JP4719427B2 - Pyrolytic boron nitride crucible and single crystal growth method using the same - Google Patents

Pyrolytic boron nitride crucible and single crystal growth method using the same Download PDF

Info

Publication number
JP4719427B2
JP4719427B2 JP2004124471A JP2004124471A JP4719427B2 JP 4719427 B2 JP4719427 B2 JP 4719427B2 JP 2004124471 A JP2004124471 A JP 2004124471A JP 2004124471 A JP2004124471 A JP 2004124471A JP 4719427 B2 JP4719427 B2 JP 4719427B2
Authority
JP
Japan
Prior art keywords
crucible
compound semiconductor
single crystal
boron nitride
hbn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004124471A
Other languages
Japanese (ja)
Other versions
JP2005306646A (en
Inventor
浩章 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2004124471A priority Critical patent/JP4719427B2/en
Publication of JP2005306646A publication Critical patent/JP2005306646A/en
Application granted granted Critical
Publication of JP4719427B2 publication Critical patent/JP4719427B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は熱分解窒化ホウ素坩堝に関し、特に化合物半導体単結晶の育成に用いられる縦型の熱分解窒化ホウ素坩堝の改善に関する。   The present invention relates to a pyrolytic boron nitride crucible, and more particularly to an improvement of a vertical pyrolytic boron nitride crucible used for growing a compound semiconductor single crystal.

図2において、特許文献1の特許第3216298号公報に開示された化合物半導体単結晶の育成方法が、模式的な断面図で図解されている。この図によれば、熱分解窒化ホウ素の縦型坩堝1の内面が、酸化ホウ素膜2で被覆されている。そのような酸化ホウ素膜2は、窒化ホウ素の坩堝1の内面を高温で酸化させることによって形成することができる。縦型坩堝1はその底部に種結晶収容部1aを有し、その種結晶収容部1aはテーパ部1bを介して坩堝1の本体部に接続されている。   In FIG. 2, the method for growing a compound semiconductor single crystal disclosed in Japanese Patent No. 3216298 of Patent Document 1 is illustrated in a schematic cross-sectional view. According to this figure, the inner surface of the pyrolytic boron nitride vertical crucible 1 is covered with a boron oxide film 2. Such a boron oxide film 2 can be formed by oxidizing the inner surface of the boron nitride crucible 1 at a high temperature. The vertical crucible 1 has a seed crystal accommodating portion 1a at the bottom thereof, and the seed crystal accommodating portion 1a is connected to the main body of the crucible 1 via a tapered portion 1b.

種結晶収容部1aには化合物半導体種結晶3が装填され、坩堝1の本体部内には化合物半導体原料4が収納される。そして、化合物半導体原料4と種結晶3の上部が融解させられて、その原料融液が種結晶3に種付けされ、その後に種結晶3から周知の一方向凝固させることによって原料融液から化合物半導体単結晶が育成される。
特許第3216298号公報
A compound semiconductor seed crystal 3 is loaded in the seed crystal accommodating portion 1 a, and a compound semiconductor raw material 4 is accommodated in the main body portion of the crucible 1. Then, the upper part of the compound semiconductor raw material 4 and the seed crystal 3 is melted, and the raw material melt is seeded on the seed crystal 3, and then the well-known unidirectional solidification from the seed crystal 3 makes the compound semiconductor from the raw material melt. A single crystal is grown.
Japanese Patent No. 3216298

一般に、熱分解窒化ホウ素坩堝を用いて化合物半導体単結晶を育成する場合、化合物半導体融液が窒化ホウ素坩堝の内壁に直接接すれば、その内壁の不均一性などに起因して結晶核が生じやすく、それらの結晶核から多結晶化しやすいことが知られている。したがって、特許文献1においては、化合物半導体融液と窒化ホウ素坩堝の内壁との直接接触を防止するために、坩堝内壁に酸化ホウ素膜を形成しているのである。   In general, when a compound semiconductor single crystal is grown using a pyrolytic boron nitride crucible, if the compound semiconductor melt is in direct contact with the inner wall of the boron nitride crucible, crystal nuclei are likely to occur due to non-uniformity of the inner wall. It is known that polycrystallization is easy from these crystal nuclei. Therefore, in Patent Document 1, in order to prevent direct contact between the compound semiconductor melt and the inner wall of the boron nitride crucible, a boron oxide film is formed on the inner wall of the crucible.

