the length of the straight body) It was observed once that the appearance of the shoulder changed remarkably at about 78 mm). Immediately after observing the change, there was no temporary rapid growth, but 40 hours after the shoulder was formed (when the length of the straight body was about 100 mm), a temporary increase of about +6 mm with respect to the control diameter. Rapid growth occurred. Further, when the bubbles and SC were visually observed with respect to the taken out single crystal, the crystal growth interface (presumed to be at the site corresponding to the time zone in which the appearance of the shoulder changed significantly and the time zone in which temporary rapid growth occurred was estimated. A large number of SCs and bubbles were mixed along the shape of the line.

従来のCZ法単結晶引上げ炉の構造を示す模式図。The schematic diagram which shows the structure of the conventional CZ method single crystal pulling furnace. 本発明の単結晶引上げ炉の一態様を示す模式図。The schematic diagram which shows the one aspect | mode of the single crystal pulling furnace of this invention. ピン状部材により天井板を持ち上げてガス流通路を設けた例を示す模式図。The schematic diagram which shows the example which lifted the ceiling board with the pin-shaped member and provided the gas flow path. 小片状部材により天井板を持ち上げてガス流通路を設けた例を示す模式図。The schematic diagram which shows the example which lifted the ceiling board with the small piece-like member, and provided the gas flow path. 天井板吊下げ部材により天井板を持ち上げてガス流通路を設けた例を示す模式図。The schematic diagram which shows the example which lifted the ceiling board with the ceiling board suspension member, and provided the gas flow path. 断熱壁上部に溝部を設けてガス流通路を設けた例を示す模式図。The schematic diagram which shows the example which provided the groove part in the heat insulation wall upper part, and provided the gas flow path. 実施例1及び比較例1で製造した単結晶体における欠陥の数量を示す模式図。The schematic diagram which shows the quantity of the defect in the single crystal body manufactured in Example 1 and Comparative Example 1. FIG.

符号の説明Explanation of symbols

001、101:外坩堝
002、102:内坩堝
003、103:内坩堝壁の貫通孔
004、104:原料溶融液
005、105:外坩堝支持軸
006、106:受け台
007、107:開口部閉塞部材
008、108:チャンバー
009、109:溶融ヒーター
010、110:断熱壁
011、111:隔離壁
012、112:リッド材
013、113:連結部材
014、114:内坩堝吊り下げ棒
015、115:結晶引上げ軸
016、116:種結晶
017、117:種結晶保持具
018、118:単結晶体
019、119:天井板
020、120:結晶引上げ軸挿入孔
021、121:覗き窓
022、122:窓孔
023:ガス流通部
024:ピン状部材
025:小片状部材
026:天井板吊下げ部材
027:断熱壁上端の溝部
001, 101: outer crucible 002, 102: inner crucible 003, 103: through-hole 004 in inner crucible wall, 104: raw material melt 005, 105: outer crucible support shaft 006, 106: cradle 007, 107: opening closed Member 008, 108: Chamber 009, 109: Melting heater 010, 110: Heat insulation wall 011, 111: Isolation wall 012, 112: Lid material 013, 113: Connection member 014, 114: Inner crucible hanging rod 015, 115: Crystal Pulling shafts 016, 116: Seed crystal 017, 117: Seed crystal holder 018, 118: Single crystal body 019, 119: Ceiling plate 020, 120: Crystal pulling shaft insertion hole 021, 121: Viewing window 022, 122: Window hole 023: Gas circulation part 024: Pin-like member 025: Small piece-like member 026: Ceiling board hanging member 027: Groove part of heat insulation wall upper end

Claims (4)

