JP2007112700A - Crucible for growing crystal, single crystal, and method for growing the same - Google Patents

Crucible for growing crystal, single crystal, and method for growing the same Download PDF

Info

Publication number
JP2007112700A
JP2007112700A JP2006206222A JP2006206222A JP2007112700A JP 2007112700 A JP2007112700 A JP 2007112700A JP 2006206222 A JP2006206222 A JP 2006206222A JP 2006206222 A JP2006206222 A JP 2006206222A JP 2007112700 A JP2007112700 A JP 2007112700A
Authority
JP
Japan
Prior art keywords
crucible
crystal
melt
crystal growth
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006206222A
Other languages
Japanese (ja)
Inventor
Atsushi Sasaki
淳 佐々木
Hiroshi Machida
博 町田
Chieko Fujiwara
千恵子 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2006206222A priority Critical patent/JP2007112700A/en
Publication of JP2007112700A publication Critical patent/JP2007112700A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a crucible for growing a single crystal, with which the outflow of a melt from the lower end part of the crucible to the outer bottom surface part of the crucible can be controlled and the crystal growth can be suitably performed when the single crystal is grown by pulling down, cooling and solidifying the melt: and a method for growing the single crystal. <P>SOLUTION: In the method for growing the single crystal, comprising pulling down, cooling and solidifying a melt of a crystal material such as LGS (La<SB>3</SB>Ga<SB>5</SB>SiO<SB>14</SB>), SGG (Sr<SB>3</SB>Ga<SB>2</SB>Ge<SB>4</SB>O<SB>14</SB>), LTG (La<SB>3</SB>T<SB>0.5</SB>Ga<SB>5.5</SB>O<SB>14</SB>), lithium niobate LN (LiNbO<SB>3</SB>), lithium tantalate LT (LiTaO<SB>3</SB>) or potassium lithium niobate KLN (K<SB>3</SB>Li<SB>2</SB>Nb<SB>5</SB>O<SB>15</SB>), provided in the crucible formed from a crucible material, the crucible formed by using the crucible material, characterized in that the contact angle 12 between a crystal droplet 11 of the melt of the crystal material and a plate-type sample 10 made of the crucible material is ≥8°, is used. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、結晶育成用坩堝及び単結晶育成方法に関し、特に、SAWフィルタやセンサに用いられる圧電結晶、光アイソレータやレーザー素子に用いられる光学結晶等の機能性結晶の作製に好適な結晶育成用坩堝及び単結晶育成方法に関する。   The present invention relates to a crystal growth crucible and a single crystal growth method, and more particularly to crystal growth suitable for the production of functional crystals such as piezoelectric crystals used for SAW filters and sensors, optical crystals used for optical isolators and laser elements, and the like. The present invention relates to a crucible and a method for growing a single crystal.

融液からの結晶育成には、チョクラルスキー法、ブリッジマン法、マイクロ引き下げ結晶育成法等が一般的に用いられる。マイクロ引き下げ法は、チョクラルスキー法、ブリッジマン法に比較して、結晶の成長速度が速く、組成変動が小さく、形状制御しやすく、結晶育成中の原料供給がしやすい等の特徴を有する。   For crystal growth from the melt, the Czochralski method, Bridgman method, micro-pulling crystal growth method and the like are generally used. Compared with the Czochralski method and the Bridgman method, the micro-pulling-down method has features such as a high crystal growth rate, small composition variation, easy shape control, and easy supply of raw materials during crystal growth.

融液からの結晶育成であるマイクロ引下げ結晶育成法に用いられる坩堝の断面図を図1に示す。この坩堝は、容器の底部に細孔を設け、その細孔が外部に通じる構造になっている。結晶融液はこの細孔を通じて、外部にむかって流動するが、融液の表面張力により細孔の下端部では融液は落下しない構造になっている。この細孔の下端部の融液に種結晶を接触させ、この坩堝を引き下げ、冷却固化することで結晶は得られる。結晶育成中の坩堝と結晶化の状態を表す模式断面図を図2に示す。   FIG. 1 shows a cross-sectional view of a crucible used in a micro-pulling crystal growth method that is crystal growth from a melt. This crucible has a structure in which a pore is provided at the bottom of the container and the pore communicates with the outside. The crystal melt flows toward the outside through the pores, but the melt does not fall at the lower end of the pores due to the surface tension of the melt. A crystal is obtained by bringing a seed crystal into contact with the melt at the lower end of the pore, pulling down the crucible, and solidifying by cooling. A schematic cross-sectional view showing the crucible during crystal growth and the state of crystallization is shown in FIG.

しかしながら、図1に示した坩堝を用いて結晶を育成した場合に結晶材料の違いにより融液が坩堝の外底面部に流出したり、付着することがある。このような現象は、育成が進むにつれて融液の流出量を増加させ、結晶と融液の境界部まで結晶育成を阻害することになり、良好な結晶を得るのが困難になるという問題の起因になった。このような現象は、融液と坩堝材のぬれ性が大きい場合に発生しやすい。   However, when a crystal is grown using the crucible shown in FIG. 1, the melt may flow out or adhere to the outer bottom surface of the crucible due to the difference in the crystal material. Such a phenomenon increases the amount of melt flow out as the growth progresses, impedes crystal growth up to the boundary between the crystal and the melt, and causes the problem that it is difficult to obtain a good crystal. Became. Such a phenomenon is likely to occur when the wettability of the melt and the crucible material is large.

坩堝下端部の形状、表面粗さを制御することにより融液流出を抑制する構造の坩堝が、特許文献1に開示されている。また、融液と坩堝材料の接触角の関係を利用して、低転位密度を改善する技術が、特許文献2に開示されている。   Patent Document 1 discloses a crucible having a structure that suppresses melt outflow by controlling the shape and surface roughness of the lower end of the crucible. Further, Patent Document 2 discloses a technique for improving the low dislocation density by utilizing the relationship between the contact angle between the melt and the crucible material.

特開2005−35861号公報JP 2005-35861 A 特開平7−10675号公報Japanese Patent Laid-Open No. 7-10675

特許文献1では、坩堝の底部を表面粗さ10μm以下の平滑平面にすることで、坩堝の底面への融液の付着を抑制しているが、融液と坩堝のぬれ性が大きい場合には、十分な効果が得られないという問題点があった。   In Patent Document 1, the bottom of the crucible is made a smooth flat surface with a surface roughness of 10 μm or less to suppress adhesion of the melt to the bottom of the crucible, but when the wettability between the melt and the crucible is large There was a problem that a sufficient effect could not be obtained.

特許文献2では、融液を坩堝壁に接触させることなく固化させる結晶育成(無重力状態での結晶育成)のために、融液と坩堝材料の接触角の関係を利用し、低転位密度を改善する技術なので、重力条件のもとでの結晶育成に適合しにくいという問題点があった。   In Patent Document 2, for the purpose of crystal growth that solidifies the melt without contacting the crucible wall (crystal growth in a weightless state), the relationship between the contact angle between the melt and the crucible material is used to improve the low dislocation density. Therefore, there is a problem that it is difficult to adapt to crystal growth under gravity conditions.