しかし、本発明者が特許文献1に開示された方法によって化合物半導体単結晶を育成したところ、未だ十分には単結晶育成中の多結晶化を防止することができず、化合物半導体単結晶を高い収率で製造できないことが分かった。   However, when the present inventor has grown a compound semiconductor single crystal by the method disclosed in Patent Document 1, it still cannot sufficiently prevent polycrystallization during the single crystal growth, and the compound semiconductor single crystal has a high It turned out that it cannot manufacture in a yield.

そこで、本発明は、特許文献1に開示された方法において化合物半導体単結晶の収率が十分には高くないことの原因を究明し、より高い収率で化合物半導体単結晶を育成し得る方法を開発することを目的としている。   Therefore, the present invention investigates the reason why the yield of the compound semiconductor single crystal is not sufficiently high in the method disclosed in Patent Document 1, and provides a method capable of growing the compound semiconductor single crystal with a higher yield. The purpose is to develop.

本発明によれば、化合物半導体単結晶育成用の縦型の熱分解窒化ホウ素坩堝はその本体部の底部に種結晶収容部を有し、坩堝の熱分解窒化ホウ素に含まれる六方晶のc面からのX線回折強度I(hBN)とその六方晶より広い面間隔を有する乱層構造のc面からのX線回折強度I(tBN)との比率I(hBN)/[I(hBN)+I(tBN)]が0以上で0.1未満または0.9以上で1.0以下であり、坩堝の内面の少なくとも所望の領域は酸化ホウ素膜で被覆されていることを特徴としている。なお、熱分解窒化ホウ素坩堝は、その内面全体が酸化ホウ素膜で被覆されていることが好ましい。 According to the present invention, a vertical pyrolytic boron nitride crucible for growing a compound semiconductor single crystal has a seed crystal accommodating portion at the bottom of its main body, and a hexagonal c-plane contained in the pyrolytic boron nitride of the crucible. Between the X-ray diffraction intensity I (hBN) from the C-plane and the X-ray diffraction intensity I (tBN) from the c-plane of the disordered layer structure having a wider plane spacing than the hexagonal crystal I (hBN) / [I (hBN) + I (TBN)] is 0 or more and less than 0.1 or 0.9 or more and 1.0 or less, and at least a desired region on the inner surface of the crucible is covered with a boron oxide film. In addition, it is preferable that the entire inner surface of the pyrolytic boron nitride crucible is covered with a boron oxide film.

このような坩堝を用いて化合物半導体単結晶を育成する方法においては、坩堝底部の種結晶収容部内に化合物半導体種結晶を装填し、坩堝の本体部に化合物半導体原料と酸化ホウ素封止材を収容し、酸化ホウ素封止材と化合物半導体原料を融解してその封止材の融液で被覆された原料融液を生成させ、そして種結晶からの一方向凝固によって原料融液から化合物半導体単結晶を育成することを特徴としている。このような化合物半導体単結晶の育成方法において、特にGaAsまたはInPの単結晶が好ましく育成され得る。   In the method of growing a compound semiconductor single crystal using such a crucible, the compound semiconductor seed crystal is loaded into the seed crystal housing portion at the bottom of the crucible, and the compound semiconductor raw material and the boron oxide sealing material are housed in the crucible body. Then, the boron oxide sealing material and the compound semiconductor raw material are melted to form a raw material melt coated with the melt of the sealing material, and the compound semiconductor single crystal is formed from the raw material melt by unidirectional solidification from the seed crystal. It is characterized by nurturing. In such a compound semiconductor single crystal growth method, a GaAs or InP single crystal can be preferably grown.

