JPH06316494A - Single crystal for scintillator - Google Patents

Single crystal for scintillator

Info

Publication number
JPH06316494A
JPH06316494A JP5123058A JP12305893A JPH06316494A JP H06316494 A JPH06316494 A JP H06316494A JP 5123058 A JP5123058 A JP 5123058A JP 12305893 A JP12305893 A JP 12305893A JP H06316494 A JPH06316494 A JP H06316494A
Authority
JP
Japan
Prior art keywords
scintillator
single crystal
crystal
ray
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5123058A
Other languages
Japanese (ja)
Inventor
Naohisa Okumura
直久 奥村
Kazuhiro Takahashi
和浩 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinkosha KK
Original Assignee
Shinkosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinkosha KK filed Critical Shinkosha KK
Priority to JP5123058A priority Critical patent/JPH06316494A/en
Publication of JPH06316494A publication Critical patent/JPH06316494A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a low-cost single crystal for a scintillator having a high light emitting efficiency comparable to that of Gd2O2S:Pr and easy to produce. CONSTITUTION:This single crystal for a scintillator consists of gadolinium aluminate and Eu added as an additive to the gadolinium aluminate by about 0.1-5mol% (expressed in terms of metal).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、X線CT用シンチレ
ーター等に有効なシンチレーター用単結晶に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scintillator single crystal effective for an X-ray CT scintillator and the like.

【0002】[0002]

【従来の技術】従来より、酸化物シンチレーター、例え
ばNaI:Tl結晶シンチレーター、BGO(Bi4
3 12)結晶シンチレーター、CWO(CdWO4
結晶シンチレーター及びGd2 2 S:Prセラミック
ス結晶シンチレーターは、X線CT(断層撮影装置)の
検出器及びポジトロンCT(陽電子放出核種断層撮影装
置)の検出器、中高エネルギー物理研究のγ線検出器等
に使用されていることが知られている。
2. Description of the Related Art Conventionally, oxide scintillators such as NaI: Tl crystal scintillator, BGO (Bi 4 G)
e 3 O 12) crystal scintillator, CWO (CdWO 4)
Crystal scintillators and Gd 2 O 2 S: Pr ceramics crystal scintillators are X-ray CT (tomography) detectors, positron CT (positron emission nuclide tomography detectors) detectors, and γ-ray detectors for mid-high energy physics research. It is known to be used for

【0003】[0003]

【発明が解決しようとする課題】例えばX線CTの検出
器用シンチレーターとして要求される特性は、第1に蛍
光出力が大きいこと、第2に減衰時間が短く、残光性が
小さいこと、第3にX線の吸収率が大きいことである。
現在のX線CTの検出器の傾向としては、画像の分解能
力の向上と高速化にあると言われている。空間分解能力
の向上は、検出素子を小型にして多くの情報を入力する
ことにより、また高速化は多数個の検出器を放射状に並
べてX線源を高速に回転移動させることにより実現させ
ている。したがって小型化に寄与する特性も要求され
る。
For example, the characteristics required as a scintillator for a detector of X-ray CT are firstly a large fluorescence output, secondly a short decay time and a small afterglow, and a third. That is, the X-ray absorption rate is high.
It is said that the current tendency of X-ray CT detectors is to improve the resolution of images and increase the speed. The spatial resolution is improved by reducing the size of the detection element and inputting a lot of information, and the speedup is achieved by arranging a large number of detectors radially and rotating the X-ray source at high speed. . Therefore, characteristics that contribute to miniaturization are also required.

【0004】またポジトロンCT用シンチレーターにお
いて要求される特性は、第1に人体に投射したRIの陽
電子消滅に伴なって放射されるγ線の捕捉効率を高める
ために吸収率が大きいこと、第2に蛍光出力が大きいこ
と、第3に同時計測の時間分解能力が良いことである。
ポジトロンCTの空間分解能力を高めるためにはできる
だけ多くの検出器を使用する必要があり、そのために吸
収率は特に重要である。蛍光出力が大きいとエネルギ分
解能力が良くなり、良好な時間分解能力を示す関係が生
じる。
The characteristics required of the scintillator for positron CT are, firstly, that the absorptivity is large in order to enhance the trapping efficiency of γ-rays emitted along with the annihilation of positrons of the RI projected on the human body. First, the fluorescence output is large, and thirdly, the time resolution capability of simultaneous measurement is good.
It is necessary to use as many detectors as possible in order to enhance the spatial resolution capacity of the positron CT, and therefore the absorption rate is particularly important. When the fluorescence output is large, the energy resolving ability is improved, and a relationship showing good time resolving ability is generated.

