JP4746925B2 - Lithium tetraborate single crystal and its growth method - Google Patents

Lithium tetraborate single crystal and its growth method Download PDF

Info

Publication number
JP4746925B2
JP4746925B2 JP2005188166A JP2005188166A JP4746925B2 JP 4746925 B2 JP4746925 B2 JP 4746925B2 JP 2005188166 A JP2005188166 A JP 2005188166A JP 2005188166 A JP2005188166 A JP 2005188166A JP 4746925 B2 JP4746925 B2 JP 4746925B2
Authority
JP
Japan
Prior art keywords
single crystal
lithium tetraborate
crucible
growth
tetraborate single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005188166A
Other languages
Japanese (ja)
Other versions
JP2007008734A (en
Inventor
孝広 小島
紀彰 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chichibu Fuji Co Ltd
Original Assignee
Chichibu Fuji Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chichibu Fuji Co Ltd filed Critical Chichibu Fuji Co Ltd
Priority to JP2005188166A priority Critical patent/JP4746925B2/en
Publication of JP2007008734A publication Critical patent/JP2007008734A/en
Application granted granted Critical
Publication of JP4746925B2 publication Critical patent/JP4746925B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は四ほう酸リチウム単結晶とその育成方法に関し、詳しくは、垂直ブリッジマン法で育成された良質且つ大口径型の四ほう酸リチウム単結晶であって、光散乱体を含まないことから光学素子用として好適に供することができる四ほう酸リチウム単結晶と、この単結晶を効率よく育成することができる工業上有益な育成方法に関する。   The present invention relates to a lithium tetraborate single crystal and a method for growing the same, and more particularly, a high-quality and large-diameter type lithium tetraborate single crystal grown by a vertical Bridgman method and including no light scatterer. The present invention relates to a lithium tetraborate single crystal that can be suitably used for use, and an industrially useful growth method that can efficiently grow this single crystal.

表面弾性波デバイス用基板材料として、ニオブ酸リチウム、タンタル酸リチウム、水晶、四ほう酸リチウムなどが実用化されている。これらの単結晶の中で、四ほう酸リチウムは、電気機械結合係数が比較的大きく、且つ室温で非常に小さい遅延時間の温度係数を有することから、移動体通信機器のフィルター等の材料として広く用いられている。   As a substrate material for a surface acoustic wave device, lithium niobate, lithium tantalate, crystal, lithium tetraborate and the like have been put into practical use. Among these single crystals, lithium tetraborate has a relatively large electromechanical coupling coefficient and a temperature coefficient with a very small delay time at room temperature, so it is widely used as a material for filters of mobile communication devices. It has been.

四ほう酸リチウム単結晶の育成方法としては、垂直ブリッジマン法(垂直温度勾配凝固法)又はチョコラルスキー法(引き上げ法)により、ルツボ内の四ほう酸リチウム融液から種結晶を成長させる方法が従来から知られている。   As a method for growing a lithium tetraborate single crystal, a method of growing a seed crystal from a lithium tetraborate melt in a crucible by a vertical Bridgman method (vertical temperature gradient solidification method) or a chocolate ski method (pulling method) has been conventionally used. Are known.

このうちチョコラルスキー法は、育成炉内でルツボを回転させながら引き上げることにより結晶成長を行うもので、垂直ブリッジマン法に比べ成長速度を速くできるという利点があるものの、急激な温度勾配により結晶内に熱歪が生じたり、炉内のガス対流による温度のゆらぎが原因となって、育成中の結晶にクラックが発生しやすいという問題がある。また、直径3インチ以上の比較的大口径な四ほう酸リチウム単結晶を育成させることができないという問題もある。   Of these, the chocolate skiing method is a method in which crystal growth is performed by pulling up while rotating the crucible in the growth furnace, and although there is an advantage that the growth rate can be increased as compared with the vertical Bridgman method, There is a problem that cracks are likely to occur in the crystal being grown due to thermal distortion in the crystal or temperature fluctuations due to gas convection in the furnace. There is also a problem that a relatively large diameter lithium tetraborate single crystal having a diameter of 3 inches or more cannot be grown.

これに対し垂直ブリッジマン法は、例えば特許文献1(特開平10−251099号)などに開示されるように、所定の温度勾配をもった育成炉内で融液を入れたルツボを移動させ、種結晶を収容したツルボ先端(下端)より四ほう酸リチウム融液を凝固させるもので、温度勾配が比較的緩やかで且つ温度のゆらぎが小さいため、チョコラルスキー法による前述の問題を解消して、良質で大口径な四ほう酸リチウム単結晶を製造できる方法として広く用いられている。   On the other hand, the vertical Bridgman method, for example, as disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 10-251099) or the like, moves the crucible containing the melt in a growth furnace having a predetermined temperature gradient, A solution that solidifies lithium tetraborate melt from the tip (bottom end) of the crucible containing the seed crystal. The temperature gradient is relatively gradual and the temperature fluctuation is small. It is widely used as a method for producing a large-diameter lithium tetraborate single crystal.