本発明によって開発された熱分解窒化ホウ素坩堝を用いて化合物半導体単結晶を育成すれば、窒化ホウ素坩堝の内壁に熱酸化で形成される酸化ホウ素膜の厚さが均一であるので、化合物半導体単結晶育成中の多結晶化が回避され、化合物半導体単結晶の収率が改善され得る。   When a compound semiconductor single crystal is grown using the pyrolytic boron nitride crucible developed according to the present invention, the thickness of the boron oxide film formed by thermal oxidation on the inner wall of the boron nitride crucible is uniform. Polycrystallization during crystal growth can be avoided and the yield of the compound semiconductor single crystal can be improved.

本発明をなすに際して、本発明者はまず、特許文献1の化合物半導体単結晶育成方法で十分な単結晶収率が得られない原因について検討した。その結果、十分な単結晶収率が得られない原因として、坩堝の材料である熱分解窒化ホウ素中の結晶子の構造が影響していることが明らかになった。   In making the present invention, the present inventor first examined the reason why a sufficient single crystal yield was not obtained by the compound semiconductor single crystal growth method of Patent Document 1. As a result, it has been clarified that the crystallite structure in pyrolytic boron nitride, which is a material of the crucible, has an influence as a reason why a sufficient single crystal yield cannot be obtained.

すなわち、坩堝材料の熱分解窒化ホウ素中には、六方晶構造を有する結晶子と、その六方晶構造のc面すなわち{0001}面より大きな面間隔のc面を有する乱層構造の結晶子とが混在している。このように2種類の異なる結晶構造の結晶子が混在している場合、坩堝内面に形成される酸化ホウ素膜の厚さのばらつきが大きくなり、安定した化合物半導体単結晶の成長が困難であった。そして、熱分解窒化ホウ素坩堝の内壁を熱酸化して酸化ホウ素膜を形成する場合、その厚みを均一にするためには、その坩堝が六方晶構造の結晶子または乱層構造の結晶子のいずれか一方を主に含むことが望ましいとの結論に至った。   That is, in the pyrolytic boron nitride of the crucible material, a crystallite having a hexagonal crystal structure and a crystallite having a disordered layer structure having a c-plane having a larger interplanar spacing than the c-plane of the hexagonal crystal structure, ie, {0001} plane Are mixed. When crystallites of two different crystal structures are mixed in this way, the variation in the thickness of the boron oxide film formed on the inner surface of the crucible becomes large, and it is difficult to grow a stable compound semiconductor single crystal. . When the inner wall of the pyrolytic boron nitride crucible is thermally oxidized to form a boron oxide film, in order to make the thickness uniform, the crucible is either a hexagonal crystal structure or a disordered crystal structure crystallite. It came to the conclusion that it is desirable to mainly include one of them.

本発明者は、このような検討結果に基づいて、六方晶構造の結晶子と乱層構造の結晶子を種々の割合で含む熱分解窒化ホウ素坩堝を作製し、それらの坩堝を用いて化合物半導体単結晶の育成を試みた。なお、熱分解窒化ホウ素坩堝は、一般に次のようにして作製することができる。   Based on such examination results, the present inventor has produced pyrolytic boron nitride crucibles containing hexagonal crystallites and disordered layer crystallites in various proportions, and compound semiconductors using these crucibles. Attempts were made to grow single crystals. In general, the pyrolytic boron nitride crucible can be manufactured as follows.

例えば、ハロゲン化ホウ素とアンモニアを原料として、黒鉛などの基体の表面に熱分解窒化ホウ素層を化学気相堆積(CVD)させる。そして、その熱分解窒化ホウ素層から黒鉛基体を分離除去することによって、熱分解窒化ホウ素坩堝が得られる。このようにして得られる熱分解窒化ホウ素坩堝は、1〜2mm程度の肉厚に形成され得る。   For example, a pyrolytic boron nitride layer is chemically vapor deposited (CVD) on the surface of a substrate such as graphite using boron halide and ammonia as raw materials. And a pyrolytic boron nitride crucible is obtained by separating and removing the graphite substrate from the pyrolytic boron nitride layer. The pyrolytic boron nitride crucible thus obtained can be formed to a thickness of about 1 to 2 mm.

