JP2006327895A - Method for manufacturing compound semiconductor single crystal, vertical pbn vessel for the same, and method for selecting vessel - Google Patents

Method for manufacturing compound semiconductor single crystal, vertical pbn vessel for the same, and method for selecting vessel Download PDF

Info

Publication number
JP2006327895A
JP2006327895A JP2005155735A JP2005155735A JP2006327895A JP 2006327895 A JP2006327895 A JP 2006327895A JP 2005155735 A JP2005155735 A JP 2005155735A JP 2005155735 A JP2005155735 A JP 2005155735A JP 2006327895 A JP2006327895 A JP 2006327895A
Authority
JP
Japan
Prior art keywords
single crystal
pbn
compound semiconductor
vertical
semiconductor single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005155735A
Other languages
Japanese (ja)
Other versions
JP2006327895A5 (en
Inventor
Hiroaki Yoshida
浩章 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2005155735A priority Critical patent/JP2006327895A/en
Publication of JP2006327895A publication Critical patent/JP2006327895A/en
Publication of JP2006327895A5 publication Critical patent/JP2006327895A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology by which a compound semiconductor single crystal can be manufactured in a stable and high yield. <P>SOLUTION: A vertical vessel 1b, made of pyrolytic boron nitride (PBN) and used for manufacturing the compound semiconductor single crystal, has an inner wall with which a droplet 2a of molten boron oxide forms a contact angle within a range of ≥80 and <140°. The compound semiconductor single crystal is manufactured by growing a GaAs single crystal or an InP single crystal by a vertical Bridgman method using the vessel. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は化合物半導体単結晶の製造技術に関し、特に熱分解窒化硼素(PBN)製縦型容器を用いて化合物半導体単結晶を製造する技術の改善に関する。   The present invention relates to a manufacturing technique of a compound semiconductor single crystal, and more particularly to improvement of a technique of manufacturing a compound semiconductor single crystal using a pyrolytic boron nitride (PBN) vertical container.

近年では、種々の化合物半導体単結晶を用いた種々の半導体デバイスが作製されており、化合物半導体単結晶の需要がますます高まっている。   In recent years, various semiconductor devices using various compound semiconductor single crystals have been produced, and the demand for compound semiconductor single crystals has been increasing.

図3の模式的断面図は、特許文献1の特許第3216298号公報に開示された化合物半導体単結晶の製造技術を図解している。図3に示された縦型PBN容器(坩堝とも称す)1において、少なくともGaAs種結晶3の設置部の内面に、酸化硼素層2が予め形成される。そして、坩堝1内で、種結晶3上にGaAs多結晶原料4が装填される。この状態の坩堝を用いて垂直ブリッジマン法や垂直温度勾配凝固法などによって種結晶3の上部からGaAs結晶を育成するとき、酸化硼素層2は、種結晶3と容器1との間隙にGaAs融液が流れ込んで容器内面に接触して多結晶化するという不都合を防止するように作用する。その結果、結晶性の改善されたGaAs単結晶の育成が可能になる。   The schematic cross-sectional view of FIG. 3 illustrates a manufacturing technique of a compound semiconductor single crystal disclosed in Japanese Patent No. 3216298 of Patent Document 1. In the vertical PBN container (also referred to as a crucible) 1 shown in FIG. 3, a boron oxide layer 2 is formed in advance on at least the inner surface of the installation portion of the GaAs seed crystal 3. Then, in the crucible 1, the GaAs polycrystalline raw material 4 is loaded on the seed crystal 3. When a GaAs crystal is grown from above the seed crystal 3 by the vertical Bridgman method or the vertical temperature gradient solidification method using the crucible in this state, the boron oxide layer 2 is fused with the GaAs melt in the gap between the seed crystal 3 and the container 1. It acts to prevent inconvenience that the liquid flows in and contacts the inner surface of the container to be polycrystallized. As a result, it becomes possible to grow a GaAs single crystal with improved crystallinity.