本発明は、上述した問題点を解決すべくなされたもので、その技術課題は、融液を引き下げ、冷却固化させて単結晶を育成する際に、坩堝下端部から坩堝外底面部への融液の流出を抑制でき、良好な結晶育成を可能にする結晶育成用坩堝及び単結晶及び単結晶育成方法を提供することである。   The present invention has been made to solve the above-mentioned problems, and its technical problem is to melt the melt from the lower end of the crucible to the outer bottom surface of the crucible when the melt is pulled down and cooled and solidified to grow a single crystal. An object of the present invention is to provide a crystal growth crucible, a single crystal, and a single crystal growth method capable of suppressing the outflow of liquid and enabling good crystal growth.

上記目的を達成するための第1の発明は、坩堝材料から構成された坩堝内にあるLGS(La3Ga5SiO14)又はSGG(Sr3Ga2Ge414)又はLTG(La3Ta0.5Ga5.514)又はニオブ酸リチウムLN(LiNbO3)又はタンタル酸リチウムLT(LiTaO3)又はニオブ酸カリウムリチウムKLN(K3Li2Nb515)からなる結晶材料の融液を引き下げ、冷却固化させて単結晶育成するのに使用する結晶育成坩堝において、前記結晶材料の融液と前記坩堝材料との接触角が8°以上である前記坩堝材料を用いた結晶育成坩堝である。 The first invention for achieving the above object is to provide LGS (La 3 Ga 5 SiO 14 ), SGG (Sr 3 Ga 2 Ge 4 O 14 ), or LTG (La 3 Ta) in a crucible made of a crucible material. 0.5 Ga 5.5 O 14 ) or lithium niobate LN (LiNbO 3 ) or lithium tantalate LT (LiTaO 3 ) or potassium lithium niobate KLN (K 3 Li 2 Nb 5 O 15 ) is pulled down, The crystal growth crucible used for growing a single crystal by cooling and solidification is a crystal growth crucible using the crucible material having a contact angle of 8 ° or more between the melt of the crystal material and the crucible material.

上記目的を達成するための第2の発明は、前記坩堝材料に、白金−金合金を用いた結晶育成用坩堝である。   A second invention for achieving the above object is a crucible for crystal growth using a platinum-gold alloy as the crucible material.

上記目的を達成するための第3の発明は、前記白金−金合金は、金の含有率が0.5原子%以上7原子%未満の結晶育成用坩堝である。   The third invention for achieving the above object is a crucible for crystal growth wherein the platinum-gold alloy has a gold content of 0.5 atomic% or more and less than 7 atomic%.

上記目的を達成するための第4の発明は、前記結晶育成用坩堝において、前記白金−金合金で坩堝全体又は坩堝底部を形成した結晶育成用坩堝である。   A fourth invention for achieving the above object is a crystal growth crucible in which the entire crucible or the crucible bottom is formed of the platinum-gold alloy in the crystal growth crucible.

上記目的を達成するための第5の発明は、前記結晶育成用坩堝において、前記白金−金合金で坩堝全体又は坩堝底部を被覆した結晶育成用坩堝である。   A fifth invention for achieving the above object is a crystal growth crucible in which the entire crucible or the bottom of the crucible is covered with the platinum-gold alloy in the crystal growth crucible.

上記目的を達成するための第6の発明は、坩堝材料から構成された坩堝内にあるLGS(La3Ga5SiO14)又はSGG(Sr3Ga2Ge414)又はLTG(La3Ta0.5Ga5.514)又はニオブ酸リチウムLN(LiNbO3)又はタンタル酸リチウムLT(LiTaO3)又はニオブ酸カリウムリチウムKLN(K3Li2Nb515)からなる結晶材料の融液を引き下げ、冷却固化させて単結晶育成する方法において、前記結晶材料の融液と前記坩堝材料との接触角が8°以上である前記坩堝材料を用いた前記坩堝を使用した単結晶育成方法である。 The sixth invention for achieving the above object is that LGS (La 3 Ga 5 SiO 14 ), SGG (Sr 3 Ga 2 Ge 4 O 14 ), or LTG (La 3 Ta) in a crucible made of a crucible material. 0.5 Ga 5.5 O 14 ) or lithium niobate LN (LiNbO 3 ) or lithium tantalate LT (LiTaO 3 ) or potassium lithium niobate KLN (K 3 Li 2 Nb 5 O 15 ) is pulled down, In the method of growing a single crystal by cooling and solidifying, the single crystal growing method using the crucible using the crucible material having a contact angle of 8 ° or more between the melt of the crystal material and the crucible material.

上記目的を達成するための第7の発明は、白金−金合金を用いた前記坩堝を使用した単結晶育成方法である。   A seventh invention for achieving the above object is a method for growing a single crystal using the crucible using a platinum-gold alloy.

上記目的を達成するための第8の発明は、金の含有率が0.5原子%以上7原子%未満の白金−金合金を用いた前記坩堝を使用した単結晶育成方法である。   An eighth invention for achieving the above object is a method for growing a single crystal using the crucible using a platinum-gold alloy having a gold content of 0.5 atomic% or more and less than 7 atomic%.

上記目的を達成するための第9の発明は、坩堝材料から構成された坩堝内にあるLGS(La3Ga5SiO14)又はSGG(Sr3Ga2Ge414)又はLTG(La3Ta0.5Ga5.514)又はニオブ酸リチウムLN(LiNbO3)又はタンタル酸リチウムLT(LiTaO3)又はニオブ酸カリウムリチウムKLN(K3Li2Nb515)からなる結晶材料の融液を引き下げ、冷却固化させ、前記結晶育成坩堝を用いて育成した単結晶において、単結晶の内部及び/又は表面近傍に金を含有させた単結晶である。 To achieve the above object, the ninth invention is LGS (La 3 Ga 5 SiO 14 ), SGG (Sr 3 Ga 2 Ge 4 O 14 ) or LTG (La 3 Ta) in a crucible made of a crucible material. 0.5 Ga 5.5 O 14 ) or lithium niobate LN (LiNbO 3 ) or lithium tantalate LT (LiTaO 3 ) or potassium lithium niobate KLN (K 3 Li 2 Nb 5 O 15 ) is pulled down, In the single crystal grown by cooling and solidifying using the crystal growth crucible, the single crystal contains gold inside and / or near the surface of the single crystal.

上記目的を達成するための第10の発明は、全組成比率を100%と定義した時の金の含有率が10ppm以上3%以下の単結晶である。   A tenth invention for achieving the above object is a single crystal having a gold content of 10 ppm or more and 3% or less when the total composition ratio is defined as 100%.