結晶成長炉を構成するチャンバーと、
該チャンバー内に配置され、単結晶製造原料の融液が収容される坩堝と、
該坩堝の周囲を取り囲むように配設された溶融ヒーターと、
先端に種結晶保持部を備え、該種結晶保持部に保持された種結晶が、坩堝内に収容された単結晶製造原料の融液と接触可能なように上下動可能な単結晶引上げ軸と、
前記坩堝の少なくとも上方の単結晶引上げ域の側周部を取り囲むように前記チャンバー内に配設された断熱壁と、
該断熱壁の上部の開口部を覆い、かつ前記単結晶引上げ棒を挿入するための挿入孔が少なくとも穿孔された天井板と、
を備えたフッ化金属用単結晶引上げ装置であって、
上記断熱壁を側壁、天井板を天井壁として構成される単結晶引上げ室の上方側部に、該単結晶引上げ室内から室外へのガス流通が可能なガス流通部が設けられていることを特徴とするフッ化金属用単結晶引上げ装置。
A chamber constituting a crystal growth furnace;
A crucible disposed in the chamber and containing a melt of a raw material for producing a single crystal;
A melting heater disposed so as to surround the periphery of the crucible;
A single crystal pulling shaft which is provided with a seed crystal holding part at the tip, and which can move up and down so that the seed crystal held in the seed crystal holding part can come into contact with the melt of the single crystal production raw material housed in the crucible; ,
A heat insulating wall disposed in the chamber so as to surround a side periphery of the single crystal pulling region at least above the crucible;
A ceiling plate that covers the opening at the top of the heat insulation wall and has at least an insertion hole for inserting the single crystal pulling rod;
A single crystal pulling apparatus for metal fluoride comprising:
A gas flow part capable of flowing gas from the single crystal pulling chamber to the outside is provided on an upper side portion of the single crystal pulling chamber configured with the heat insulating wall as a side wall and the ceiling plate as a ceiling wall. A single crystal pulling device for metal fluoride.
ガス流通部が、天井板が断熱壁上端と密着しないように天井板を持ち上げることによって設けられた天井板と断熱壁上端との間の空隙である請求項1記載のフッ化金属用単結晶引上げ装置。   2. The single crystal pulling for metal fluoride according to claim 1, wherein the gas circulation part is a gap between the ceiling plate provided by lifting the ceiling plate so that the ceiling plate does not adhere to the upper end of the heat insulating wall and the upper end of the heat insulating wall. apparatus. 請求項1又は2記載のフッ化金属用単結晶引上げ装置を用いるフッ化金属単結晶体の製造方法。   A method for producing a metal fluoride single crystal using the single crystal pulling apparatus for metal fluoride according to claim 1 or 2. フッ化金属単結晶体の引上げを減圧下で行う請求項3記載の製造方法。   The method according to claim 3, wherein the pulling of the metal fluoride single crystal is performed under reduced pressure.
JP2007275261A 2007-10-23 2007-10-23 Metal fluoride single crystalline body pulling apparatus and method of manufacturing metal fluoride single crystalline body using the same apparatus Pending JP2009102194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007275261A JP2009102194A (en) 2007-10-23 2007-10-23 Metal fluoride single crystalline body pulling apparatus and method of manufacturing metal fluoride single crystalline body using the same apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007275261A JP2009102194A (en) 2007-10-23 2007-10-23 Metal fluoride single crystalline body pulling apparatus and method of manufacturing metal fluoride single crystalline body using the same apparatus

Publications (1)

Publication Number Publication Date
JP2009102194A true JP2009102194A (en) 2009-05-14

Family

ID=40704364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007275261A Pending JP2009102194A (en) 2007-10-23 2007-10-23 Metal fluoride single crystalline body pulling apparatus and method of manufacturing metal fluoride single crystalline body using the same apparatus

Country Status (1)