他方、図4の模式的断面図は、特許文献2の特開2003−146791号公報に開示された化合物半導体単結晶の製造技術を図解している。図4においては、清浄なPBN坩堝1を石英などの容器中に設置したのち、電気炉などによって空気中でその坩堝1を高温に加熱処理する。これによって、空気中の酸素と坩堝のPBN材料とを反応させて、PBN坩堝1の少なくとも内表面上に酸化硼素の薄膜2を形成する。酸化硼素被膜2が形成された坩堝1内において、化合物半導体種結晶3の上方に、多結晶化合物半導体原料4とともに適量の酸化硼素封止剤5が設置される。その後に、坩堝1内で化合物半導体単結晶を育成すれば、坩堝1の内面における酸化硼素膜2よる被覆不良が防止でき、結晶性の改善された化合物半導体単結晶が得られる。
特許第3216298号公報 特開2003−146791号公報
On the other hand, the schematic cross-sectional view of FIG. 4 illustrates a manufacturing technique of a compound semiconductor single crystal disclosed in Japanese Patent Laid-Open No. 2003-146791 of Patent Document 2. In FIG. 4, after a clean PBN crucible 1 is installed in a container such as quartz, the crucible 1 is heated to a high temperature in air by an electric furnace or the like. As a result, oxygen in the air reacts with the PBN material of the crucible to form a thin film 2 of boron oxide on at least the inner surface of the PBN crucible 1. In the crucible 1 in which the boron oxide film 2 is formed, an appropriate amount of boron oxide sealing agent 5 is placed above the compound semiconductor seed crystal 3 together with the polycrystalline compound semiconductor raw material 4. Thereafter, if the compound semiconductor single crystal is grown in the crucible 1, it is possible to prevent a coating defect due to the boron oxide film 2 on the inner surface of the crucible 1 and to obtain a compound semiconductor single crystal with improved crystallinity.
Japanese Patent No. 3216298 JP 2003-146791 A

特許文献1や特許文献2に開示されているように、PBN製の縦型容器1の内面において少なくとも化合物半導体種結晶の設置部を含む領域を予め酸化処理して酸化硼素被膜を形成すれば、種結晶からの結晶育成時における化合物半導体原料融液とPBN容器内面との直接接触が防止され、成長結晶中における結晶不良の発生を低減させる効果が得られる。しかし、その効果は完全ではなく、化合物半導体単結晶の製造において安定した単結晶収率を得ることは容易ではない。   As disclosed in Patent Document 1 and Patent Document 2, if a boron oxide film is formed by previously oxidizing the region including at least the installation portion of the compound semiconductor seed crystal on the inner surface of the vertical container 1 made of PBN, Direct contact between the compound semiconductor raw material melt and the inner surface of the PBN container during crystal growth from the seed crystal is prevented, and an effect of reducing the occurrence of crystal defects in the grown crystal can be obtained. However, the effect is not perfect, and it is not easy to obtain a stable single crystal yield in the production of a compound semiconductor single crystal.

そこで、本発明は、安定した高い収率で化合物半導体単結晶を製造し得る技術を提供することを目的としている。   Then, this invention aims at providing the technique which can manufacture a compound semiconductor single crystal with the stable high yield.

本発明によれば、化合物半導体単結晶の製造に用いられる縦型の熱分解窒化硼素(PBN)製容器は、溶融酸化硼素の液滴が80度以上140度未満の範囲内の接触角を生じる内壁を有していることを特徴としている。   According to the present invention, a vertical pyrolytic boron nitride (PBN) container used for manufacturing a compound semiconductor single crystal produces a contact angle of molten boron oxide droplets in the range of 80 degrees to less than 140 degrees. It is characterized by having an inner wall.

このような縦型PBN製容器を使用して化合物半導体単結晶を製造する方法によって、結晶性が改善された単結晶を安定した高い収率で得ることができる。   A single crystal with improved crystallinity can be obtained in a stable and high yield by a method of producing a compound semiconductor single crystal using such a vertical PBN container.

その化合物半導体単結晶製造方法において、縦型ブリッジマン法が好ましく利用され得る。化合物半導体単結晶として、GaAs単結晶やInP単結晶を育成することができる。   In the compound semiconductor single crystal manufacturing method, the vertical Bridgman method can be preferably used. As a compound semiconductor single crystal, a GaAs single crystal or an InP single crystal can be grown.