ところで、近年、紫外線から赤外線までの透過率が高いという四ほう酸リチウムの特性が注目され、四ほう酸リチウム単結晶の光学素子への適用について検討がなされている。
しかし、従来の垂直ブリッジマン法で育成された四ほう酸リチウム単結晶には、光散乱体が取り込まれており、このような単結晶を光学素子に用いた場合、レーザー光を入射した際に散乱光が検出され、光学特性を低下させる原因となる。よって、垂直ブリッジマン法で育成された四ほう酸リチウム単結晶の光学素子への応用は、未だ実現していない。
By the way, in recent years, the characteristics of lithium tetraborate, which has a high transmittance from ultraviolet rays to infrared rays, have attracted attention, and the application of lithium tetraborate single crystals to optical elements has been studied.
However, light scatterers are incorporated in the lithium tetraborate single crystal grown by the conventional vertical Bridgman method. When such a single crystal is used as an optical element, it is scattered when laser light is incident. Light is detected and causes optical characteristics to deteriorate. Therefore, application of lithium tetraborate single crystal grown by the vertical Bridgman method to an optical element has not yet been realized.

特開平10−251099号公報JP-A-10-251099

四ほう酸リチウム単結晶に含まれる光散乱体は、大きく分類すると、1μm以上の包括物と、1μm未満の微少な散乱体とに分けられる。
1μm以上の包括物は不純物が凝集して結晶内部に取り込まれたもので、気泡やインクルージョンとして顕微鏡で確認することができる。この包括物は、四ほう酸リチウム原料の純度を制御することで抑制することができる。
しかし、1μm未満の微少な散乱体に対する解決策は、未だ見出されていない。
The light scatterers contained in the lithium tetraborate single crystal are roughly classified into inclusions of 1 μm or more and minute scatterers of less than 1 μm.
Inclusions of 1 μm or more are those in which impurities are aggregated and taken into the crystal, and can be confirmed with a microscope as bubbles and inclusions. This inclusion can be suppressed by controlling the purity of the lithium tetraborate raw material.
However, no solution has yet been found for very small scatterers of less than 1 μm.

本発明はこのような従来事情に鑑みてなされたもので、その目的とする処は、垂直ブリッジマン法により四ほう酸リチウム単結晶を育成させるに際し、該単結晶中に取り込まれる1μm未満の微少な散乱体を著しく減少させることができる、新規な育成方法を提供することにある。
また、本発明は、垂直ブリッジマン法で育成された四ほう酸リチウム単結晶であって、1μm未満の微少な散乱体をほとんど含有しない、光学素子に好適に用いることができる新規な四ほう酸リチウム単結晶を提供することを目的とする。
The present invention has been made in view of such a conventional situation, and its intended treatment is that when growing a lithium tetraborate single crystal by the vertical Bridgman method, it is a minute amount of less than 1 μm incorporated into the single crystal. It is an object of the present invention to provide a novel growth method that can significantly reduce scatterers.
In addition, the present invention is a novel lithium tetraborate single crystal grown by the vertical Bridgman method, which hardly contains a minute scatterer of less than 1 μm and can be suitably used for an optical element. The object is to provide crystals.

以上の目的を達成するべく、本願発明者は鋭意研究を重ねた結果、垂直ブリッジマン法における結晶成長時の雰囲気を酸素含有雰囲気とし、且つ、該雰囲気中における酸素濃度を20%以下とすることで、前述した1μm未満の微少な散乱体の現出を大幅に低減し得ることを見出した。さらに、前記酸素濃度を10%以下とした場合、四ほう酸リチウム単結晶を育成させるための前記ルツボの移動速度(単結晶育成速度)を、0.25mm/時間以上の速さにしても、気泡や光散乱体の発生がない良質な四ほう酸リチウム単結晶が得られることを知見し、本発明を完成するに至った。   In order to achieve the above object, the inventor of the present application has made extensive studies, and as a result, the atmosphere during crystal growth in the vertical Bridgman method is an oxygen-containing atmosphere, and the oxygen concentration in the atmosphere is 20% or less. Thus, it has been found that the appearance of the minute scatterer having a size of less than 1 μm can be significantly reduced. Furthermore, when the oxygen concentration is 10% or less, even if the crucible moving speed (single crystal growth speed) for growing the lithium tetraborate single crystal is set to a speed of 0.25 mm / hour or more, bubbles are generated. The inventors have found that a good quality lithium tetraborate single crystal free of light and light scatterers can be obtained, and have completed the present invention.