Country Link
JP (1) JP2009102194A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010280543A (en) * 2009-06-05 2010-12-16 Tokuyama Corp Fluoride crystal, vacuum ultraviolet light emitting element, and vacuum ultraviolet light emitting scintillator
JP5701754B2 (en) * 2009-06-11 2015-04-15 日本碍子株式会社 Group III metal nitride single crystal growth method and reaction vessel used therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6472984A (en) * 1987-09-11 1989-03-17 Shinetsu Handotai Kk Apparatus for producing single crystal
JPH04357190A (en) * 1991-06-03 1992-12-10 Komatsu Electron Metals Co Ltd Single crystal production apparatus
JP2004182587A (en) * 2002-11-19 2004-07-02 Tokuyama Corp Single crystal pulling apparatus for metal fluoride
JP2007106662A (en) * 2005-09-14 2007-04-26 Tokuyama Corp Metal fluoride single crystal pulling apparatus and process for producing metal fluoride single crystal with the apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6472984A (en) * 1987-09-11 1989-03-17 Shinetsu Handotai Kk Apparatus for producing single crystal
JPH04357190A (en) * 1991-06-03 1992-12-10 Komatsu Electron Metals Co Ltd Single crystal production apparatus
JP2004182587A (en) * 2002-11-19 2004-07-02 Tokuyama Corp Single crystal pulling apparatus for metal fluoride
JP2007106662A (en) * 2005-09-14 2007-04-26 Tokuyama Corp Metal fluoride single crystal pulling apparatus and process for producing metal fluoride single crystal with the apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010280543A (en) * 2009-06-05 2010-12-16 Tokuyama Corp Fluoride crystal, vacuum ultraviolet light emitting element, and vacuum ultraviolet light emitting scintillator
JP5701754B2 (en) * 2009-06-11 2015-04-15 日本碍子株式会社 Group III metal nitride single crystal growth method and reaction vessel used therefor

Similar Documents

Publication Publication Date Title
US9738989B2 (en) Single-crystal manufacturing apparatus and method of manufacturing single crystal
JP4810346B2 (en) Method for producing sapphire single crystal
JPWO2002068732A1 (en) Recharge tube for solid polycrystalline raw material and method for producing single crystal using the same
JP4863710B2 (en) Pulling apparatus for producing metal fluoride single crystal and method for producing metal fluoride single crystal using the apparatus
JP4668068B2 (en) Metal fluoride single crystal pulling apparatus and method for producing metal fluoride single crystal using the apparatus
JP5213356B2 (en) Silica glass crucible for pulling silicon single crystal and method for producing the same
JP2005231986A (en) Quartz glass crucible for pulling up silicon single crystal and method for manufacturing the same
JP4844429B2 (en) Method for producing sapphire single crystal
JP2009102194A (en) Metal fluoride single crystalline body pulling apparatus and method of manufacturing metal fluoride single crystalline body using the same apparatus
JP4463730B2 (en) Method for producing metal fluoride single crystal
TWI427197B (en) Single crystal cooler and single crystal grower including the same
JP4425181B2 (en) Method for producing metal fluoride single crystal
JP2011225423A (en) Double crucible structure used for metal fluoride single crystal growing furnace, and metal fluoride single crystal growing furnace
KR101467117B1 (en) Ingot growing apparatus
JP4484208B2 (en) Method for producing metal fluoride single crystal
JP6834831B2 (en) Method for manufacturing silicon single crystal
JP2008081367A (en) Method and apparatus for manufacturing single crystal
JP2009023851A (en) Method for producing raw material for producing silicon single crystal, and method for producing silicon single crystal
JP2007254162A (en) Single crystal manufacturing device and recharge method
JP7318884B2 (en) Single crystal growth method for iron-gallium alloy
JP4859785B2 (en) Method for producing metal fluoride single crystal using apparatus for pulling metal fluoride single crystal
JP2018095538A (en) Single crystal pulling apparatus
JP2006213553A (en) Crystal growth apparatus
JP2009292682A (en) Silicon single crystal puller and pulling process
JP2009126738A (en) Method for manufacturing silicon single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A02 Decision of refusal

Effective date: 20120221

Free format text: JAPANESE INTERMEDIATE CODE: A02