【0005】ところで、NaI:Tl単結晶は、X線C
TやポジトロンCTの検出器用シンチレーターとして用
いられていたが、残光性があって、画像に悪影響を及ぼ
し、しかも吸湿性があるので、シールする必要が生じ
て、検出器を小型化できにくい欠点がある。BGO(B
4 Ge3 12)単結晶は、X線CTの検出器に使用さ
れていたが、最近ではγ線を応用した医療機器(例えば
ポジトロンCT)や欠陥検査等の装置の検出器、さらに
原子核実験や高エネルギ素粒子実験用としてに使用され
ているが、蛍光出力が小さいので、ポジトロンCT用に
使用する場合には十分な電気的出力を得る必要から蛍光
の検出に光電子増倍管(PMT)が必要となり、Siフ
ォトダイオード(SPD)とを組合せた小型検出器がで
きない欠点がある。BGOは、融点が1044°Cであ
り、メルトの粘度は非常に高く、過冷却が起り易く、通
常の冷却速度では融点の300°C以下でも凝固せず、
メルトのまま保持される。このために、結晶の成長速度
を大きくできず、そしてセルの成長に伴なってパイプ状
の気泡が発生しやすく、加工上の問題がある。CWO
(CdWO4 )単結晶はX線CTの検出器に使用されて
いるが、発光効率が低く、小型化に難がある。発光効率
を高くするためには、結晶の成長速度を遅くしたり、高
い純度の原材料を使用しなければならなので、製造コス
トが高くなる問題が新たに生じる。Gd2 2 S:Pr
は発光効率が高いが、実用的な大きさの単結晶ができ
ず、透光性セラミックを作るのがやっとである。光の透
過率は約60%/mmであり、シンチレーター内で発し
た蛍光がホトダイオードまで全量届かないために、感度
が低くなってしまう。
By the way, the NaI: Tl single crystal is an X-ray C
Although it was used as a scintillator for detectors of T and positron CT, it has afterglow and adversely affects the image, and also has hygroscopicity, so it is necessary to seal it and it is difficult to miniaturize the detector. There is. BGO (B
The i 4 Ge 3 O 12 ) single crystal has been used as a detector for X-ray CT, but recently, it has been used as a detector for medical devices (eg, positron CT) to which γ-rays are applied, devices for defect inspection, and atomic nucleus. It is used for experiments and high-energy elementary particle experiments, but since the fluorescence output is small, it is necessary to obtain a sufficient electrical output when used for positron CT, so it is necessary to obtain a photomultiplier tube (PMT) for fluorescence detection. ) Is required, and a small detector combined with a Si photodiode (SPD) cannot be used. BGO has a melting point of 1044 ° C, the viscosity of the melt is very high, supercooling easily occurs, and at a normal cooling rate, it does not solidify even at a melting point of 300 ° C or less,
Holds as melt. Therefore, the crystal growth rate cannot be increased, and pipe-shaped bubbles are likely to be generated along with the growth of cells, which is a problem in processing. CWO
The (CdWO 4 ) single crystal is used for a detector of X-ray CT, but its light emission efficiency is low and it is difficult to miniaturize it. In order to increase the luminous efficiency, it is necessary to slow down the growth rate of crystals and use raw materials of high purity, which causes a new problem of high manufacturing cost. Gd 2 O 2 S: Pr
Has high luminous efficiency, but a single crystal of practical size cannot be formed, and it is only possible to make a translucent ceramic. The light transmittance is about 60% / mm, and the fluorescence emitted from the scintillator does not reach the photodiode in its entirety, resulting in low sensitivity.

【0006】この発明の目的は、発光効率の高い例えば
Gd2 2 S:Prとほぼ同程度であって、しかも安価
で製造がしやすいシンチレーター用単結晶を提供するこ
とにある。
An object of the present invention is to provide a single crystal for a scintillator which has a high luminous efficiency, for example, about the same level as Gd 2 O 2 S: Pr, and is inexpensive and easy to manufacture.