すなわち、本発明に係る四ほう酸リチウム単結晶の育成方法は、育成炉の内部空間にルツボを配置し、垂直ブリッジマン法により、前記ルツボ内の原料から四ほう酸リチウム単結晶を育成する方法であって、前記内部空間の雰囲気(単結晶育成空間の雰囲気)を、酸素濃度:5〜0体積%の雰囲気としたことを特徴とする
この方法によれば、気泡や光散乱体、1μm未満の微小な散乱体等を含有しない極めて良質な単結晶であって、光学素子への適用が可能な四ほう酸リチウム単結晶を、垂直ブリッジマン法により得ることができる。
That is, the method for growing a lithium tetraborate single crystal according to the present invention is a method in which a crucible is arranged in the interior space of a growth furnace and a lithium tetraborate single crystal is grown from the raw material in the crucible by the vertical Bridgman method. The atmosphere of the internal space (the atmosphere of the single crystal growth space) is an oxygen concentration of 5 to 10 % by volume .
According to this method, a lithium tetraborate single crystal that is a very high-quality single crystal that does not contain bubbles, light scatterers, 1 μm micro scatterers, and the like that can be applied to an optical element is formed into a vertical Bridgman. Can be obtained by law.

また、この方法によれば、四ほう酸リチウム単結晶を育成させるためのルツボの移動速度(単結晶育成速度)を0.25mm/時間以上の比較的高速としても、気泡や光散乱体、1μm未満の微小な散乱体等を含有しない極めて良質な単結晶を得ることができる。但し、該移動速度が0.75mm/時間までの高速になると、単結晶に気泡が発生するので好ましくない。よって、四ほう酸リチウム単結晶を育成させるためのルツボの移動速度を0.25〜0.50mm/時間の範囲とすることが好ましい。 Moreover, according to this method, even if the crucible moving speed (single crystal growth speed) for growing the lithium tetraborate single crystal is set to a relatively high speed of 0.25 mm / hour or more, bubbles, light scatterers, less than 1 μm It is possible to obtain an extremely high quality single crystal that does not contain a minute scatterer or the like. However, if the moving speed is as high as 0.75 mm / hour, bubbles are generated in the single crystal, which is not preferable. Therefore, it is preferable to set the moving speed of the crucible for growing the lithium tetraborate single crystal in the range of 0.25 to 0.50 mm / hour.

本発明の育成方法で得られる四ほう酸リチウム単結晶は、垂直ブリッジマン法の採用により、チョコラルスキー法で育成した単結晶のようなクラックの発生は見られず、且つ、直径3インチ以上の比較的大口径の単結晶として育成可能であることは言うまでもない。
しかも、光散乱体を殆ど含まない単結晶を育成することができるので、従来の垂直ブリッジマン法では不可能であった、光学素子としての応用が可能な四ほう酸リチウム単結晶を得ることができる。
さらに、内部空間の雰囲気を酸素濃度:5〜10体積%とした場合、前述したように、極めて良質で且つ比較的大口径の四ほう酸リチウム単結晶を高速で育成させることができるので、光学素子用の四ほう酸リチウム単結晶を低コストで育成し得る方法として、工業上極めて有用である。
The lithium tetraborate single crystal obtained by the growth method of the present invention does not generate cracks like the single crystal grown by the Choral Ski method by adopting the vertical Bridgman method, and the comparison is 3 inches or more in diameter. Needless to say, it can be grown as a single crystal having a large diameter.
Moreover, since a single crystal containing almost no light scatterer can be grown, it is possible to obtain a lithium tetraborate single crystal that can be applied as an optical element, which is impossible with the conventional vertical Bridgman method. .
Furthermore, when the atmosphere in the internal space has an oxygen concentration of 5 to 10% by volume, as described above, a lithium tetraborate single crystal having a very high quality and a relatively large diameter can be grown at a high speed. As a method for growing a lithium tetraborate single crystal for use at low cost, it is extremely useful industrially.

前述した単結晶育成空間の雰囲気の一例として、酸素ガス濃度:5〜10体積%、窒素還元ガス濃度:95〜90体積%の酸素−窒素混合ガス雰囲気をあげることができる。また、前記窒素に代わるガスとして、アルゴン、ヘリウム、ネオン、クリプトン、キセノン、二酸化炭素、水素等をあげることができる。   As an example of the atmosphere of the single crystal growth space described above, an oxygen-nitrogen mixed gas atmosphere having an oxygen gas concentration of 5 to 10% by volume and a nitrogen reducing gas concentration of 95 to 90% by volume can be given. Moreover, argon, helium, neon, krypton, xenon, carbon dioxide, hydrogen, etc. can be mentioned as a gas replacing the nitrogen.