本発明において、縦型PBN容器を選別する方法は、容器の上端部からPBN切片を採取し、そのPBN切片において容器の内壁に対応する面上に酸化硼素粒子を載置し、不活性雰囲気下において酸化硼素粒子を溶融させてその液滴を形成し、その酸化硼素液滴がPBN切片の表面に対して80度以上140度未満の範囲内の接触角を生じるという条件を満たす容器を選別することを特徴としている。   In the present invention, the vertical PBN container is selected by collecting a PBN section from the upper end of the container, placing boron oxide particles on the surface of the PBN section corresponding to the inner wall of the container, and under an inert atmosphere. In which the boron oxide particles are melted to form droplets, and a container satisfying the condition that the boron oxide droplets generate a contact angle in the range of 80 degrees to less than 140 degrees with respect to the surface of the PBN slice is selected. It is characterized by that.

以上のような本発明による技術を用いることによって、安定した高い収率で化合物半導体単結晶を製造して提供することができる。   By using the technique according to the present invention as described above, a compound semiconductor single crystal can be produced and provided with a stable and high yield.

まず、特許文献1や特許文献2の技術によって安定した高い収率で化合物半導体単結晶の製造ができない原因を本発明者が検討した結果、縦型坩堝の材料であるPBNと坩堝内面に形成される酸化硼素融液との濡れ性に起因して、均一で適度な厚みの酸化硼素層が坩堝内面に形成されない場合に結晶不良の生じることが明らかとなった。   First, as a result of studying the reason why the compound semiconductor single crystal cannot be manufactured with a stable and high yield by the techniques of Patent Document 1 and Patent Document 2, the present inventors have formed PBN, which is a material of the vertical crucible, and the inner surface of the crucible. Due to the wettability with the boron oxide melt, it has been clarified that crystal defects occur when a boron oxide layer having a uniform and appropriate thickness is not formed on the inner surface of the crucible.

すなわち、酸化硼素融液に対するPBN坩堝内面の濡れ性がよすぎれば、形成される酸化硼素融液層が縦型坩堝内面の下方へ垂れてしまって坩堝内面を適度な厚みで均一に被覆することができなくなる。他方、PBN坩堝内面の濡れ性が悪い場合、酸化硼素融液層と坩堝内面との密着性が悪く、坩堝が室温に冷却された後において、坩堝内面に形成されている酸化硼素層が欠落しやすい。したがって、縦型PBN坩堝の少なくとも内面は酸化硼素融液に対して適度な濡れ性を有することが重要であり、それによって化合物半導体単結晶製造において単結晶の高収率を実現することができる。   That is, if the wettability of the inner surface of the PBN crucible with respect to the boron oxide melt is too good, the formed boron oxide melt layer hangs down below the inner surface of the vertical crucible and uniformly coats the inner surface of the crucible with an appropriate thickness. Can not be. On the other hand, when the wettability of the PBN crucible inner surface is poor, the adhesion between the boron oxide melt layer and the crucible inner surface is poor, and after the crucible is cooled to room temperature, the boron oxide layer formed on the crucible inner surface is missing. Cheap. Therefore, it is important that at least the inner surface of the vertical PBN crucible has an appropriate wettability with respect to the boron oxide melt, whereby a high yield of the single crystal can be realized in the production of the compound semiconductor single crystal.

図1は、本発明の実施例を説明するための縦型PBN容器の模式的断面図を示している。図1に示された縦型PBN容器1は、約100mmの直径と400mmの高さを有する本体部を備え、その下方にテーパ部と種結晶保持部を含んでいる。本実施例では、その図1に示されている縦型PBN容器が多数準備された。そして、それらのPBN容器1の内面における酸化硼素融液滴の接触角が求められ、表1に示されているように縦型容器グループA−Eが選別された。   FIG. 1 is a schematic cross-sectional view of a vertical PBN container for explaining an embodiment of the present invention. The vertical PBN container 1 shown in FIG. 1 includes a main body portion having a diameter of about 100 mm and a height of 400 mm, and includes a tapered portion and a seed crystal holding portion below the main body portion. In this example, a large number of vertical PBN containers shown in FIG. 1 were prepared. Then, the contact angles of the boron oxide melt droplets on the inner surface of those PBN containers 1 were determined, and the vertical container groups AE were selected as shown in Table 1.