この際に、熱分解窒化ホウ素坩堝に含まれる六方晶構造の結晶子と乱層構造の結晶子との比率は、CVD時の基体温度、反応ガス比、反応ガス圧、堆積速度などに依存して変化し得る。すなわち、CVD条件を調節することによって、六方晶構造の結晶子と乱層構造の結晶子とを種々の比率で含む熱分解窒化ホウ素坩堝を作製することができる。   At this time, the ratio of the hexagonal crystallites and the disordered crystallites contained in the pyrolytic boron nitride crucible depends on the substrate temperature, reaction gas ratio, reaction gas pressure, deposition rate, etc. during CVD. Can change. That is, by adjusting the CVD conditions, pyrolytic boron nitride crucibles containing hexagonal crystallites and disordered layer crystallites in various ratios can be produced.

このように、CVD条件を種々に変更することによって、本発明者は六方晶構造の結晶子と乱層構造の結晶子とを種々の比率で含む熱分解窒化ホウ素坩堝を作製し、それらの坩堝を用いて化合物半導体単結晶の育成を行った。作製された熱分解窒化ホウ素坩堝の本体部は、約100mmの直径と約400mmの高さを有していた。その坩堝本体部の底部には、テーパ部を介して種結晶収容部が接続されていた。   In this way, by changing the CVD conditions in various ways, the present inventors have produced pyrolytic boron nitride crucibles containing hexagonal crystallites and disordered layer crystallites in various ratios, and these crucibles. The compound semiconductor single crystal was grown using The main part of the produced pyrolytic boron nitride crucible had a diameter of about 100 mm and a height of about 400 mm. The seed crystal accommodating part was connected to the bottom part of the crucible main body part via the taper part.

また、これらの熱分解窒化ホウ素坩堝に含まれる結晶子の結晶構造が、X線回折によって調べられた。ここで、六方晶構造の{0002}面からのX線回折ピークプロファイル下の面積をI(hBN)で表し、そのピークの近傍に重畳して現れる乱層構造からの回折ピークプロファイル下の面積をI(tBN)で表す。そして、六方晶構造の結晶子と乱層構造の結晶子との比率が、回折強度比I(hBN)/[I(hBN)+I(tBN)]で表されることとする。このようなX線回折強度比を基準として、表1に示されているように、熱分解窒化ホウ素坩堝がグループAからFまでに分類された。   The crystal structure of the crystallites contained in these pyrolytic boron nitride crucibles was examined by X-ray diffraction. Here, the area under the X-ray diffraction peak profile from the {0002} plane of the hexagonal structure is represented by I (hBN), and the area under the diffraction peak profile from the disordered layer structure appearing in the vicinity of the peak is expressed as I (hBN). I (tBN). The ratio of the hexagonal crystallite and the disordered crystallite is expressed by a diffraction intensity ratio I (hBN) / [I (hBN) + I (tBN)]. Based on such X-ray diffraction intensity ratio, pyrolytic boron nitride crucibles were classified into groups A to F as shown in Table 1.

なお、六方晶構造からのX線回折ピークと乱層構造からの回折ピークとは、市販のピーク分離専用ソフトを用いて、ピアソン7関数を仮定して最小2乗法によってピーク分離された。   The X-ray diffraction peak from the hexagonal structure and the diffraction peak from the disordered layer structure were separated by the least square method assuming a Pearson 7 function using commercially available peak separation software.

Figure 0004719427
Figure 0004719427

表1においてグループAからFまでに分類された熱分解窒化ホウ素坩堝の各々の内面には、酸化ホウ素膜が形成された。この酸化ホウ素膜は、熱処理炉内において1リットル/分の流量で酸素ガスを流しながら、熱分解窒化ホウ素坩堝を1000℃で5時間熱処理することによって形成された。その酸化ホウ素膜の形成後は、引き続いて炉内に酸素ガスを流しながら、10℃/分の速度で坩堝が室温まで冷却された。   A boron oxide film was formed on the inner surface of each of the pyrolytic boron nitride crucibles classified into groups A to F in Table 1. This boron oxide film was formed by heat treating a pyrolytic boron nitride crucible at 1000 ° C. for 5 hours while flowing oxygen gas at a flow rate of 1 liter / min in a heat treatment furnace. After the formation of the boron oxide film, the crucible was cooled to room temperature at a rate of 10 ° C./min while oxygen gas was continuously passed through the furnace.