本発明に係る育成方法は以上説明したように、垂直ブリッジマン法による単結晶育成の利点を有しつつ、光散乱体を含まない極めて良質な四ほう酸リチウム単結晶を育成することができる方法として、好適に用いることができる。
また、本発明に係る四ほう酸リチウム単結晶は、気泡やクラック、光散乱体等を含まない極めて良質な単結晶であるから、光学素子用として好適に用いることができ、しかも、3インチ以上の比較的大口径であるから、低コストでの提供が可能であるなど、多くの効果を有する。
As described above, the growing method according to the present invention has the advantage of growing a single crystal by the vertical Bridgman method, and can grow a very good quality lithium tetraborate single crystal that does not contain a light scatterer. Can be preferably used.
In addition, the lithium tetraborate single crystal according to the present invention is a very high quality single crystal that does not contain bubbles, cracks, light scatterers, etc., and therefore can be suitably used for an optical element, and more than 3 inches. Since it has a relatively large diameter, it has many effects such as being able to be provided at low cost.

以下、本発明の実施形態の例を、図面及び試験例を参照しながら説明する。   Hereinafter, examples of embodiments of the present invention will be described with reference to the drawings and test examples.

図1に、本発明の方法を実施するための四ほう酸リチウム単結晶育成装置の一例を示す。図中の符号1はヒータ2が配設された育成炉で、この育成炉1の内部空間1aには、支持台3で昇降可能に支持された耐熱材料からなるルツボ台4と、該ルツボ台4の上面に形成した凹部4aに嵌合して取り出し自在とされたルツボ5が収容されている。   FIG. 1 shows an example of a lithium tetraborate single crystal growing apparatus for carrying out the method of the present invention. Reference numeral 1 in the figure denotes a growth furnace in which a heater 2 is disposed. In the inner space 1a of the growth furnace 1, a crucible base 4 made of a heat-resistant material supported so as to be movable up and down by a support base 3, and the crucible base A crucible 5 is accommodated which is fitted into a recess 4a formed on the upper surface of 4 and can be taken out.

ルツボ5は、垂直ブリッジマン法による単結晶の育成において従来から用いられるものと同様に、大径状の胴体部5aと、この胴体部5aの下方に設けられる小径状の種管5bを備えた形状のもので、先端(下端)部分を前記凹部4aに嵌合した状態で、ルツボ台4上に立ち上がるよう支持されており、その上面開口部は、ルツボ台4と同質材からなる蓋体6で塞がれている。
本発明では、育成炉の内部空間1aの雰囲気、すなわち、単結晶育成空間の雰囲気を、所定量の酸素を含む雰囲気としたので、白金製のルツボ5を用いている。
また、ルツボ5内には、種管5b内に種結晶bが収容されると共に、胴体部5aに四ほう酸リチウム原料(四ほう酸リチウムの融液)aが収容されている。
The crucible 5 is provided with a large-diameter body portion 5a and a small-diameter seed tube 5b provided below the body portion 5a in the same manner as conventionally used in the growth of single crystals by the vertical Bridgman method. It has a shape and is supported so as to stand up on the crucible base 4 with its tip (lower end) part fitted in the recess 4 a, and its upper surface opening is a lid 6 made of the same material as the crucible base 4. It is blocked by.
In the present invention, the crucible 5 made of platinum is used because the atmosphere of the internal space 1a of the growth furnace, that is, the atmosphere of the single crystal growth space is an atmosphere containing a predetermined amount of oxygen.
In the crucible 5, a seed crystal b is accommodated in the seed tube 5b, and a lithium tetraborate raw material (lithium tetraborate melt) a is accommodated in the body 5a.

支持台3は上下動機構7で支持され、この上下動機構7の作動により、支持台3と一体にルツボ台4およびルツボ5が上下動するよう構成されている。これら支持台3、ルツボ台4、ルツボ5が収容された収容空間1aの上部開口は、蓋体8で塞がれている。   The support base 3 is supported by a vertical movement mechanism 7, and the crucible base 4 and the crucible 5 are configured to move up and down integrally with the support base 3 by the operation of the vertical movement mechanism 7. The upper opening of the accommodation space 1 a in which the support base 3, the crucible base 4, and the crucible 5 are accommodated is closed with a lid 8.

育成炉1には複数のヒータ2が設置されており、これらヒータ2の加熱により育成炉の内部空間1aが、四ほう酸リチウムの融点温度(約917℃)を基準とする温度勾配、詳しくは、内部空間1aにおける任意の位置の温度を四ほう酸リチウムの融点温度(約917℃)とし、その位置より上部の温度が該融点温度以上、下部の温度が該融点温度以下になるように設定されている。
このような育成炉1を用いて、前記ルツボ5を所定の速度で内部空間1a内を移動させることで、ルツボ5内の原料aが結晶化し、ルツボ5の大きさに合わせた四ほう酸リチウム単結晶を得ることができる。
A plurality of heaters 2 are installed in the growth furnace 1, and the internal space 1 a of the growth furnace is heated by these heaters 2, and a temperature gradient based on the melting point temperature (about 917 ° C.) of lithium tetraborate, The temperature at an arbitrary position in the internal space 1a is set as the melting point temperature of lithium tetraborate (about 917 ° C.), and the temperature above the position is set to be higher than the melting point temperature and the lower temperature is set to be lower than the melting point temperature. Yes.
Using such a growth furnace 1, the crucible 5 is moved in the internal space 1 a at a predetermined speed, so that the raw material a in the crucible 5 is crystallized, and the lithium tetraborate single-piece adapted to the size of the crucible 5 is used. Crystals can be obtained.