Figure 2006327895
Figure 2006327895

表1における酸化硼素融液滴の接触角は、以下のような作業によって導出され得る。まず、図1中の破線によって示されているように、PBN製縦型容器1の上端部1aが約5mmの幅で切り出される。   The contact angle of the boron oxide melt droplets in Table 1 can be derived by the following operation. First, as indicated by a broken line in FIG. 1, the upper end portion 1a of the PBN vertical container 1 is cut out with a width of about 5 mm.

図2の模式的側面図において示されているように、5mm幅で切り出された上端部1aが、さらに約5mm角のPBN切片1bに分割される。ガス置換機構と加熱機構を有する小型密閉設備内において、約0.3〜0.5mmの粒径を有する一つの酸化硼素粒子が、PBN切片1bの一主面上に配置される。その一主面は、縦型PBN容器1の内面に相当する面である。そして、小型密閉設備内を窒素雰囲気にした後に、PBN切片1bが850℃まで加熱され、酸化硼素融液滴2aが生成される。このとき、PBN切片1b上の酸化硼素液滴2aの側面像が撮影される。この液滴像から、PBN切片1bの表面に対する酸化硼素融液滴の接触角θを直接決定する。   As shown in the schematic side view of FIG. 2, the upper end portion 1 a cut out with a width of 5 mm is further divided into PBN sections 1 b of about 5 mm square. In a small sealed facility having a gas replacement mechanism and a heating mechanism, one boron oxide particle having a particle size of about 0.3 to 0.5 mm is disposed on one main surface of the PBN slice 1b. One principal surface is a surface corresponding to the inner surface of the vertical PBN container 1. Then, after making the inside of the small sealed facility a nitrogen atmosphere, the PBN slice 1b is heated to 850 ° C., and a boron oxide melt droplet 2a is generated. At this time, a side image of the boron oxide droplet 2a on the PBN slice 1b is taken. From this droplet image, the contact angle θ of the boron oxide melt droplet with respect to the surface of the PBN slice 1b is directly determined.

図2に示されているように、接触角θは、酸化硼素融液滴2aの自由表面がPBN切片1bの表面に接する点におけるその自由表面の接線TLとPBN切片1bの表面とがなす角度として測定される。ただし、その接線TLとPBN切片1bの表面との間に液滴2aを含む角度が、接触角θとして測定される。   As shown in FIG. 2, the contact angle θ is an angle formed by the tangent TL of the free surface and the surface of the PBN segment 1b at the point where the free surface of the boron oxide molten droplet 2a contacts the surface of the PBN segment 1b. As measured. However, the angle including the droplet 2a between the tangent TL and the surface of the PBN slice 1b is measured as the contact angle θ.

表1のように選別された容器は熱処理炉内にて1リットル/分の酸素ガス流のもとで1000℃で5時間の熱処理が施され、容器内面に酸化硼素膜が形成された。その後、引き続いて酸素ガスを流しながら、容器を10℃/分で室温まで冷却した。   The containers selected as shown in Table 1 were heat-treated at 1000 ° C. for 5 hours under an oxygen gas flow of 1 liter / min in a heat treatment furnace to form a boron oxide film on the inner surface of the container. Thereafter, the container was cooled to room temperature at 10 ° C./min while oxygen gas was continuously flowed.

この縦型容器内において、軸方向として<100>方位を有するGaAs種結晶を種結晶保持部に設置し、GaAs多結晶原料の10Kgと酸化硼素の130gを順に収容した。この原料を収容した縦型容器を結晶育成炉内に設置し、垂直ボート法で単結晶を成長させた。すなわち、まず結晶育成炉内を昇温して多結晶原料を溶融させて種付けし、その後に温度勾配を10℃/cmに設定した炉中で縦型容器を速度5mm/hで移動させて結晶育成工程を完了させた。   In this vertical container, a GaAs seed crystal having the <100> orientation as the axial direction was placed in the seed crystal holding part, and 10 kg of GaAs polycrystalline raw material and 130 g of boron oxide were sequentially accommodated. A vertical vessel containing this raw material was placed in a crystal growth furnace, and a single crystal was grown by a vertical boat method. That is, the temperature in the crystal growth furnace is first raised to melt and seed the polycrystalline raw material, and then the vertical vessel is moved at a speed of 5 mm / h in the furnace set at a temperature gradient of 10 ° C./cm to produce crystals. The training process was completed.