【0007】[0007]

【課題を解決するための手段】課題解決のために、ま
ず、X線等を受けて発光する材料として希土類酸化物単
結晶に着目した。この希土類酸化物単結晶は、その融点
が2300°C以上(例えばGd2 3 の融点は約23
30°C)と高いために、結晶が作りにくい。また融点
と室温との間に何回も相転移があるために結晶にクラッ
クが入りやすく、このために大型良質結晶が作りにく
い。そこで、この発明においては、アルミン酸ガドリニ
ウムを基礎にして、これに添加剤を金属として約0.1
〜5mol%の範囲で添加して構成したものである。上
記添加剤は、下記の(1),(2),(3)うちから少
なくとも1つの元素を選択するものである。 (1)希土類元素(ただし、Ce及びGdの各元素を除
く。) (2)Cd (3)Mn 添加剤の添加量の範囲に関して、約0.1mol%より
小さいと、有効な蛍光出力を得ることができないという
問題が生じ、また約5mol%を越えると、単結晶を製
造することができないという問題が生じる。したがって
上記の範囲は約0.1〜5mol%が望ましい。
[Means for Solving the Problems] In order to solve the problems, first, attention was paid to a rare earth oxide single crystal as a material which emits light upon receiving an X-ray or the like. This rare earth oxide single crystal has a melting point of 2300 ° C. or higher (for example, the melting point of Gd 2 O 3 is about 23).
Since it is as high as 30 ° C, it is difficult to form crystals. In addition, since there are many phase transitions between the melting point and room temperature, the crystal is likely to be cracked, which makes it difficult to form a large-sized good quality crystal. Therefore, in the present invention, gadolinium aluminate is used as a base, and an additive is added to this as a metal of about 0.1
It is constituted by adding in the range of up to 5 mol%. The above-mentioned additive selects at least one element from the following (1), (2), and (3). (1) Rare earth elements (excluding each element of Ce and Gd) (2) Cd (3) When the addition amount range of Mn additive is less than about 0.1 mol%, an effective fluorescence output is obtained. However, if it exceeds about 5 mol%, a single crystal cannot be produced. Therefore, the above range is preferably about 0.1 to 5 mol%.

【0008】[0008]

【実施例】Al2 3 ,Gd2 3 ,Eu2 3 を所定
の組成比に混合焼成し、原料粉末を調整した。ベルヌー
イ法を用い,H2 25 l/min、O2 10 l/m
in,速度10 mm/hrで約15φ×35mmの結
晶を育成した。この時のメルトの温度は2060℃であ
った。この結晶は、内部に双晶があったが、クラックは
なかった。この結晶から所定の寸法に加工し、Gd2
3 結晶と比較評価した。GdAlO3 及びGd2 3
それぞれにX線や紫外線を照射したところ、これらが発
する蛍光出力は肉眼で観察する限りにおいて、殆んど同
じであった。Gd2 3 とCWOとの螢光出力を肉眼で
比較したが、Gd2 3 の方が大きかった。
EXAMPLE Al 2 O 3 , Gd 2 O 3 and Eu 2 O 3 were mixed and fired at a predetermined composition ratio to prepare a raw material powder. Using Bernoulli method, H 2 25 l / min, O 2 10 l / m
A crystal of about 15φ × 35 mm was grown at a speed of 10 mm / hr. At this time, the melt temperature was 2060 ° C. This crystal had twins inside but no cracks. This crystal is processed into a predetermined size, and Gd 2 O
Comparative evaluation was performed with 3 crystals. When each of GdAlO 3 and Gd 2 O 3 was irradiated with X-rays or ultraviolet rays, the fluorescence output emitted from them was almost the same as observed with the naked eye. The fluorescence outputs of Gd 2 O 3 and CWO were compared with the naked eye, but Gd 2 O 3 was larger.