以下、上記した育成装置を用いて行った、本発明の方法による四ほう酸リチウム単結晶の育成試験について説明する。   Hereinafter, the growth test of the lithium tetraborate single crystal by the method of the present invention performed using the above-described growth apparatus will be described.

(試験例1〜4)
まず、大気中又は不活性雰囲気において所定のモル比で調合された純度4N(99.99wt%)の四ほう酸リチウム単結晶原料(四ほう酸リチウム融液)aを、直径80mm、長さ300mmに作製した白金製ルツボ5の胴体部5aに入れた後、直径5mm、長さ100mmの方位<110>に加工した四ほう酸リチウムの種結晶bを種管5bに挿入した。
次に、温度勾配を20℃とすると共に内部の雰囲気を表1記載のものとした育成炉の内部空間1aに、前記白金製ルツボ5を設置し、降下速度(移動速度)を0.3mm/時間として、育成炉の内部空間1aでルツボ5を200mm移動させ、単結晶を成長させた後、室温まで冷却した。冷却後の白金製ルツボ5を破いて四ほう酸リチウム単結晶を取り出し、光散乱体の有無を顕微鏡で確認した。結果を表1に記す。
(Test Examples 1 to 4)
First, a lithium tetraborate single crystal raw material (lithium tetraborate melt) a having a purity of 4N (99.99 wt%) prepared in a predetermined molar ratio in the air or in an inert atmosphere is produced with a diameter of 80 mm and a length of 300 mm. After being put into the body portion 5a of the platinum crucible 5, the lithium tetraborate seed crystal b processed in the orientation <110> having a diameter of 5 mm and a length of 100 mm was inserted into the seed tube 5b.
Next, the platinum crucible 5 is installed in the inner space 1a of the growth furnace in which the temperature gradient is set to 20 ° C. and the internal atmosphere is as described in Table 1, and the descending speed (moving speed) is set to 0.3 mm / As time, the crucible 5 was moved 200 mm in the internal space 1a of the growth furnace to grow a single crystal, and then cooled to room temperature. The platinum crucible 5 after cooling was broken to take out a lithium tetraborate single crystal, and the presence or absence of a light scatterer was confirmed with a microscope. The results are shown in Table 1.

以上の結果から、四ほう酸リチウム単結晶中の光散乱体の有無は、育成空間の雰囲気に依存しており、酸素の無い雰囲気では光散乱体が単結晶中に取り込まれ、酸素含有雰囲気では光散乱体の発生を抑制し得ることが確認できた。
この理由として、酸素の無い雰囲気では、四ほう酸リチウム融液中の酸素が化学組成に対して不足の状態となり、酸素の不足した融液から育成した四ほう酸リチウムでは結晶に欠陥がとりこまれ、結晶にゆがみを生じさせる結果、結晶内のゆがみ部分の屈折率が変化し、光散乱体として検出されるものと推測できる。一方、酸素含有雰囲気においては、四ほう酸リチウム融液中の酸素が化学組成に対して不足の状態とならず、前記したような現象が生じないものと推測される。
From the above results, the presence or absence of a light scatterer in the lithium tetraborate single crystal depends on the atmosphere of the growth space, and the light scatterer is taken into the single crystal in an oxygen-free atmosphere and light in an oxygen-containing atmosphere. It was confirmed that the generation of scatterers can be suppressed.
The reason for this is that in an oxygen-free atmosphere, the oxygen in the lithium tetraborate melt is in short of the chemical composition, and the lithium tetraborate grown from the oxygen-deficient melt incorporates defects in the crystal. As a result of causing distortion, it can be assumed that the refractive index of the distortion part in the crystal changes and is detected as a light scatterer. On the other hand, in the oxygen-containing atmosphere, it is presumed that the oxygen in the lithium tetraborate melt does not become insufficient with respect to the chemical composition, and the phenomenon as described above does not occur.

(試験例5〜11)
しかし、酸素を含む雰囲気で、垂直ブリッジマン法により四ほう酸リチウム単結晶の育成を行なった場合、酸素を含まない雰囲気と比較して、単結晶中における気泡の取り込みが発生しやすくなる。これに対し本発明者等は、前述した試験例において、育成炉の内部空間の雰囲気を、酸素濃度(酸素分圧)が表2、表3記載のものである酸素−窒素混合ガスの雰囲気として試験を行い、酸素濃度の制御により、光散乱体と気泡の発生を抑制し得ることを見出した。
(Test Examples 5 to 11)
However, when a lithium tetraborate single crystal is grown in an atmosphere containing oxygen by the vertical Bridgman method, bubbles are more easily taken up in the single crystal than in an atmosphere containing no oxygen. In contrast, in the above-described test examples, the present inventors set the atmosphere in the inner space of the growth furnace as the atmosphere of oxygen-nitrogen mixed gas whose oxygen concentration (oxygen partial pressure) is as described in Tables 2 and 3. A test was conducted and it was found that the generation of light scatterers and bubbles could be suppressed by controlling the oxygen concentration.

以上の結果から、垂直ブリッジマン法による四ほう酸リチウム単結晶の育成において、育成炉の内部空間の雰囲気を、酸素濃度5〜20体積%とした本発明に係る方法を採用した場合(試験例7〜10)、得られた四ほう酸リチウム単結晶は、光散乱体(1μm以上の包括物及び1μm未満の微小な散乱体)と気泡を取り込まない良質なものであることが確認できた。   From the above results, in the case of growing a lithium tetraborate single crystal by the vertical Bridgman method, the method according to the present invention was adopted in which the atmosphere in the inner space of the growth furnace had an oxygen concentration of 5 to 20% by volume (Test Example 7). 10), and the obtained lithium tetraborate single crystal was confirmed to be of a good quality that does not take in light scatterers (inclusions of 1 μm or more and fine scatterers of less than 1 μm) and bubbles.

(試験例12〜18)
ところで、垂直ブリッジマン法による四ほう酸リチウム単結晶の育成において、育成コスト等の工業的な生産性を考えた時に、前述したルツボの降下速度、すなわち、単結晶育成速度が速いほど生産性は良くなる。しかし、育成速度を上げていくと結晶内部に気泡が取り込まれ、製品の歩留まりを著しく低下させる。そこで、本発明者等は、前述の試験例において、単結晶育成速度を表4、表5記載のものとして試験を行い、酸素濃度を5〜10体積%とすることで、育成速度を0.25〜0.50mm/時間の比較的高速としても、光散乱体と気泡の発生を抑制し得ることを見出した。
(Test Examples 12 to 18)
By the way, in the growth of lithium tetraborate single crystals by the vertical Bridgman method, when considering industrial productivity such as growth costs, the lower the crucible lowering speed, that is, the higher the single crystal growth speed, the better the productivity. Become. However, as the growth rate is increased, bubbles are taken into the crystal and the yield of the product is significantly reduced. Therefore, the present inventors conducted tests in the above-described test examples with the single crystal growth rate described in Tables 4 and 5 and set the oxygen concentration to 5 to 10% by volume, so that the growth rate was set to 0. It has been found that generation of light scatterers and bubbles can be suppressed even at a relatively high speed of 25 to 0.50 mm / hour.

以上の結果から、垂直ブリッジマン法による四ほう酸リチウム単結晶の育成において、育成炉の内部空間の雰囲気を、酸素濃度5〜10体積%とした本発明に係る方法を採用した場合(試験例14、15)、育成速度を0.25〜0.50mm/時間の比較的高速としても、得られた四ほう酸リチウム単結晶は、光散乱体(1μm以上の包括物及び1μm未満の微小な散乱体)と気泡を取り込まない良質なものであることが確認できた。
尚、表5中の空欄箇所は、気泡の含有が確認された試験例については不適であるため、光散乱体の有無を確認しなかったものである。
From the above results, in the growth of lithium tetraborate single crystal by the vertical Bridgman method, when the method according to the present invention was adopted in which the atmosphere in the inner space of the growth furnace was an oxygen concentration of 5 to 10% by volume (Test Example 14) 15) Even when the growth rate is set to a relatively high speed of 0.25 to 0.50 mm / hour, the obtained lithium tetraborate single crystal is a light scatterer (inclusion of 1 μm or more and a minute scatterer of less than 1 μm). ) And good quality without taking in bubbles.
In addition, since the blank part in Table 5 is unsuitable about the test example by which inclusion of the bubble was confirmed, it did not confirm the presence or absence of a light-scattering body.

図2に、試験例17に係る四ほう酸リチウム単結晶の、育成速度の違いによる結晶中の気泡の有無を表す外観観察写真を示す。これによれば、育成速度が0.25〜0.50mm/時間である領域では、気泡の取り込みが無いほぼクリアーな単結晶であるのに対し、0.50mm/時間を超えた領域では、気泡が取り込まれ単結晶ににごりがあることが確認できた。   In FIG. 2, the external appearance observation photograph showing the presence or absence of the bubble in the crystal | crystallization by the difference in the growth rate of the lithium tetraborate single crystal which concerns on the test example 17 is shown. According to this, in the region where the growth rate is 0.25 to 0.50 mm / hour, it is a substantially clear single crystal in which bubbles are not taken in, whereas in the region where the growth rate exceeds 0.50 mm / hour, there is a bubble. Was taken in and it was confirmed that the single crystal had dust.