表1において、得られた結晶の単結晶化率が示されている。この表1から分かるように、80度以上140度未満の接触角を有する縦型PBN容器を用いた場合(グループB、C、D)では、85%以上の高い収率(単結晶化率)で単結晶が得られた。他方、80度未満の接触角を有する縦型PBN容器を用いた場合(A)、わずかに40%の低い単結晶収率しか得られなかった。また、140度以上の接触角を有する縦型PBN容器を用いた場合(E)も、50%という低い単結晶化率であった。   In Table 1, the single crystallization ratio of the obtained crystal is shown. As can be seen from Table 1, when using a vertical PBN container having a contact angle of 80 degrees or more and less than 140 degrees (groups B, C, D), a high yield of 85% or more (single crystallization rate) A single crystal was obtained. On the other hand, when a vertical PBN container having a contact angle of less than 80 degrees was used (A), a single crystal yield of only 40% was obtained. Further, when a vertical PBN container having a contact angle of 140 ° or more was used (E), the single crystallization rate was as low as 50%.

なお、本実施例では縦型ボート法にて結晶成長を行った場合の事例を示したが、本発明の技術を垂直温度勾配凝固法に適用する場合においても全く同様の結果が得られる。また、本実施例ではGaAs単結晶育成の結果が示されたが、本発明の技術をInP単結晶育成に適用する場合においても同様の効果が得られる。   In this embodiment, the case where the crystal growth is performed by the vertical boat method is shown, but the same result can be obtained when the technique of the present invention is applied to the vertical temperature gradient solidification method. Moreover, although the result of GaAs single crystal growth was shown in the present Example, the same effect is acquired also when applying the technique of this invention to InP single crystal growth.

上述のように、PBN坩堝内面上の酸化硼素融液の接触角の測定に基づいて、酸化処理によってその坩堝内面上に適切かつ均一な厚みの酸化硼素層が形成され得るPBN容器を選定することができる。そして、そのように選定されたPBN坩堝を用いることによって、坩堝内への化合物半導体多結晶原料の投入時における酸化硼素層の欠落を防ぐことができ、化合物半導体単結晶の収率を飛躍的に向上させることができる。すなわち、実際に単結晶育成を行うまでもなく、PBN坩堝と酸化硼素融液との接触角を調べることによって、化合物半導体単結晶育成に適したPBN容器の良否を簡単に判別することができる。   As described above, based on the measurement of the contact angle of the boron oxide melt on the inner surface of the PBN crucible, selecting a PBN container capable of forming an appropriate and uniform boron oxide layer on the inner surface of the crucible by oxidation treatment. Can do. By using the PBN crucible thus selected, it is possible to prevent the boron oxide layer from being lost when the compound semiconductor polycrystalline raw material is charged into the crucible, and the yield of the compound semiconductor single crystal is drastically increased. Can be improved. That is, the quality of a PBN container suitable for compound semiconductor single crystal growth can be easily determined by examining the contact angle between the PBN crucible and the boron oxide melt without actually performing single crystal growth.

以上のように、本発明の化合物半導体単結晶製造技術によれば、安定した高い収率で化合物半導体単結晶を提供することができる。言うまでもなく、化合物半導体単結晶は、種々の半導体デバイスの製造に使用され得るものである。   As described above, according to the compound semiconductor single crystal manufacturing technique of the present invention, a compound semiconductor single crystal can be provided in a stable and high yield. Needless to say, the compound semiconductor single crystal can be used for manufacturing various semiconductor devices.

本発明の一実施例を説明するための縦型PBN坩堝の模式的断面図である。It is a typical sectional view of a vertical PBN crucible for explaining one example of the present invention. 図1の縦型PBN坩堝の上端部からの切片上における酸化硼素融液滴の接触角を示す模式的側面図である。FIG. 2 is a schematic side view showing a contact angle of a boron oxide melt droplet on a section from an upper end portion of the vertical PBN crucible of FIG. 1. 特許文献1に開示された化合物半導体単結晶製造技術を図解する模式的断面図である。1 is a schematic cross-sectional view illustrating a compound semiconductor single crystal manufacturing technique disclosed in Patent Document 1. FIG. 特許文献2に開示された化合物半導体単結晶製造技術を図解する模式的断面図である。10 is a schematic cross-sectional view illustrating the compound semiconductor single crystal manufacturing technique disclosed in Patent Document 2. FIG.

符号の説明Explanation of symbols

1 縦型PBN坩堝、1a PBN坩堝切片、2 酸化硼素層、2a 酸化硼素融液滴、3 窒化物半導体種結晶、4 化合物半導体多結晶原料、5 酸化硼素小片。   1 Vertical PBN crucible, 1a PBN crucible slice, 2 boron oxide layer, 2a boron oxide melt droplet, 3 nitride semiconductor seed crystal, 4 compound semiconductor polycrystalline material, 5 boron oxide piece.

Claims (6)

化合物半導体単結晶の製造に用いられる縦型の熱分解窒化硼素(PBN)製容器であって、溶融酸化硼素の液滴が80度以上140度未満の範囲内の接触角を生じる内壁を有することを特徴とする化合物半導体単結晶製造用縦型PBN容器。   A vertical pyrolytic boron nitride (PBN) container used for manufacturing a compound semiconductor single crystal, and having an inner wall in which molten boron oxide droplets generate a contact angle in the range of 80 degrees to less than 140 degrees A vertical PBN container for producing a compound semiconductor single crystal. 請求項1の縦型PBN製容器を使用して化合物半導体単結晶を育成することを特徴とする化合物半導体単結晶製造方法。   A compound semiconductor single crystal manufacturing method comprising growing a compound semiconductor single crystal using the vertical PBN container of claim 1. 縦型ブリッジマン法によって単結晶を育成することを特徴とする請求項2に記載の化合物半導体単結晶製造方法。   The method for producing a compound semiconductor single crystal according to claim 2, wherein the single crystal is grown by a vertical Bridgman method. GaAs単結晶を育成することを特徴とする請求項2または3に記載の化合物半導体単結晶製造方法。   4. The method for producing a compound semiconductor single crystal according to claim 2, wherein a GaAs single crystal is grown. InP単結晶を育成することを特徴とする請求項2または3に記載の化合物半導体単結晶製造方法。   4. The compound semiconductor single crystal manufacturing method according to claim 2, wherein an InP single crystal is grown. 請求項1の縦型PBN容器を選別する方法であって、前記容器の上端部からPBN切片を採取し、そのPBN切片において前記容器の内壁に対応する面上に酸化硼素粒子を載置し、不活性雰囲気下において前記酸化硼素粒子を溶融させてその液滴を形成し、前記酸化硼素液滴が前記PBN切片の表面に対して80度以上140度未満の範囲内の接触角を生じるという条件を満たす前記容器を選別することを特徴とする縦型PBN容器の選別方法。   The method for selecting a vertical PBN container according to claim 1, wherein a PBN section is collected from the upper end of the container, and boron oxide particles are placed on a surface corresponding to the inner wall of the container in the PBN section, A condition that the boron oxide particles are melted to form droplets in an inert atmosphere, and the boron oxide droplets generate a contact angle in the range of 80 degrees to less than 140 degrees with respect to the surface of the PBN slice. A method for sorting vertical PBN containers, wherein the containers satisfying the above conditions are sorted.
JP2005155735A 2005-05-27 2005-05-27 Method for manufacturing compound semiconductor single crystal, vertical pbn vessel for the same, and method for selecting vessel Pending JP2006327895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005155735A JP2006327895A (en) 2005-05-27 2005-05-27 Method for manufacturing compound semiconductor single crystal, vertical pbn vessel for the same, and method for selecting vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005155735A JP2006327895A (en) 2005-05-27 2005-05-27 Method for manufacturing compound semiconductor single crystal, vertical pbn vessel for the same, and method for selecting vessel

Publications (2)