図1は、こうして作製された単結晶育成用の縦型坩堝を用いて化合物半導体単結晶を育成する方法を模式的断面図で図解している。ここに示された熱分解窒化ホウ素坩堝11の本体部は、前述のように約100mmの直径と約400mmの高さを有していた。そして、その坩堝本体の底部には、種結晶収容部11aがテーパ部11bを介して接続されていた。また、坩堝11の内面には、前述の方法によって酸化ホウ素膜2が形成されていた。   FIG. 1 is a schematic cross-sectional view illustrating a method for growing a compound semiconductor single crystal using the vertical crucible for single crystal growth thus produced. The main body of the pyrolytic boron nitride crucible 11 shown here had a diameter of about 100 mm and a height of about 400 mm as described above. And the seed crystal accommodating part 11a was connected to the bottom part of the crucible main body via the taper part 11b. Further, the boron oxide film 2 was formed on the inner surface of the crucible 11 by the method described above.

坩堝11の底部に設けられた種結晶収容部11a内には、GaAs種結晶3が装填された。GaAs結晶は立法晶系構造を有し、GaAs種結晶3の長手軸方向は結晶学的な<001>方向に平行であった。坩堝11の本体部内には、10kgのGaAs多結晶原料4と130gの酸化ホウ素封止材5が収容された。   A GaAs seed crystal 3 was loaded in the seed crystal accommodating portion 11 a provided at the bottom of the crucible 11. The GaAs crystal had a cubic structure, and the longitudinal axis direction of the GaAs seed crystal 3 was parallel to the crystallographic <001> direction. In the main body of the crucible 11, 10 kg of GaAs polycrystalline raw material 4 and 130 g of boron oxide sealing material 5 were accommodated.

原料を収容した坩堝11は縦型の単結晶育成炉内に設置され、酸化ホウ素封止材5とGaAs多結晶原料4が融解された。また、GaAs種結晶3の上部も融解され、GaAs原料4の融液がその種結晶3に種付けされた。この際の固液界面近傍において、単結晶育成炉は10℃/cmの温度勾配を有するように設定されていた。その後、炉内で坩堝11が5mm/時の速度で降下させられ、種結晶3からの一方向凝固によって原料4の融液からGaAs単結晶が育成された。   The crucible 11 containing the raw material was placed in a vertical single crystal growth furnace, and the boron oxide sealing material 5 and the GaAs polycrystalline raw material 4 were melted. The upper part of the GaAs seed crystal 3 was also melted, and the melt of the GaAs raw material 4 was seeded on the seed crystal 3. In the vicinity of the solid-liquid interface at this time, the single crystal growth furnace was set to have a temperature gradient of 10 ° C./cm. Thereafter, the crucible 11 was lowered at a rate of 5 mm / hour in the furnace, and a GaAs single crystal was grown from the melt of the raw material 4 by unidirectional solidification from the seed crystal 3.

以上のようにして、表1中のグループAからFの坩堝を用いてGaAs単結晶の育成を行った結果として、育成回数、単結晶実現回数、および単結晶化率(%)が同じ表1中に示されている。   As described above, as a result of growing a GaAs single crystal using the crucibles of groups A to F in Table 1, the number of times of growth, the number of times of single crystal realization, and the single crystallization rate (%) are the same. Shown in.