図3に、単結晶の裏側からレーザー光をあてて、光散乱体(1μm以上の包括物及び1μm未満の微小な散乱体)の有無に影響する散乱光の検出を確認した試験結果の顕微鏡写真を示す。これによれば、酸素5〜20体積%を含む雰囲気で育成された試験例14〜17に係る方法で得られた四ほう酸リチウム単結晶(右側)では、散乱光が殆ど検出されず、光散乱体が取り込まれていない良質の単結晶であることが確認できた。これに対し、試験例12、13に係る方法(酸素5体積%未満)で得られた四ほう酸リチウム単結晶(左側)は、散乱光がところどころに見られ、光散乱体が取り込まれていることが確認できた。   Fig. 3 is a photomicrograph of the test results that confirmed the detection of scattered light affecting the presence or absence of light scatterers (inclusions of 1 μm or more and minute scatterers of less than 1 μm) by applying laser light from the back side of the single crystal. Indicates. According to this, in the lithium tetraborate single crystal (right side) obtained by the method according to Test Examples 14 to 17 grown in an atmosphere containing 5 to 20% by volume of oxygen, scattered light is hardly detected, and light scattering It was confirmed that the product was a high-quality single crystal in which the body was not taken up. On the other hand, in the lithium tetraborate single crystal (left side) obtained by the methods according to Test Examples 12 and 13 (less than 5% by volume of oxygen), scattered light is seen in some places and light scatterers are incorporated. Was confirmed.

以上、本発明の実施形態の例を図面と試験例に基づき説明したが、本発明はこれら図示例や試験例に限定されるものではなく、特許請求の範囲に記載された技術的思想の範疇において種々の変更が可能であることは言うまでもない。   The embodiments of the present invention have been described based on the drawings and test examples. However, the present invention is not limited to these illustrated examples and test examples, and is within the scope of the technical idea described in the claims. It goes without saying that various changes can be made.

本発明に係る四ほう酸リチウム単結晶の育成方法を実施する装置の一例を示す簡略断面図。The simplified sectional view showing an example of the device which enforces the growth method of the lithium tetraborate single crystal concerning the present invention. 本発明に係る方法と、従来の方法で育成した四ほう酸リチウム単結晶における、結晶中の気泡の有無を表す外観観察写真。The external appearance observation photograph showing the presence or absence of the bubble in a crystal | crystallization in the method based on this invention, and the lithium tetraborate single crystal grown by the conventional method. 本発明に係る方法と、従来の方法で育成した四ほう酸リチウム単結晶における、結晶中の光散乱体の有無を表す顕微鏡写真。The microscope picture showing the presence or absence of the light-scattering body in the crystal | crystallization in the method based on this invention, and the lithium tetraborate single crystal grown by the conventional method.

符号の説明Explanation of symbols

1:育成炉
1a:内部空間(単結晶育成空間)
5:ルツボ
a:四ほう酸リチウム単結晶原料
b:種結晶
1: Growth furnace 1a: Internal space (single crystal growth space)
5: Crucible a: Raw material of lithium tetraborate single crystal b: Seed crystal

Claims (2)

育成炉の内部空間にルツボを配置し、垂直ブリッジマン法により、前記ルツボ内の原料から四ほう酸リチウム単結晶を育成する方法であって、前記内部空間の雰囲気が、5〜10体積%の酸素を含む雰囲気であることを特徴とする垂直ブリッジマン法による光学素子用四ほう酸リチウム単結晶の育成方法。 A method of growing a lithium tetraborate single crystal from a raw material in the crucible by arranging a crucible in the inner space of a growth furnace and using a vertical Bridgman method, wherein the atmosphere in the inner space is 5 to 10% by volume of oxygen A method for growing a lithium tetraborate single crystal for an optical element by a vertical Bridgman method, characterized in that the atmosphere includes: 前記原料から四ほう酸リチウム単結晶を育成させるための前記ルツボの移動速度が0.25〜0.50mm/時間であることを特徴とする請求項1記載の光学素子用四ほう酸リチウム単結晶の育成方法。 The growth rate of the lithium tetraborate single crystal for optical elements according to claim 1, wherein a moving speed of the crucible for growing the lithium tetraborate single crystal from the raw material is 0.25 to 0.50 mm / hour. Method.
JP2005188166A 2005-06-28 2005-06-28 Lithium tetraborate single crystal and its growth method Active JP4746925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005188166A JP4746925B2 (en) 2005-06-28 2005-06-28 Lithium tetraborate single crystal and its growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005188166A JP4746925B2 (en) 2005-06-28 2005-06-28 Lithium tetraborate single crystal and its growth method