【0009】[0009]

【発明の効果】この発明は、発光効率を従来の例えばG
2 2 S:Prとほぼ同程度であって、しかも加工も
しやすいシンチレーター単結晶を提供でき、そしてアル
ミン酸ガドリニウムは希土類酸化物より低融点で単結晶
を製造できるので、低コストで例えばGd2 2 S:P
rより高感度のシンチレーターを容易に製造加工でき
る。
According to the present invention, the luminous efficiency can be reduced to that of the conventional G
Since it is possible to provide a scintillator single crystal which has almost the same degree as d 2 O 2 S: Pr and is easy to process, and gadolinium aluminate can produce a single crystal with a melting point lower than that of a rare earth oxide, it can be produced at low cost, for example, with 2 O 2 S: P
A scintillator with higher sensitivity than r can be easily manufactured and processed.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アルミン酸ガドリニウムに添加剤を金属
として約0.1〜5mol%の範囲で添加して構成した
ものであって、 上記添加剤は、希土類元素(ただし、Ce及びGdの各
元素を除く。)、Cd及びMnのうちから少なくとも1
つの元素を選択することを特徴とするシンチレーター用
単結晶。
1. A gadolinium aluminate containing an additive as a metal in a range of about 0.1 to 5 mol%, wherein the additive is a rare earth element (provided that each element of Ce and Gd is contained. At least 1 out of Cd and Mn.
A single crystal for a scintillator, which is characterized by selecting two elements.
【請求項2】 請求項1において、X線検出器用シンチ
レーターに用いることを特徴とするシンチレーター用単
結晶。
2. The single crystal for a scintillator according to claim 1, which is used as a scintillator for an X-ray detector.
JP5123058A 1993-04-28 1993-04-28 Single crystal for scintillator Pending JPH06316494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5123058A JPH06316494A (en) 1993-04-28 1993-04-28 Single crystal for scintillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5123058A JPH06316494A (en) 1993-04-28 1993-04-28 Single crystal for scintillator

Publications (1)

Publication Number Publication Date
JPH06316494A true JPH06316494A (en) 1994-11-15

Family

ID=14851162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5123058A Pending JPH06316494A (en) 1993-04-28 1993-04-28 Single crystal for scintillator

Country Status (1)

Country Link
JP (1) JPH06316494A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149223A (en) * 2010-12-27 2012-08-09 Tohoku Univ Material for x-ray scintillator
CN106835280A (en) * 2017-01-17 2017-06-13 中国科学院福建物质结构研究所 A kind of rare earth ion Ln3+ doping gadolinium aluminates strontium laser crystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149223A (en) * 2010-12-27 2012-08-09 Tohoku Univ Material for x-ray scintillator
CN106835280A (en) * 2017-01-17 2017-06-13 中国科学院福建物质结构研究所 A kind of rare earth ion Ln3+ doping gadolinium aluminates strontium laser crystal
CN106835280B (en) * 2017-01-17 2019-04-16 中国科学院福建物质结构研究所 A kind of rare earth ion Ln3+Doping gadolinium aluminate strontium laser crystal

Similar Documents

Publication Publication Date Title
Yanagida Inorganic scintillating materials and scintillation detectors
RU2638158C2 (en) Scintillator composition, radiation detector device and high-energy radiation recording method
CN1715364B (en) Scintillator compositions, related processes, and articles of manufacture
US7692153B2 (en) Scintillator crystal and radiation detector
Van Eijk Inorganic scintillators in medical imaging
RU2422855C2 (en) Scintillator compositions based on lanthanide halides and related methods and articles
van Eijk Inorganic scintillators in medical imaging detectors
RU2423725C2 (en) Scintillators for detecting radiation, as well as corresponding methods and devices
JP4733017B2 (en) Rare earth iodide type scintillator crystals
KR20030003226A (en) Scintillator crystals, method for making same, use thereof
CA2612054A1 (en) Scintillation compositions and method of manufacture thereof
CA2622381A1 (en) High light yield fast scintillator
JP2015212311A (en) Light emitting body and radiation detector
Ra et al. Luminescence and scintillation properties of a CeBr $ _ {3} $ single crystal
JP2010285559A (en) Crystal for scintillator, and radiation detector
JPH06316494A (en) Single crystal for scintillator
CN106634973B (en) Trivalent cerium ion activated scintillator material and preparation method and application thereof
Roos Scintillation Detectors
US20100127176A1 (en) Scintillator materials which absorb high-energy, and related methods and devices
Shah et al. High Resolution Sensor for Nuclear Waste Characterization
JP2021143288A (en) Scintillator, radiation detector, and radiation imaging system
Czirr et al. Cerium-activated lanthanum beryllate as a gamma detector material
van Eijk Inorganic scintillators for medical diagnostics

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030812