表1から明らかなように、X線回折強度比I(hBN)/[I(hBN)+I(tBN)]が0以上で0.3未満の範囲内にあるグループAとBに属する坩堝を用いた場合に、90%以上の高い収率でGaAs単結晶が得られることが分かる。また、X線回折強度比I(hBN)/[I(hBN)+I(tBN)]が0.7以上で1.0以下の範囲内にあるグループEとFに属する坩堝を用いた場合には、100%の収率でGaAs単結晶が得られることが分かる。   As is clear from Table 1, crucibles belonging to groups A and B in which the X-ray diffraction intensity ratio I (hBN) / [I (hBN) + I (tBN)] is in the range of 0 to less than 0.3 are used. It can be seen that a GaAs single crystal can be obtained with a high yield of 90% or more. In addition, when using crucibles belonging to groups E and F in which the X-ray diffraction intensity ratio I (hBN) / [I (hBN) + I (tBN)] is within the range of 0.7 to 1.0 It can be seen that a GaAs single crystal is obtained with a yield of 100%.

しかし、X線回折強度比I(hBN)/[I(hBN)+I(tBN)]が0.3以上で0.5未満の範囲内および0.5以上で0.7未満の範囲内にあるそれぞれのグループCおよびDに属する坩堝を用いた場合には、GaAs単結晶がそれぞれ33%および29%の極めて低い収率でしか得られていないことが分かる。   However, the X-ray diffraction intensity ratio I (hBN) / [I (hBN) + I (tBN)] is in the range of 0.3 to less than 0.5 and in the range of 0.5 to less than 0.7. It can be seen that when the crucibles belonging to the respective groups C and D are used, GaAs single crystals are obtained only at extremely low yields of 33% and 29%, respectively.

すなわち、熱分解窒化ホウ素坩堝の内面を酸化して酸化ホウ素膜を形成することによって化合物半導体原料融液と熱分解窒化ホウ素表面との直接接触を防止して単結晶収率を高めようとする場合、その坩堝の熱分解窒化ホウ素には六方晶構造の結晶子と乱層構造の結晶子のいずれか一方が主体的に含まれていることが望まれる。換言すれば、熱分解窒化ホウ素坩堝のX線回折強度比I(hBN)/[I(hBN)+I(tBN)]が、0.3未満または0.7以上のいずれか一方の状態にあることが望まれる。   That is, when the inner surface of the pyrolytic boron nitride crucible is oxidized to form a boron oxide film to prevent direct contact between the compound semiconductor raw material melt and the pyrolytic boron nitride surface, thereby increasing the single crystal yield It is desirable that the pyrolytic boron nitride of the crucible mainly contains either a hexagonal crystallite or a disordered crystallite. In other words, the X-ray diffraction intensity ratio I (hBN) / [I (hBN) + I (tBN)] of the pyrolytic boron nitride crucible is in a state of less than 0.3 or 0.7 or more. Is desired.

この理由としては、坩堝の熱分解窒化ホウ素に六方晶構造の結晶子と乱層構造の結晶子のいずれか一方が主体的に含まれている場合には、坩堝内面に熱酸化によって均一な厚さの酸化ホウ素膜を形成し得るので、GaAs原料融液が坩堝内面の熱分解窒化ホウ素に直接接触することをより確実に防止し得るからであると考えられる。   The reason for this is that when the pyrolytic boron nitride of the crucible mainly contains either a hexagonal crystallite or a turbulent crystallite, the inner surface of the crucible has a uniform thickness by thermal oxidation. This is probably because the GaAs raw material melt can be more reliably prevented from coming into direct contact with the pyrolytic boron nitride on the inner surface of the crucible.

なお、表1においてはGaAsの単結晶が育成されたが、InPの単結晶を育成した場合においても同様の傾向を生じた。   In Table 1, a GaAs single crystal was grown, but the same tendency was observed when an InP single crystal was grown.

以上のように、本発明による化合物半導体単結晶育成用の縦型坩堝を用いて化合物半導体単結晶を製造することによって、多結晶化を抑制して高品質の化合物半導体単結晶を高い収率で得ることができる。   As described above, by manufacturing a compound semiconductor single crystal using the vertical crucible for growing a compound semiconductor single crystal according to the present invention, a high-quality compound semiconductor single crystal can be obtained at a high yield while suppressing polycrystallization. Obtainable.