Publication Number Publication Date
JP2006327895A true JP2006327895A (en) 2006-12-07
JP2006327895A5 JP2006327895A5 (en) 2008-04-17

Family

ID=37549977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005155735A Pending JP2006327895A (en) 2005-05-27 2005-05-27 Method for manufacturing compound semiconductor single crystal, vertical pbn vessel for the same, and method for selecting vessel

Country Status (1)

Country Link
JP (1) JP2006327895A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115537773A (en) * 2022-10-08 2022-12-30 广东先导微电子科技有限公司 Preparation method of PBN crucible

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06239686A (en) * 1993-02-17 1994-08-30 Sumitomo Electric Ind Ltd Vertical vessel for growing compound semiconductor crystal
JPH11199362A (en) * 1998-01-20 1999-07-27 Kobe Steel Ltd Production of compound semiconductor single crystal
JP2003146791A (en) * 2001-11-19 2003-05-21 Sumitomo Metal Mining Co Ltd Method of manufacturing compound semiconductor single crystal
JP2004292308A (en) * 2003-03-13 2004-10-21 Sumitomo Electric Ind Ltd InP SUBSTRATE AND METHOD FOR MANUFACTURING THE SAME

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06239686A (en) * 1993-02-17 1994-08-30 Sumitomo Electric Ind Ltd Vertical vessel for growing compound semiconductor crystal
JPH11199362A (en) * 1998-01-20 1999-07-27 Kobe Steel Ltd Production of compound semiconductor single crystal
JP2003146791A (en) * 2001-11-19 2003-05-21 Sumitomo Metal Mining Co Ltd Method of manufacturing compound semiconductor single crystal
JP2004292308A (en) * 2003-03-13 2004-10-21 Sumitomo Electric Ind Ltd InP SUBSTRATE AND METHOD FOR MANUFACTURING THE SAME

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115537773A (en) * 2022-10-08 2022-12-30 广东先导微电子科技有限公司 Preparation method of PBN crucible

Similar Documents

Publication Publication Date Title
KR101979130B1 (en) Method for growing beta phase of gallium oxide (β-Ga2O3) single crystals from the melt contained within a metal crucible
KR101235772B1 (en) Method for growing silicon carbide single crystal
CN102449208B (en) Process for producing SiC single crystal
JP2007076986A (en) Method for manufacturing silicon carbide single crystal
JP2009126770A (en) Method for growing silicon carbide single crystal
WO2014050585A1 (en) Crucible for growing sapphire single crystal, and method for producing crucible for growing sapphire single crystal
JP4810346B2 (en) Method for producing sapphire single crystal
KR101152857B1 (en) Method for growing silicon carbide single crystal
CN102146583A (en) Method for pulling a single crystal composed of silicon from a melt contained in a crucible, and single crystal produced thereby
JP2010076954A (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL, REACTION VESSEL FOR PRODUCING THE SAME AND APPARATUS FOR PRODUCING THE SAME
JP2009274905A (en) Crucible for melting silicon
JP2006327895A (en) Method for manufacturing compound semiconductor single crystal, vertical pbn vessel for the same, and method for selecting vessel
JP2007119297A (en) Method for production of high-melting point single crystal material
JP5428706B2 (en) Method for producing SiC single crystal
JP5326865B2 (en) Method for producing sapphire single crystal
TWI793167B (en) Gallium Arsenide Compound Semiconductor Crystal and Wafer Group
JP2007045640A (en) Forming method of semiconductor bulk crystal
JP4200690B2 (en) GaAs wafer manufacturing method
JP2006160586A (en) Method for manufacturing compound semiconductor single crystal
JP2011126731A (en) Sapphire single crystal and method for producing the same
JP2000154089A (en) B2o3 material for coating surface of wall of crucible, its production, production of single crystal using same and single crystal produced by said production
JP6142208B1 (en) Die pack, sapphire single crystal growing apparatus, and sapphire single crystal growing method
CN109898135B (en) β-Ga2O3Method for manufacturing single crystal-based substrate
JP2018080063A (en) METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL
JP4719427B2 (en) Pyrolytic boron nitride crucible and single crystal growth method using the same

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20080304

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Effective date: 20080304

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20091208

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20091215

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100511