Publications (2)

Publication Number Publication Date
JP2007008734A JP2007008734A (en) 2007-01-18
JP4746925B2 true JP4746925B2 (en) 2011-08-10

Family

ID=37747709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005188166A Active JP4746925B2 (en) 2005-06-28 2005-06-28 Lithium tetraborate single crystal and its growth method

Country Status (1)

Country Link
JP (1) JP4746925B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5446975B2 (en) * 2010-02-19 2014-03-19 富士電機株式会社 Single crystal growth equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08225399A (en) * 1995-02-22 1996-09-03 Mitsubishi Materials Corp Method for growing single crystal of lithium tetraborate
JPH10101487A (en) * 1996-09-30 1998-04-21 Mitsubishi Materials Corp Growing of lithium tetraborate single crystal for optics
JPH10251099A (en) * 1997-03-13 1998-09-22 Chichibu Fuji:Kk Production of lithium tetraborate single crystal
JP2001106598A (en) * 1999-10-08 2001-04-17 Toyo Commun Equip Co Ltd Device for producing lithium tetraborate
JP2003137691A (en) * 2001-10-24 2003-05-14 Hitachi Chem Co Ltd Method of producing single crystal
JP2004035281A (en) * 2002-06-28 2004-02-05 Kinseki Ltd Method for producing lithium tetraborate single crystal
JP2004299988A (en) * 2003-03-31 2004-10-28 Kyocera Kinseki Corp Growing equipment of lithium tetraborate single crystal

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08225399A (en) * 1995-02-22 1996-09-03 Mitsubishi Materials Corp Method for growing single crystal of lithium tetraborate
JPH10101487A (en) * 1996-09-30 1998-04-21 Mitsubishi Materials Corp Growing of lithium tetraborate single crystal for optics
JPH10251099A (en) * 1997-03-13 1998-09-22 Chichibu Fuji:Kk Production of lithium tetraborate single crystal
JP2001106598A (en) * 1999-10-08 2001-04-17 Toyo Commun Equip Co Ltd Device for producing lithium tetraborate
JP2003137691A (en) * 2001-10-24 2003-05-14 Hitachi Chem Co Ltd Method of producing single crystal
JP2004035281A (en) * 2002-06-28 2004-02-05 Kinseki Ltd Method for producing lithium tetraborate single crystal
JP2004299988A (en) * 2003-03-31 2004-10-28 Kyocera Kinseki Corp Growing equipment of lithium tetraborate single crystal

Also Published As

Publication number Publication date
JP2007008734A (en) 2007-01-18

Similar Documents

Publication Publication Date Title
JP5839117B2 (en) SiC single crystal and method for producing the same
JP2011195423A (en) Method of manufacturing sapphire single crystal
JP4803784B2 (en) Method for producing quartz glass crucible for pulling silicon single crystal
JP4678667B2 (en) Silica glass crucible for pulling silicon single crystal and method for producing the same
JP4746925B2 (en) Lithium tetraborate single crystal and its growth method
JP4904862B2 (en) Method for producing aluminum oxide single crystal and obtained aluminum oxide single crystal
JP2007112700A (en) Crucible for growing crystal, single crystal, and method for growing the same
JP4456071B2 (en) Fluoride crystal production equipment
JP5447946B2 (en) Silica glass crucible for pulling silicon single crystal and manufacturing method thereof
JP5326865B2 (en) Method for producing sapphire single crystal
JP4738174B2 (en) Method for producing fluoride crystals
JP2006347834A (en) Method for producing metal fluoride single crystal
JP2868204B2 (en) Equipment for producing lithium tetraborate single crystal
JP4484208B2 (en) Method for producing metal fluoride single crystal
JP5471398B2 (en) Sapphire single crystal wafer for epitaxial growth and manufacturing method thereof
CN107954427A (en) The manufacture method of polysilicon block, polycrystalline silicon rod and monocrystalline silicon
JP5446975B2 (en) Single crystal growth equipment
JP2005035825A (en) Crucible and method for manufacturing fluoride crystal
Arivanandhan et al. Microtube-Czochralski (μT-CZ) growth of bulk benzophenone single crystal for nonlinear optical applications
JP4839204B2 (en) Fluorite
JP2001114593A (en) Method for producing beta-barium borate single crystal
JPS6045926B2 (en) Manufacturing method of infrared transmitting material
JP2004224645A (en) Manufacture method of high-purity fluoride single crystal
JP2005089204A (en) Apparatus and method for producing crystal
JPH06247796A (en) Lithium tetraborate single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070125

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110516

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4746925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250