本発明による単結晶育成用坩堝を用いて化合物半導体単結晶を育成する方法を模式的断面図で図解している。The method of growing a compound semiconductor single crystal using the crucible for single crystal growth according to the present invention is illustrated by a schematic cross-sectional view. 先行技術による単結晶育成用坩堝を用いて化合物半導体単結晶を育成する方法を模式的断面図で図解している。A method for growing a compound semiconductor single crystal using a conventional single crystal growth crucible is illustrated in schematic cross-sectional view.

符号の説明Explanation of symbols

1、 熱分解窒化ホウ素坩堝、1a 種結晶収容部、1b 坩堝のテーパ部、2 酸化ホウ素膜、3 化合物半導体種結晶、4 化合物半導体原料、5 酸化ホウ素封止材、11 熱分解窒化ホウ素坩堝、11a 種結晶収容部、11b 坩堝のテーパ部。   1, pyrolytic boron nitride crucible, 1a seed crystal accommodating portion, 1b taper portion of crucible, 2 boron oxide film, 3 compound semiconductor seed crystal, 4 compound semiconductor raw material, 5 boron oxide sealing material, 11 pyrolytic boron nitride crucible, 11a Seed crystal accommodating portion, 11b Tapered portion of crucible.

Claims (5)

化合物半導体単結晶育成用の縦型の熱分解窒化ホウ素坩堝であって、
前記坩堝はその本体部の底部に種結晶収容部を有し、
前記坩堝の熱分解窒化ホウ素に含まれる六方晶のc面からのX線回折強度I(hBN)とその六方晶より広い面間隔を有する乱層構造のc面からのX線回折強度I(tBN)との比率I(hBN)/[I(hBN)+I(tBN)]が0以上で0.1未満または0.9以上で1.0以下であり、
前記坩堝の内面の少なくとも所望の領域は酸化ホウ素膜で被覆されていることを特徴とする坩堝。
A vertical pyrolytic boron nitride crucible for compound semiconductor single crystal growth,
The crucible has a seed crystal container at the bottom of the main body,
X-ray diffraction intensity I (hBN) from the hexagonal c-plane contained in the pyrolytic boron nitride of the crucible and X-ray diffraction intensity I (tBN) from the c-plane of the layered structure having a larger plane spacing than the hexagonal crystal. ) Ratio I (hBN) / [I (hBN) + I (tBN)] is 0 or more and less than 0.1 or 0.9 or more and 1.0 or less,
A crucible characterized in that at least a desired region of the inner surface of the crucible is covered with a boron oxide film.
前記坩堝の内面全体が前記酸化ホウ素膜で被覆されていることを特徴とする請求項1に記載の坩堝。   The crucible according to claim 1, wherein the entire inner surface of the crucible is covered with the boron oxide film. 請求項1または2に記載された坩堝を用いて化合物半導体単結晶を育成する方法であって、
前記種結晶収容部内に化合物半導体種結晶を装填し、
前記坩堝の本体部に化合物半導体原料と酸化ホウ素封止材を収容し、
前記酸化ホウ素封止材と前記化合物半導体原料を融解して、前記封止材の融液で被覆された原料融液を生成させ、
その後に、前記種結晶からの一方向凝固によって前記原料融液から化合物半導体単結晶を育成することを特徴とする単結晶育成方法。
A method for growing a compound semiconductor single crystal using the crucible according to claim 1, comprising:
A compound semiconductor seed crystal is loaded into the seed crystal accommodating portion,
A compound semiconductor raw material and a boron oxide sealing material are accommodated in the main body of the crucible,
Melting the boron oxide sealing material and the compound semiconductor raw material to produce a raw material melt coated with the sealing material melt;
Thereafter, a compound semiconductor single crystal is grown from the raw material melt by unidirectional solidification from the seed crystal.
前記化合物半導体はGaAsまたはInPであることを特徴とする請求項3に記載の単結晶育成方法。   The single crystal growth method according to claim 3, wherein the compound semiconductor is GaAs or InP. 化合物半導体単結晶育成用の縦型の熱分解窒化ホウ素坩堝であって、
前記坩堝はその本体部の底部に種結晶収容部を有し、
前記坩堝の熱分解窒化ホウ素に含まれる六方晶のc面からのX線回折強度I(hBN)とその六方晶より広い面間隔を有する乱層構造のc面からのX線回折強度I(tBN)との比率I(hBN)/[I(hBN)+I(tBN)]が0以上で0.1未満または0.9以上で1.0以下であることを特徴とする坩堝。
A vertical pyrolytic boron nitride crucible for compound semiconductor single crystal growth,
The crucible has a seed crystal container at the bottom of the main body,
X-ray diffraction intensity I (hBN) from the hexagonal c-plane contained in the pyrolytic boron nitride of the crucible and X-ray diffraction intensity I (tBN) from the c-plane of the layered structure having a larger plane spacing than the hexagonal crystal. The ratio I (hBN) / [I (hBN) + I (tBN)] is 0 or more and less than 0.1, or 0.9 or more and 1.0 or less.
JP2004124471A 2004-04-20 2004-04-20 Pyrolytic boron nitride crucible and single crystal growth method using the same Expired - Fee Related JP4719427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004124471A JP4719427B2 (en) 2004-04-20 2004-04-20 Pyrolytic boron nitride crucible and single crystal growth method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004124471A JP4719427B2 (en) 2004-04-20 2004-04-20 Pyrolytic boron nitride crucible and single crystal growth method using the same