本発明によれば、坩堝材料から構成された坩堝内にあるLGS(La3Ga5SiO14)又はSGG(Sr3Ga2Ge414)又はLTG(La3Ta0.5Ga5.514)又はニオブ酸リチウムLN(LiNbO3)又はタンタル酸リチウムLT(LiTaO3)又はニオブ酸カリウムリチウムKLN(K3Li2Nb515)からなる結晶材料の融液を引き下げ、冷却固化させて単結晶育成するのに使用する結晶育成坩堝およびその坩堝を使用した単結晶育成方法において、結晶材料の融液と坩堝材料の接触角を測定し、結晶材料の融液と坩堝材料のぬれ性の相関関係について実験検討することで、結晶材料の融液と坩堝材料との接触角が8°以上である坩堝材料で、金の含有率が0.5原子%以上7原子%未満の白金−金合金を用いた結晶育成用坩堝を用いることで、坩堝下端部から坩堝外底面部への融液の流出を抑制でき、良好な結晶育成を可能にする結晶育成用坩堝及び単結晶育成方法の提供が可能になる。 According to the present invention, LGS (La 3 Ga 5 SiO 14 ) or SGG (Sr 3 Ga 2 Ge 4 O 14 ) or LTG (La 3 Ta 0.5 Ga 5.5 O 14 ) or LGS in a crucible composed of a crucible material, Single crystal growth by pulling down a melt of a crystal material composed of lithium niobate LN (LiNbO 3 ), lithium tantalate LT (LiTaO 3 ) or potassium lithium niobate KLN (K 3 Li 2 Nb 5 O 15 ) and cooling and solidifying it. In the crystal growth crucible used for the measurement and the single crystal growth method using the crucible, the contact angle between the crystal material melt and the crucible material is measured, and the wettability of the crystal material melt and the crucible material is correlated. By conducting an experimental study, a platinum-gold alloy having a gold content of 0.5 atomic% or more and less than 7 atomic% is used in a crucible material having a contact angle of 8 ° or more between the melt of the crystal material and the crucible material. Was By using the crystal growth crucible, the outflow of the melt from the lower end of the crucible to the outer bottom surface of the crucible can be suppressed, and it is possible to provide a crystal growth crucible and a single crystal growth method that enable good crystal growth. .

また、結晶育成坩堝全体又は坩堝底部を金の含有率が0.5原子%以上7原子%未満の白金−金合金を用いた坩堝材料を用いるか又は被覆することで、結晶融液と育成坩堝間のぬれ性を低減できる。その結果、結晶融液の育成坩堝外底面部への流出を抑制でき、良好な単結晶の育成が可能になる。   Further, by using or covering the entire crystal growth crucible or the crucible bottom with a crucible material using a platinum-gold alloy having a gold content of 0.5 atomic% or more and less than 7 atomic%, the crystal melt and the growth crucible The wettability can be reduced. As a result, the outflow of the crystal melt to the bottom surface of the growth crucible can be suppressed, and a good single crystal can be grown.

更に、単結晶の内部又は表面近傍に金を含有させることで、光損傷を改善できる。   Furthermore, optical damage can be improved by containing gold inside or near the surface of the single crystal.

以上の効果により、融液を引き下げ、冷却固化させて単結晶を育成する際に、坩堝下端部から坩堝外底面部への融液の流出を抑制でき、良好な結晶育成を可能にする結晶育成用坩堝及び単結晶及び単結晶育成方法の提供が可能になる。   Due to the above effects, when growing a single crystal by lowering the melt and cooling and solidifying it, the outflow of the melt from the lower end of the crucible to the outer bottom surface of the crucible can be suppressed, and crystal growth that enables good crystal growth A crucible for use, a single crystal, and a method for growing a single crystal can be provided.

本発明を実施するための最良の形態に係る結晶育成用坩堝及び単結晶及び単結晶育成方法を以下に実施例と図面を参照して詳細に説明する。   A crucible for crystal growth, a single crystal and a single crystal growth method according to the best mode for carrying out the present invention will be described in detail below with reference to the examples and the drawings.

図3は、結晶材料の融液と坩堝材料の接触角を測定した状態を説明する模式断面図である。図4は、結晶融液と坩堝材料の接触角を測定した状態の観察写真の一例を示し、結晶融液である液滴13が坩堝材料からなる板型試料10上にある。図5は、結晶融液と坩堝材料とのぬれ性が大きくて液滴が観察できなかった状態の観察写真の一例を示し、結晶融液である液滴は、ぬれ性が大きいので形成されず、坩堝材料からなる板型試料10だけ観察される。   FIG. 3 is a schematic cross-sectional view illustrating a state in which the contact angle between the melt of the crystal material and the crucible material is measured. FIG. 4 shows an example of an observation photograph in a state in which the contact angle between the crystal melt and the crucible material is measured, and the droplet 13 as the crystal melt is on the plate sample 10 made of the crucible material. FIG. 5 shows an example of an observation photograph in a state where the wettability between the crystal melt and the crucible material is large and the liquid droplet cannot be observed. The liquid crystal droplet is not formed because the wettability is high. Only the plate sample 10 made of the crucible material is observed.

最初に、坩堝材料から構成された坩堝内にあるLGS(La3Ga5SiO14)又はSGG(Sr3Ga2Ge414)又はLTG(La3Ta0.5Ga5.514)又はニオブ酸リチウムLN(LiNbO3)又はタンタル酸リチウムLT(LiTaO3)又はニオブ酸カリウムリチウムKLN(K3Li2Nb515)からなる結晶材料と坩堝用材料の接触角の関係を調べた。測定に用いた結晶材料は、ランガサイト系材料のである。測定に用いた坩堝材料は、白金、イリジウム、モリブデン、レニウム、タンタル、タングステン、白金−5原子%金合金、白金−5原子%イリジウム合金、白金−5原子%ロジウム合金である。なお、ここでの配合比は原子%で規定している。 First, LGS (La 3 Ga 5 SiO 14 ) or SGG (Sr 3 Ga 2 Ge 4 O 14 ) or LTG (La 3 Ta 0.5 Ga 5.5 O 14 ) or lithium niobate in a crucible composed of a crucible material The relationship between the crystal material made of LN (LiNbO 3 ) or lithium tantalate LT (LiTaO 3 ) or potassium lithium niobate KLN (K 3 Li 2 Nb 5 O 15 ) and the crucible material was examined. The crystal material used for the measurement is a langasite material. The crucible materials used for the measurement are platinum, iridium, molybdenum, rhenium, tantalum, tungsten, platinum-5 atomic% gold alloy, platinum-5 atomic% iridium alloy, and platinum-5 atomic% rhodium alloy. In addition, the compounding ratio here is prescribed | regulated by atomic%.

次に、結晶材料と坩堝用材料の接触角の測定方法を説明する。測定に用いた坩堝材料の20×20×1mmの板型試料を作製した。測定に用いた結晶材料は、それぞれの化学量論比になるように原料粉を秤量し、乳鉢で混合した。その後、800〜1000℃の温度で10時間の予焼をして、測定用粉末を作製した。   Next, a method for measuring the contact angle between the crystal material and the crucible material will be described. A 20 × 20 × 1 mm plate sample of the crucible material used for the measurement was prepared. The raw material powder was weighed so that the crystal materials used for the measurement had respective stoichiometric ratios, and mixed in a mortar. Thereafter, pre-baking was performed at a temperature of 800 to 1000 ° C. for 10 hours to prepare a measurement powder.

測定に用いる坩堝材料の板状試料の上に測定に用いる結晶材料の粉末を置き、アルゴン雰囲気の電気炉で各結晶の融点まで温度を上げる。その後、液滴を観察する。図3および図4に示すようにして、結晶材料と坩堝用材料の接触角を測定した。結晶材料と坩堝用材料との接触角の測定結果を表1に示す。なお、表1の接触角が、0°を示したものは、ぬれ性が大きすぎて、液滴を観察できなかった(図5参照)。   The powder of the crystal material used for the measurement is placed on the plate-like sample of the crucible material used for the measurement, and the temperature is raised to the melting point of each crystal in an electric furnace in an argon atmosphere. Thereafter, the droplet is observed. As shown in FIGS. 3 and 4, the contact angle between the crystal material and the crucible material was measured. Table 1 shows the measurement results of the contact angle between the crystal material and the crucible material. When the contact angle shown in Table 1 was 0 °, the wettability was too high to observe the droplets (see FIG. 5).

表1に示すように、坩堝材料や結晶材料に起因して、大きな接触角の違いがあることが確認された。坩堝材料で比較すると、白金−5原子%金合金が、測定に用いた坩堝材料の中で最大の接触角を示し、白金−5原子%ロジウム合金、イリジウム、白金−5原子%イリジウム合金、白金、タングステンの順に接触角が大きかった。なお、モリブデン、レニウム、タンタルに関しては、ぬれ性が大きすぎて、液滴にならないために接触角を測定できなかった。また、結晶材料に関しては、LGS、LTG、SGG、KLN、LN、LTの順に接触角が大きかった。更に、坩堝材料と結晶材料の組み合わせによって、この順序はほとんど変わらなかった。   As shown in Table 1, it was confirmed that there was a large difference in contact angle due to the crucible material or the crystal material. When compared with the crucible material, the platinum-5 atomic% gold alloy shows the maximum contact angle among the crucible materials used for the measurement, and the platinum-5 atomic% rhodium alloy, iridium, platinum-5 atomic% iridium alloy, platinum The contact angle was larger in the order of tungsten. For molybdenum, rhenium, and tantalum, the wettability was too great to form droplets, so the contact angle could not be measured. As for the crystal material, the contact angle was large in the order of LGS, LTG, SGG, KLN, LN, and LT. Furthermore, this order hardly changed depending on the combination of the crucible material and the crystal material.

これらの坩堝材料で実際に坩堝を作製し、各結晶をマイクロ引下げ法により結晶材料の融液を引き下げ、冷却固化させて結晶成長を行った。なお、結晶成長温度は、各結晶材料の融点より高い適切な温度に設定した。(結晶融液を完全溶解できる温度)また、結晶成長の際に、坩堝の細孔下端部を観察し、融液の流出の有無を調査した。結晶成長時の融液流出の有無を調査した結果を表2に示す。   Crucibles were actually made from these crucible materials, and the crystals were grown by pulling down the melt of the crystal material by micro-pulling down and solidifying by cooling. The crystal growth temperature was set to an appropriate temperature higher than the melting point of each crystal material. (Temperature at which the crystal melt can be completely dissolved) Further, at the time of crystal growth, the lower end of the pores of the crucible was observed to investigate whether or not the melt flowed out. Table 2 shows the results of investigating the presence or absence of melt outflow during crystal growth.

表1、表2の結果から、結晶材料の融液と坩堝材料との接触角が8°以上になる関係の結晶育成では融液の流出は見られなかった。また、結晶材料の融液と坩堝材料との接触角が8°未満になる関係の結晶育成では、坩堝下端部から坩堝外底面部への融液の流出が見られた。更に、結晶材料の融液と坩堝材料との接触角が8°以上になる関係の結晶育成では、良質な結晶が得られたが、結晶材料の融液と坩堝材料との接触角が8°未満になる関係の結晶育成では、育成中に流出した融液の影響を受けて、途中で結晶育成ができなくなった。   From the results of Tables 1 and 2, no outflow of the melt was observed in crystal growth in which the contact angle between the melt of the crystal material and the crucible material was 8 ° or more. Further, in the crystal growth in which the contact angle between the melt of the crystal material and the crucible material is less than 8 °, the outflow of the melt from the lower end of the crucible to the outer bottom surface of the crucible was observed. Further, in the crystal growth in which the contact angle between the melt of the crystal material and the crucible material is 8 ° or more, a good quality crystal was obtained, but the contact angle between the melt of the crystal material and the crucible material was 8 °. In the crystal growth of less than the relationship, the crystal growth cannot be performed in the middle due to the influence of the melt that flows out during the growth.

坩堝材料である白金−金合金の組成比を変化させて、結晶材料の融液と坩堝材料との接触角を測定し、結晶育成を行った。白金に対し金の含有率が、0、0.3、0.5、1、3、5、7、9原子%の白金−金合金の組成比の試料を作製し、比較した。なお、実施例1と同様に結晶材料は、ランガサイト系材料のLGS(La3Ga5SiO14)又はSGG(Sr3Ga2Ge414)又はLTG(La3Ta0.5Ga5.514)又はニオブ酸リチウムLN(LiNbO3)又はタンタル酸リチウムLT(LiTaO3)又はニオブ酸カリウムリチウムKLN(K3Li2Nb515)を用いた。 The composition ratio of the platinum-gold alloy as the crucible material was changed, the contact angle between the melt of the crystal material and the crucible material was measured, and crystal growth was performed. Samples having a composition ratio of platinum-gold alloys having a gold content of 0, 0.3, 0.5, 1, 3, 5, 7, and 9 atomic% with respect to platinum were prepared and compared. As in Example 1, the crystal material is LGS (La 3 Ga 5 SiO 14 ) or SGG (Sr 3 Ga 2 Ge 4 O 14 ) or LTG (La 3 Ta 0.5 Ga 5.5 O 14 ), which is a langasite material. Alternatively, lithium niobate LN (LiNbO 3 ), lithium tantalate LT (LiTaO 3 ), or potassium lithium niobate KLN (K 3 Li 2 Nb 5 O 15 ) was used.

次に、結晶材料と坩堝用材料の接触角の測定方法を説明する。測定に用いた坩堝材料の20×20×1mmの板型試料を作製した。測定に用いた結晶材料は、それぞれの化学量論比になるように原料粉を秤量し、乳鉢で混合した。その後、800〜1000℃の温度で10時間の予焼をして、測定用粉末を作製した。   Next, a method for measuring the contact angle between the crystal material and the crucible material will be described. A 20 × 20 × 1 mm plate sample of the crucible material used for the measurement was prepared. The raw material powder was weighed so that the crystal materials used for the measurement had respective stoichiometric ratios, and mixed in a mortar. Thereafter, pre-baking was performed at a temperature of 800 to 1000 ° C. for 10 hours to prepare a measurement powder.

測定に用いる坩堝材料の板状試料の上に測定に用いる結晶材料の粉末を置き、アルゴン雰囲気の電気炉で各結晶の融点まで温度を上げる。その後、液滴を観察する。図3および図4に示すようにして、結晶材料の融液と坩堝材料との接触角を測定した。結晶材料の融液と坩堝材料との接触角の測定結果を表3に示す。なお、ここで示した金9原子%含有の試料は、合金化が困難で製造できなかった。また、ここで示した金7原子%含有の試料まで合金化できることが確認された。   The powder of the crystal material used for the measurement is placed on the plate-like sample of the crucible material used for the measurement, and the temperature is raised to the melting point of each crystal in an electric furnace in an argon atmosphere. Thereafter, the droplet is observed. As shown in FIGS. 3 and 4, the contact angle between the melt of the crystal material and the crucible material was measured. Table 3 shows the measurement results of the contact angle between the melt of the crystal material and the crucible material. In addition, the sample containing 9 atomic% of gold shown here could not be manufactured due to difficulty in alloying. Moreover, it was confirmed that the alloy containing up to 7 atomic% of gold shown here can be alloyed.

表3から、金含有率0.5原子%未満の坩堝では、白金の坩堝とほとんど変わらない接触角を示した。しかし、金含有率0.5原子%以上の坩堝では、結晶材料の融液と坩堝材料との接触角が急激に大きくなり、金含有率が大きいほど接触角が大きくなる傾向があった。   From Table 3, a crucible with a gold content of less than 0.5 atomic% showed a contact angle almost the same as that of a platinum crucible. However, in a crucible having a gold content of 0.5 atomic% or more, the contact angle between the crystal material melt and the crucible material increased rapidly, and the contact angle tended to increase as the gold content increased.

白金−金合金の組成比を変化させた坩堝材料で実際に坩堝を作製し、各結晶をマイクロ引下げ法により結晶材料の融液を引き下げ、冷却固化させて結晶成長を行った。なお、結晶成長温度は、各結晶材料の融点より高い適切な温度に設定した。(結晶融液を完全溶解できる温度)また、結晶成長の際に、坩堝の細孔下端部を観察し、融液の流出の有無を調査した。結晶成長時の融液流出の有無を調査した結果を表4に示す。   A crucible material was actually made from a crucible material in which the composition ratio of the platinum-gold alloy was changed, and each crystal was crystal-grown by pulling down the melt of the crystal material by a micro-pulling-down method and cooling and solidifying it. The crystal growth temperature was set to an appropriate temperature higher than the melting point of each crystal material. (Temperature at which the crystal melt can be completely dissolved) Further, at the time of crystal growth, the lower end of the pores of the crucible was observed to investigate whether or not the melt flowed out. Table 4 shows the results of investigating the presence or absence of melt outflow during crystal growth.

表4の結果から、金含有率が0.5原子%以上の坩堝を用いた結晶育成では融液の流出は見られなかった。また、金含有率0.5原子%未満の坩堝を用いた結晶育成では、坩堝下端部から坩堝外底面部への融液の流出が見られた。更に、金含有率0.5原子%以上の坩堝を用いた結晶育成では良質な結晶が得られたが、金含有率0.5原子%未満の坩堝を用いた結晶育成では、育成中に流出した融液の影響を受けて、途中で結晶育成ができなくなった。   From the results shown in Table 4, no melt outflow was observed in crystal growth using a crucible having a gold content of 0.5 atomic% or more. Further, in crystal growth using a crucible having a gold content of less than 0.5 atomic%, the outflow of the melt from the lower end of the crucible to the outer bottom surface of the crucible was observed. In addition, crystal growth using a crucible with a gold content of 0.5 atomic% or more yielded good quality crystals, but crystal growth using a crucible with a gold content of less than 0.5 atomic% caused an outflow during the growth. Under the influence of the melt, it was impossible to grow crystals on the way.

なお、ここでは、マイクロ引き下げ結晶育成の実施例にて説明したが、原理的に同じ融液を引き下げ(引き上げ)、冷却固化させて単結晶育成する方法であるチョクラルスキー法、ブリッジマン法において、本発明を適用した場合も同様の効果を奏した。   In addition, although demonstrated in the Example of the micro pull-down crystal growth here, in the Czochralski method and the Bridgman method which are the methods of pulling down (pulling up) the same melt and solidifying it by cooling and solidifying in principle. The same effect was also obtained when the present invention was applied.

また、坩堝材料である白金−金合金の組成比が、0.5原子%〜7原子%までは、良質な結晶が得られることが確認された。   It was also confirmed that good quality crystals could be obtained when the composition ratio of the platinum-gold alloy as the crucible material was 0.5 atomic% to 7 atomic%.

坩堝材料に白金、イリジウム、モリブデン、レニウムと、それぞれに金を5原子%含有させて、結晶材料の融液と坩堝材料との接触角を測定し、結晶育成を行った。なお、実施例1と同様に結晶材料は、ランガサイト系材料のLGS(La3Ga5SiO14)又はSGG(Sr3Ga2Ge414)又はLTG(La3Ta0.5Ga5.514)又はニオブ酸リチウムLN(LiNbO3)又はタンタル酸リチウムLT(LiTaO3)又はニオブ酸カリウムリチウムKLN(K3Li2Nb515)を用いた。 The crucible material was made to contain platinum, iridium, molybdenum, rhenium, and 5 atom% of gold in each, and the contact angle between the melt of the crystal material and the crucible material was measured, and the crystal was grown. As in Example 1, the crystal material is LGS (La 3 Ga 5 SiO 14 ) or SGG (Sr 3 Ga 2 Ge 4 O 14 ) or LTG (La 3 Ta 0.5 Ga 5.5 O 14 ), which is a langasite material. Alternatively, lithium niobate LN (LiNbO 3 ), lithium tantalate LT (LiTaO 3 ), or potassium lithium niobate KLN (K 3 Li 2 Nb 5 O 15 ) was used.

次に、結晶材料と坩堝用材料の接触角の測定方法を説明する。測定に用いた坩堝材料の20×20×1mmの板型試料を作製した。測定に用いた結晶材料は、それぞれの化学量論比になるように原料粉を秤量し、乳鉢で混合した。その後、800〜1000℃の温度で10時間の予焼をして、測定用粉末を作製した。   Next, a method for measuring the contact angle between the crystal material and the crucible material will be described. A 20 × 20 × 1 mm plate sample of the crucible material used for the measurement was prepared. The raw material powder was weighed so that the crystal materials used for the measurement had respective stoichiometric ratios, and mixed in a mortar. Thereafter, pre-baking was performed at a temperature of 800 to 1000 ° C. for 10 hours to prepare a measurement powder.

測定に用いる坩堝材料の板状試料の上に測定に用いる結晶材料の粉末を置き、アルゴン雰囲気の電気炉で各結晶の融点まで温度を上げる。その後、液滴を観察する。図3および図4に示すようにして、結晶材料の融液と坩堝材料との接触角を測定した。   The powder of the crystal material used for the measurement is placed on the plate-like sample of the crucible material used for the measurement, and the temperature is raised to the melting point of each crystal in an electric furnace in an argon atmosphere. Thereafter, the droplet is observed. As shown in FIGS. 3 and 4, the contact angle between the melt of the crystal material and the crucible material was measured.

また、これらの坩堝材料で結晶育成坩堝を作製し、マイクロ引き下げ法により各結晶を成長させた。結晶成長時の、結晶育成坩堝の細孔の下端部を観察し、融液の流出を調査した。流出の有無の結果を表5に示す。   In addition, a crystal growth crucible was produced from these crucible materials, and each crystal was grown by a micro pull-down method. The bottom end of the pores of the crystal growth crucible during crystal growth was observed to investigate the outflow of the melt. The results of the presence or absence of outflow are shown in Table 5.

金を含まない基板ではどの結晶材料でも融液は広がってしまい、図3に示すような液滴の形状にはならなかった。しかし、金を含む基板では、全ての結晶材料において図4に示すような半球状の液滴になった。この結果より、結晶融液と坩堝材料からなる基板との間のぬれ性は、金を含有することで小さくなる。   In any substrate that does not contain gold, the melt spreads with any crystal material, and the droplet shape as shown in FIG. 3 was not achieved. However, in the substrate containing gold, hemispherical droplets as shown in FIG. From this result, the wettability between the crystal melt and the substrate made of the crucible material is reduced by containing gold.

金を含まない材料で作製した育成坩堝を用いて結晶育成を行った。イリジウム坩堝を用いて、LGS、KLNを育成した。また、白金坩堝を用いて、LGSを育成した。いずれの場合も融液の流出は確認できなかった。しかしながら、他の組み合わせでは、結晶成長中に融液の流出が確認された。   Crystal growth was performed using a growth crucible made of a material not containing gold. LGS and KLN were grown using an iridium crucible. Further, LGS was grown using a platinum crucible. In either case, the outflow of the melt could not be confirmed. However, in other combinations, melt outflow was observed during crystal growth.

金を含む材料で作製した育成坩堝では、結晶成長中の融液の流出は、どの結晶材料でも確認されず、結晶材料に依存しないで良好な結晶成長が行えた。   In the growth crucible made of a material containing gold, the outflow of the melt during crystal growth was not confirmed in any crystal material, and good crystal growth could be performed without depending on the crystal material.

更に、育成坩堝全体ではなく融液と接する底部周辺や育成坩堝全体又は底部の表面だけを金を含む材料で作製又は被覆した育成坩堝においても同様の効果を奏した。これは、育成るつぼ表面と融液間のぬれ性に起因した現象であるためである。   Furthermore, the same effect was achieved not only in the whole growth crucible but also in the growth crucible in which the periphery of the bottom in contact with the melt, the whole growth crucible or only the surface of the bottom was made or coated with a material containing gold. This is because the phenomenon is caused by the wettability between the surface of the growing crucible and the melt.

坩堝材料である白金、レニウムに対する金の組成比を変化させて、結晶材料の融液と坩堝材料との接触角を測定し、結晶育成を行った。白金、レニウムに対し金の含有率が、0、0.3、0.5、1、3、5、7、9原子%の試料を作製し、比較した。なお、実施例1と同様に結晶材料は、ランガサイト系材料のLGS(La3Ga5SiO14)又はSGG(Sr3Ga2Ge414)又はLTG(La3Ta0.5Ga5.514)又はニオブ酸リチウムLN(LiNbO3)又はタンタル酸リチウムLT(LiTaO3)又はニオブ酸カリウムリチウムKLN(K3Li2Nb515)を用いた。 Crystals were grown by changing the composition ratio of gold to platinum and rhenium, which are crucible materials, and measuring the contact angle between the melt of the crystal material and the crucible material. Samples having a gold content of 0, 0.3, 0.5, 1, 3, 5, 7, and 9 atomic% relative to platinum and rhenium were prepared and compared. As in Example 1, the crystal material is LGS (La 3 Ga 5 SiO 14 ) or SGG (Sr 3 Ga 2 Ge 4 O 14 ) or LTG (La 3 Ta 0.5 Ga 5.5 O 14 ), which is a langasite material. Alternatively, lithium niobate LN (LiNbO 3 ), lithium tantalate LT (LiTaO 3 ), or potassium lithium niobate KLN (K 3 Li 2 Nb 5 O 15 ) was used.

次に、結晶材料と坩堝用材料の接触角の測定方法を説明する。測定に用いた坩堝材料の20×20×1mmの板型試料を作製した。測定に用いた結晶材料は、それぞれの化学量論比になるように原料粉を秤量し、乳鉢で混合した。その後、800〜1000℃の温度で10時間の予焼をして、測定用粉末を作製した。   Next, a method for measuring the contact angle between the crystal material and the crucible material will be described. A 20 × 20 × 1 mm plate sample of the crucible material used for the measurement was prepared. The raw material powder was weighed so that the crystal materials used for the measurement had respective stoichiometric ratios, and mixed in a mortar. Thereafter, pre-baking was performed at a temperature of 800 to 1000 ° C. for 10 hours to prepare a measurement powder.

測定に用いる坩堝材料の板状試料の上に測定に用いる結晶材料の粉末を置き、アルゴン雰囲気の電気炉で各結晶の融点まで温度を上げる。その後、液滴を観察する。図3および図4に示すようにして、結晶材料の融液と坩堝材料との接触角を測定した。   The powder of the crystal material used for the measurement is placed on the plate-like sample of the crucible material used for the measurement, and the temperature is raised to the melting point of each crystal in an electric furnace in an argon atmosphere. Thereafter, the droplet is observed. As shown in FIGS. 3 and 4, the contact angle between the melt of the crystal material and the crucible material was measured.

白金、レニウムのいずれにおいても、金の含有量が少ない場合は、融液が広がり、金の含有量の増加に伴い液滴の形状が顕著に観察できるようになった。   In both platinum and rhenium, when the gold content is low, the melt spreads and the shape of the droplets can be observed remarkably as the gold content increases.

これらの組成比の合金組成比の坩堝材料で実際に育成坩堝を作製し、各結晶をマイクロ引下げ法により結晶材料の融液を引き下げ、冷却固化させて結晶成長を行った。なお、結晶成長温度は、各結晶材料の融点より高い適切な温度に設定した(結晶融液を完全溶解できる温度)。また、結晶成長の際に、坩堝の細孔下端部を観察し、融液の流出の有無を調査した。結晶成長時の融液流出の有無を調査した結果を表6、表7に示す。白金−金合金の結果が、表6に示され、レニウム−金合金の結果が、表7に示されている。   Growing crucibles were actually made from the crucible materials having these alloy composition ratios, and the crystals were grown by pulling down the melt of the crystal material by micro-pulling down and solidifying by cooling. The crystal growth temperature was set to an appropriate temperature higher than the melting point of each crystal material (temperature at which the crystal melt can be completely dissolved). In addition, during crystal growth, the lower end of the pores of the crucible was observed to investigate the presence or absence of melt outflow. Tables 6 and 7 show the results of investigating the presence or absence of melt outflow during crystal growth. The results for the platinum-gold alloy are shown in Table 6, and the results for the rhenium-gold alloy are shown in Table 7.

白金−金合金の場合は、9原子%含有合金を作製するのが困難であった。全ての結晶材料を融液の流出なく成長できたのは、金の含有率が0.5原子%から7原子%の育成坩堝を使用した場合であった。   In the case of a platinum-gold alloy, it was difficult to produce an alloy containing 9 atomic%. All the crystal materials could be grown without flowing out of the melt when a growth crucible having a gold content of 0.5 atomic% to 7 atomic% was used.

金の含有率が0.5原子%未満のレニウム−金合金の場合は、融液の流出が見られた。また、金の含有率が9原子%のレニウム−金合金の場合は、ぬれ性が小さすぎて、結晶育成坩堝内部の細孔から融液が流れず、種結晶を接触させる細孔下端部までメルトを導入することができなかった。   In the case of a rhenium-gold alloy having a gold content of less than 0.5 atomic%, outflow of the melt was observed. Also, in the case of a rhenium-gold alloy having a gold content of 9 atomic%, the wettability is too small, so that the melt does not flow from the pores inside the crystal growth crucible, and reaches the lower end of the pores where the seed crystals are brought into contact. Melt could not be introduced.

更に、得られた育成結晶の組成分析を行ったところ、どの結晶においても微量の金が検出された。通常の引き上げ法で育成したLN結晶の場合と比較して、本発明の育成るつぼを用いて育成した単結晶は、単結晶内部又は表面近傍での金の含有量が明らかに多く、金の含有量の増加とともに光損傷が低減することが確認され、全組成比率を100%と定義した時の金の含有率が10ppm以上3%以下の場合に、その効果が高く、通常の引き上げ法で育成したLN結晶の含有率は、10ppm未満であった。なお、全組成比率を100%と定義した時の金の含有率が3%を超えた場合は、光損傷が増加する傾向を示した。   Furthermore, when the composition analysis of the obtained grown crystal was performed, a very small amount of gold was detected in any crystal. Compared to the case of the LN crystal grown by the normal pulling method, the single crystal grown using the growing crucible of the present invention clearly has a large gold content inside or near the surface of the single crystal. When the amount of gold is 10 ppm or more and 3% or less when the total composition ratio is defined as 100%, it is confirmed that the optical damage is reduced as the amount increases. The content of LN crystals was less than 10 ppm. In addition, when the content rate of gold when the total composition ratio was defined as 100% exceeded 3%, photodamage tended to increase.

以上に示したように、本発明により、融液を引き下げ、冷却固化させて単結晶を育成する際に、坩堝下端部から坩堝外底面部への融液の流出を抑制でき、良好な結晶育成を可能にする結晶育成用坩堝及び単結晶及び単結晶育成方法の提供が可能になる。   As described above, according to the present invention, when the melt is pulled down and cooled and solidified to grow a single crystal, the outflow of the melt from the lower end of the crucible to the bottom surface of the crucible can be suppressed, and good crystal growth is achieved. It is possible to provide a crucible for crystal growth, a single crystal, and a method for growing a single crystal that enable the above.

融液からの結晶育成であるマイクロ引下げ結晶育成法に用いられる坩堝の断面図。Sectional drawing of the crucible used for the micro pull-down crystal growth method which is the crystal growth from a melt. 結晶育成中の坩堝と結晶化の状態を表す模式断面図。The schematic cross section showing the crucible during crystal growth and the state of crystallization. 結晶材料の融液と坩堝材料の接触角を測定した状態を説明する模式断面図。The schematic cross section explaining the state which measured the contact angle of the melt of crystal material, and the crucible material. 結晶融液と坩堝材料の接触角を測定した状態の観察写真の一例を示す図。The figure which shows an example of the observation photograph of the state which measured the contact angle of the crystal melt and the crucible material. 結晶融液と坩堝材料とのぬれ性が大きくて液滴が観察できなかった状態の観察写真の一例を示す図。The figure which shows an example of the observation photograph of the state which the wettability of a crystal melt and a crucible material was large, and the droplet was not able to be observed.

符号の説明Explanation of symbols

1 坩堝
2 容器部
3 細孔
4 外底面部
5 細孔下端部
6 結晶材料の融液
7 結晶
8 種結晶
9 引き下げ軸
10 板型試料
11 結晶液滴
12 接触角
13 液滴
DESCRIPTION OF SYMBOLS 1 Crucible 2 Container part 3 Pore 4 Outer bottom part 5 Pore lower end part 6 Melt of crystal material 7 Crystal 8 Seed crystal 9 Pulling shaft 10 Plate type sample 11 Crystal droplet 12 Contact angle 13 Droplet

Claims (10)

坩堝材料から構成された坩堝内にあるLGS(La3Ga5SiO14)又はSGG(Sr3Ga2Ge414)又はLTG(La3Ta0.5Ga5.514)又はニオブ酸リチウムLN(LiNbO3)又はタンタル酸リチウムLT(LiTaO3)又はニオブ酸カリウムリチウムKLN(K3Li2Nb515)からなる結晶材料の融液を引き下げ、冷却固化させて単結晶育成するのに使用する結晶育成坩堝において、前記結晶材料の融液と前記坩堝材料との接触角が8°以上である前記坩堝材料を用いたことを特徴とする結晶育成坩堝。 LGS (La 3 Ga 5 SiO 14 ) or SGG (Sr 3 Ga 2 Ge 4 O 14 ) or LTG (La 3 Ta 0.5 Ga 5.5 O 14 ) or lithium niobate LN (LiNbO) in a crucible composed of a crucible material 3 ) or a crystal used to grow a single crystal by pulling down a melt of a crystal material made of lithium tantalate LT (LiTaO 3 ) or lithium potassium niobate KLN (K 3 Li 2 Nb 5 O 15 ) and solidifying by cooling. In the growth crucible, the crystal growth crucible using the crucible material having a contact angle of 8 ° or more between the melt of the crystal material and the crucible material. 前記坩堝材料に、白金−金合金を用いたことを特徴とする請求項1記載の結晶育成用坩堝。   The crucible for crystal growth according to claim 1, wherein a platinum-gold alloy is used as the crucible material. 前記白金−金合金は、金の含有率が0.5原子%以上7原子%未満であることを特徴とする請求項2記載の結晶育成用坩堝。   The crucible for crystal growth according to claim 2, wherein the platinum-gold alloy has a gold content of 0.5 atomic% or more and less than 7 atomic%. 請求項3記載の結晶育成用坩堝において、前記白金−金合金で坩堝全体又は坩堝底部を形成したことを特徴とする結晶育成用坩堝。   4. The crystal growth crucible according to claim 3, wherein the entire crucible or the bottom of the crucible is formed of the platinum-gold alloy. 請求項3記載の結晶育成用坩堝において、前記白金−金合金で坩堝全体又は坩堝底部を被覆したことを特徴とする結晶育成用坩堝。   4. The crystal growth crucible according to claim 3, wherein the entire crucible or the bottom of the crucible is covered with the platinum-gold alloy. 坩堝材料から構成された坩堝内にあるLGS(La3Ga5SiO14)又はSGG(Sr3Ga2Ge414)又はLTG(La3Ta0.5Ga5.514)又はニオブ酸リチウムLN(LiNbO3)又はタンタル酸リチウムLT(LiTaO3)又はニオブ酸カリウムリチウムKLN(K3Li2Nb515)からなる結晶材料の融液を引き下げ、冷却固化させて単結晶育成する方法において、前記結晶材料の融液と前記坩堝材料との接触角が8°以上である前記坩堝材料を用いた前記坩堝を使用したことを特徴とする単結晶育成方法。 LGS (La 3 Ga 5 SiO 14 ) or SGG (Sr 3 Ga 2 Ge 4 O 14 ) or LTG (La 3 Ta 0.5 Ga 5.5 O 14 ) or lithium niobate LN (LiNbO) in a crucible composed of a crucible material 3 ) or a crystal material comprising lithium tantalate LT (LiTaO 3 ) or potassium lithium niobate KLN (K 3 Li 2 Nb 5 O 15 ), and a method for growing a single crystal by cooling and solidifying the crystal. A method for growing a single crystal, comprising using the crucible using the crucible material having a contact angle between a melt of the material and the crucible material of 8 ° or more. 白金−金合金を用いた前記坩堝を使用したことを特徴とする請求項6記載の単結晶育成方法。   The method for growing a single crystal according to claim 6, wherein the crucible using a platinum-gold alloy is used. 金の含有率が0.5原子%以上7原子%未満の白金−金合金を用いた前記坩堝を使用したことを特徴とする請求項7記載の単結晶育成方法。   The single crystal growth method according to claim 7, wherein the crucible using a platinum-gold alloy having a gold content of 0.5 atomic% or more and less than 7 atomic% is used. 坩堝材料から構成された坩堝内にあるLGS(La3Ga5SiO14)又はSGG(Sr3Ga2Ge414)又はLTG(La3Ta0.5Ga5.514)又はニオブ酸リチウムLN(LiNbO3)又はタンタル酸リチウムLT(LiTaO3)又はニオブ酸カリウムリチウムKLN(K3Li2Nb515)からなる結晶材料の融液を引き下げ、冷却固化させ、請求項2又は請求項3又は請求項4又は請求項5の結晶育成坩堝を用いて育成した単結晶において、単結晶の内部および/又は表面近傍に金を含有させたことを特徴とする単結晶。 LGS (La 3 Ga 5 SiO 14 ) or SGG (Sr 3 Ga 2 Ge 4 O 14 ) or LTG (La 3 Ta 0.5 Ga 5.5 O 14 ) or lithium niobate LN (LiNbO) in a crucible composed of a crucible material 3 ) or a crystal material composed of lithium tantalate LT (LiTaO 3 ) or potassium potassium niobate KLN (K 3 Li 2 Nb 5 O 15 ) is pulled down, cooled and solidified, and then claim 2 or claim 3 or claim A single crystal grown using the crystal growth crucible according to Item 4 or Claim 5, wherein gold is contained inside and / or near the surface of the single crystal. 全組成比率を100%と定義した時の金の含有率が10ppm以上3%以下であることを特徴とする請求項9記載の単結晶。   10. The single crystal according to claim 9, wherein the gold content when the total composition ratio is defined as 100% is 10 ppm or more and 3% or less.
JP2006206222A 2005-09-22 2006-07-28 Crucible for growing crystal, single crystal, and method for growing the same Pending JP2007112700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006206222A JP2007112700A (en) 2005-09-22 2006-07-28 Crucible for growing crystal, single crystal, and method for growing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005275771 2005-09-22
JP2006206222A JP2007112700A (en) 2005-09-22 2006-07-28 Crucible for growing crystal, single crystal, and method for growing the same

Publications (1)

Publication Number Publication Date
JP2007112700A true JP2007112700A (en) 2007-05-10

Family

ID=38095216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006206222A Pending JP2007112700A (en) 2005-09-22 2006-07-28 Crucible for growing crystal, single crystal, and method for growing the same

Country Status (1)

Country Link
JP (1) JP2007112700A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103180492A (en) * 2010-10-13 2013-06-26 Tdk株式会社 Langasite-type oxide material, production method for same, and raw material used in production method
CN104659648A (en) * 2013-11-25 2015-05-27 中国科学院物理研究所 Neodymium-doped langasite self-frequency-doubling ultra-short pulse laser
JP2017200867A (en) * 2016-05-06 2017-11-09 株式会社C&A Metallic component production
CN108321672A (en) * 2018-03-12 2018-07-24 中国科学院苏州生物医学工程技术研究所 A kind of Bladder stone system of high-peak power
JP2021127270A (en) * 2020-02-13 2021-09-02 京セラ株式会社 Piezoelectric material and piezoelectric element
CN116905087A (en) * 2023-09-13 2023-10-20 天通控股股份有限公司 Growth method of lithium tantalate crystal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259376A (en) * 1995-03-24 1996-10-08 Ngk Insulators Ltd Production of oxide single crystal and apparatus therefor
JP2005035861A (en) * 2003-07-18 2005-02-10 Furuya Kinzoku:Kk Crucible for growing single crystal, and its after heater

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259376A (en) * 1995-03-24 1996-10-08 Ngk Insulators Ltd Production of oxide single crystal and apparatus therefor
JP2005035861A (en) * 2003-07-18 2005-02-10 Furuya Kinzoku:Kk Crucible for growing single crystal, and its after heater

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103180492A (en) * 2010-10-13 2013-06-26 Tdk株式会社 Langasite-type oxide material, production method for same, and raw material used in production method
US9118011B2 (en) 2010-10-13 2015-08-25 Tdk Corporation Langasite-type oxide material, method for producing same, and raw material used in the production method
CN104659648A (en) * 2013-11-25 2015-05-27 中国科学院物理研究所 Neodymium-doped langasite self-frequency-doubling ultra-short pulse laser
JP2017200867A (en) * 2016-05-06 2017-11-09 株式会社C&A Metallic component production
CN108321672A (en) * 2018-03-12 2018-07-24 中国科学院苏州生物医学工程技术研究所 A kind of Bladder stone system of high-peak power
JP2021127270A (en) * 2020-02-13 2021-09-02 京セラ株式会社 Piezoelectric material and piezoelectric element
JP7345411B2 (en) 2020-02-13 2023-09-15 京セラ株式会社 Piezoelectric bodies and piezoelectric elements
CN116905087A (en) * 2023-09-13 2023-10-20 天通控股股份有限公司 Growth method of lithium tantalate crystal
CN116905087B (en) * 2023-09-13 2023-11-28 天通控股股份有限公司 Growth method of lithium tantalate crystal

Similar Documents

Publication Publication Date Title
US7708831B2 (en) Process for producing ZnO single crystal according to method of liquid phase growth
JP2007112700A (en) Crucible for growing crystal, single crystal, and method for growing the same
Ventura et al. Effects of Ni additions, trace elements and solidification kinetics on microstructure formation in Sn–0.7 Cu solder
TWI582277B (en) GaAs single crystal and GaAs single crystal wafer
DE112010003035B4 (en) Method and device for producing a semiconductor crystal
JP2012140285A (en) Method for producing silicon single crystal ingot
JP5446241B2 (en) Melt composition controlled unidirectionally solidified crystal growth apparatus and crystal growth method
JP4726138B2 (en) Quartz glass crucible
Takamatsu et al. Liquid-phase separation in the interdendritic region after growth of primary β-Sn in undercooled Sn-2.8 Ag-0.3 Cu melt
JP2000344595A (en) Method and apparatus for producing oxide single crystal
JP4144060B2 (en) Method for growing silicon single crystal
JP2007197269A (en) Crucible for growing crystal and method of growing single crystal
JP7436978B2 (en) Single crystal ingot, crystal growth die, and method for manufacturing single crystal
JP7403101B2 (en) Crucible for growing gallium oxide crystals
JP2005350324A (en) METHOD OF PRODUCING SiC SINGLE CRYSTAL
JP4742254B2 (en) Single crystal growth method
JP7078933B2 (en) Seed crystal for growing single crystal of iron gallium alloy
JP4746925B2 (en) Lithium tetraborate single crystal and its growth method
JP5001610B2 (en) Single crystal and manufacturing apparatus and manufacturing method thereof
JP6414408B2 (en) Method for producing silicon single crystal
JP2739547B2 (en) Method for producing lithium borate single crystal
JP2005306673A (en) Method for manufacturing single crystal
JPS6042293A (en) Manufacture of single crystal
JP2006327895A (en) Method for manufacturing compound semiconductor single crystal, vertical pbn vessel for the same, and method for selecting vessel
Chani Growth Phenomena and Crystal Chemistry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090304

A977 Report on retrieval

Effective date: 20101216

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101222

A02 Decision of refusal

Effective date: 20110421

Free format text: JAPANESE INTERMEDIATE CODE: A02