Publications (2)

Publication Number Publication Date
JP2005306646A JP2005306646A (en) 2005-11-04
JP4719427B2 true JP4719427B2 (en) 2011-07-06

Family

ID=35435824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004124471A Expired - Fee Related JP4719427B2 (en) 2004-04-20 2004-04-20 Pyrolytic boron nitride crucible and single crystal growth method using the same

Country Status (1)

Country Link
JP (1) JP4719427B2 (en)

Also Published As

Publication number Publication date
JP2005306646A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
JP7046117B2 (en) A method for growing a beta-phase gallium oxide (β-Ga2O3) single crystal from a metal contained in a metal crucible.
JP4100228B2 (en) Silicon carbide single crystal and manufacturing method thereof
KR101235772B1 (en) Method for growing silicon carbide single crystal
JP4419937B2 (en) Method for producing silicon carbide single crystal
EP2484815B1 (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL
JP6533716B2 (en) Method of manufacturing SiC single crystal
US7520930B2 (en) Silicon carbide single crystal and a method for its production
WO2010024392A1 (en) Manufacturing method for silicon carbide monocrystals
JP5273130B2 (en) Method for producing SiC single crystal
CN110396717B (en) High-quality high-purity semi-insulating silicon carbide single crystal, substrate and preparation method thereof
JP2000264790A (en) Production of silicon carbide single crystal
WO2017022535A1 (en) METHOD OF PRODUCING SiC SINGLE CRYSTAL
JP2009126770A (en) Method for growing silicon carbide single crystal
JP4110601B2 (en) Method for producing silicon carbide single crystal
JP3087065B1 (en) Method for growing liquid phase of single crystal SiC
JP4719427B2 (en) Pyrolytic boron nitride crucible and single crystal growth method using the same
JP2018145081A (en) METHOD FOR MANUFACTURING HIGH PERFORMANCE Fe-Ga BASED ALLOY SINGLE CRYSTAL
EP1498518B1 (en) Method for the production of silicon carbide single crystal
Bickermann et al. Vapor transport growth of wide bandgap materials
CN107532328B (en) Method for producing SiC single crystal
JP5326865B2 (en) Method for producing sapphire single crystal
KR100530889B1 (en) Graphite crucible with the cone shape at the bottom part, which is used in growing SiC single crystal
CN103124693B (en) Silicon ingot manufacturing vessel
RU2369669C2 (en) Substrate for growing of epitaxial layers of gallium nitride
JP2005306647A (en) Thermal decomposition boron nitride crucible and single crystal growth method using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110304

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees