JP4110601B2 - Method for producing silicon carbide single crystal - Google Patents

Method for producing silicon carbide single crystal Download PDF

Info

Publication number
JP4110601B2
JP4110601B2 JP00501898A JP501898A JP4110601B2 JP 4110601 B2 JP4110601 B2 JP 4110601B2 JP 00501898 A JP00501898 A JP 00501898A JP 501898 A JP501898 A JP 501898A JP 4110601 B2 JP4110601 B2 JP 4110601B2
Authority
JP
Japan
Prior art keywords
single crystal
silicon carbide
crucible
raw material
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP00501898A
Other languages
Japanese (ja)
Other versions
JPH11199395A (en
Inventor
邦雄 小巻
勇 山本
直樹 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP00501898A priority Critical patent/JP4110601B2/en
Publication of JPH11199395A publication Critical patent/JPH11199395A/en
Application granted granted Critical
Publication of JP4110601B2 publication Critical patent/JP4110601B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は炭化珪素単結晶を製造する方法に係わり、結晶欠陥の少ない品質安定性に優れた炭化珪素単結晶を高い歩留まりで製造する方法に関する。
SiCは熱的、化学的に非常に安定であり且つ電子エネルギーバンドギャップが広い特徴があり、高温高圧下でも使用可能な耐環境素子材料、耐放射線素子材料、パワー素子材料や短波長発光素子材料として期待されている。
【0002】
【従来の技術】
半導体材料として期待されている炭化珪素単結晶は炭化珪素粉末を原料とする昇華法で通常作製される。昇華法においては原料炭化珪素粉末と単結晶の種結晶を対向させて黒鉛製ルツボ内に配置し、不活性雰囲気中で2000〜2400℃に加熱する。加熱により炭化珪素原料粉末の分解、昇華により発生した昇華蒸気は成長温度域に保持された種結晶表面に到達し単結晶としてエピタキシャルに成長する。一般的に反応容器として用いられる黒鉛製ルツボの内壁と昇華ガスとの相互作用や黒鉛壁よりの散逸によりガス組成は生成時の状態からのズレを生じる。昇華ガス成分は変動し易く成長単結晶の結晶性に大きく影響する。これらの変動を抑制補正する方法としてSi成分、C成分を添加する方法等が提案されている。しかし結晶品質及び安定性が十分とは言えず更なる改良が要望されている。
【0003】
又、不純物濃度制御の観点から従来技術で用いられている黒鉛製ルツボは大きな不純物混入源の一つである。ルツボ壁からの不純物混入を防ぐ方法として雰囲気ガス流を反応室内壁への接触を避ける様に流す特開平5−306199号公報等が提案されているが、その効果は十分とは言えない。
一方、珪素を原料とし、黒鉛ルツボ内で加熱蒸発させてその珪素の蒸気と黒鉛ルツボの内壁炭素から蒸発した炭素蒸気とを反応させ、炭化珪素析出室へ移動させて、その内壁に炭化珪素単結晶を析出させる方法も知られている(特公昭51−8400号公報)。
【0004】
【発明が解決しようとする課題】
SiC原料粉末からの分解、昇華ガスとしてはSi,Si2 C,SiC2 ,SiC等が生成し、これらの昇華ガスの分圧は 黒鉛ルツボ内壁との反応、取り込み、及び反応系からの成分の不均一な逸脱等により分解昇華時の状態から変動する。昇華ガス成分の変動は昇華過程の逆反応である結晶析出過程で化学量論比の変動、更にはインクル−ジョン、不純物元素、結晶欠陥として結晶中に取り込まれ易くなる。
単結晶成長過程での昇華ガス成分の変動は、結晶欠陥として結晶中に取り込まれるのと多型混入等の結晶性低下の要因と考えられている。これらの変動要因の制御を如何に行うかが重要である。前述の種々の昇華ガス中の成分からSiCとして結晶化する過程で必然的に各々の反応経路が異なる。その反応経路が原料の温度、温度分布変化、原料SiCの分解反応形態、原料組成の変化等が経時的に変動する等の諸要因に強く依存するものと考えられる。
【0005】
又、半導体用途の高純度、高品位単結晶を得るための高純度SiC原料粉末は得難く、高価である。これらの諸要因の変動を如何に少なくし、高純度化を行うかが重要となる。
本発明は結晶欠陥、インクルージョンの少ない高品質の炭化珪素単結晶を製造する方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
原料の分解昇華組成のズレや変動要因、また基板種結晶のダメージとなる因子を解析検討し、黒鉛質材料のような昇華ガスとの相互作用、不純物混入や基板結晶への悪影響を与える物質を如何に系から除去あるいは低減できるかを鋭意検討した結果、金属炭化物被覆ルツボを用い、該ルツボ内の珪素原料からの珪素蒸発ガスを加熱された炭素材に接触させた後に種結晶基板上に到達させ、SiC単結晶を析出させることにより上記目的が達成されることを確認して本発明を完成させた。
【0007】
【発明の実施の形態】
以下に具体的に本発明を説明する。
本発明で使用されるルツボは内面が耐熱性金属炭化物で被覆されている。この金属炭化物は、融点又は分解温度が1900℃以上のものが好ましい。具体的には金属炭化物としてTaC、ZrC、NbC、Ta2 C,TiC、Nb2 C、MoC、WC、Mo2 C等から選ばれた材質で、又それら複数の材質を組み合わせて用いる事ができる。
これらの炭化物を構成する元素状金属は耐熱性があっても結晶成長過程中に除々に炭化反応を起こし、その際にガス組成に変動を来たすので望ましくない。
【0008】
ルツボは内面が上記炭化物で被覆されていればよく、ルツボの基材は上記炭化物を構成する金属元素や黒鉛であってもよい。
金属炭化物の被覆は、基材が金属である場合そのルツボを炭化処理して行う事が出来る。具体的にはルツボ内に高純度黒鉛粉末を充填し不活性ガス雰囲気中か真空中での加熱処理をするか又はルツボ内に炭化水素等の炭素化合物を導入して加熱処理を行うことで達成することが出来る。
また基材が黒鉛であるルツボの場合はルツボの内面を電子ビーム加熱蒸着法等を用い、先ず金属元素を層状に蒸着させた後上記炭化処理法により炭化物内面層を形成させることができる。
【0009】
Si原料は融点以上の温度に加熱され、蒸発したSiガスは加熱された炭素材に接触し、生成した成分は相互の衝突反応と炭素材との接触反応過程が繰り返され、炭素材よりも低い温度に保たれた基板表面でSiC結晶として析出するものと考えられ、その結果比較的速い速度で結晶欠陥の少ないエピタキシャルなバルクSiC結晶を得る事ができるものと思われる。
【0010】
炭素材はSi蒸気の接触反応が効率良く起こり、且つ通過できる構成が必要であり、多孔質の構造体又は炭素粉粒体の堆積層で構成する事が可能である。本発明の炭素材とは無定型炭素から黒鉛化した炭素までを含む炭素質である。又炭素材中に予め炭化珪素を共存させても良い。炭素材としては以下のものを具体的に例示できる。構造体では板状でルツボ内壁にフィットし、図1に示す様に貫通孔を設けてあるが、炭素板の貫通孔は互いに中心がズレた配置としガス流が直線的に通過する事なく炭素材に衝突接触しながら基板近傍に到達する様に設定できる。又炭素粉粒体の場合は目皿状円板上に堆積させたものを複数段設定する事で気相分子との衝突接触面積を稼ぐ事が可能である。
【0011】
炭素材に含有させるSiCは高純度化処理したαSiCを用いる事ができるが、βSiCは高純度で細かい粒度のものがシランガスと炭化水素ガスのCVDで比較的容易に調製できる。CVDで調製した高純度βSiC微粉は炭素体に含有させれば安定した反応と高純度化が得られ本発明方法の実施に好ましい。
ルツボ内の反応系のトータル圧力は0.01〜1000torrの範囲を用いる事ができる。トータル圧力は不活性ガス導入量により制御する事が可能である。
【0012】
Siの蒸気圧は、不活性ガスを用いずトータル圧力と同程度の0.01〜1000torrの範囲を採る事が可能であるが、望ましくは0.1 〜100torr である。0.01torr未満では温度設定がSiの融点に近すぎるのとSi蒸気量が少なく反応及びSiC析出速度が遅くなり過ぎる。1000torrを越えるとSi融液の温度は2450℃以上に設定しなければならず、それは装置内の所定の温度分布、即ち炭素材や炭化珪素単結晶基板の温度との関係で難しい。
Si蒸気圧の制御はSi原料部の温度を制御する事で行ったが、又原料部に存在するSi量を時間的に制御する事、即ちSiのフィード量により行う事もできる。Siの供給形態は一般的にはルツボ内に堆積させたSiの粉粒体等を加熱蒸発させて行なう。そのSi蒸気圧は温度制御とフィード量による両方法を併用しても良い。
【0013】
Si原料部の温度は炭素材部分の設定温度以下で1450〜2500℃の範囲で設定できるが、望ましくは1500〜2000℃である。
次に炭素材部分の温度は1600℃以上で種基板温度よりも高く、且つその差が300℃を越えない範囲が良い。種基板との温度差が300℃を越えると成長SiC結晶に欠陥や歪みが導入されやすくなるため、望ましい設定温度は1800〜2600 である。
基板温度はSi原料部の温度よりも高く且つ炭素材部分の温度よりも300℃以内の温度差で低い事が必要である。具体的には1500〜2500℃の範囲で、1700〜2300℃が望ましい。基板温度が低いと析出結晶のストイキオメトリーはSiリッチ側となること及び多型混入が起こり易い。高いと種々の結晶欠陥の導入とやはり多型混入が起こり易くなる。
【0014】
半導体用途の高抵抗の単結晶を得るには高純度原料を用いる事が必須条件の一つであるが、高純度Si原料は半導体グレードを用いる事ができる。又不純物ドーピングも必要に応じ例えば、原料部分にドーパント元素を混合する等により容易に行う事が可能である。
SiC単結晶の成長機構、即ちSi原料部からのSi蒸気が炭素材と接触し、種基板上にSiC単結晶として成長するメカニズムは定かでないが、Si原料部からのSi蒸気は炭素材と接触反応し、気相中には主に未反応SiとSi2 C、SiC、SiC2 等が存在し、それらのガスが相互に反応あるいは作用し、種結晶基板上にSiCとして析出するものと考えられる。
これらの反応生成ガス組成はSi原料温度、炭素材温度、圧力、不活性ガス圧等の条件により変動させる事ができる。これらの条件を組み合わせることにより基板表面にSiC単結晶を安定して成長させる事ができる。
【0015】
炭素材中に炭化珪素が含有されていると炭化珪素がSi蒸気と炭素材との反応のイニシエーターとして働くのと同時にマクロ的には炭素材中に気孔と反応活性点を分散して形成する事となり時間安定性の良い反応場を提供するものと考えられる。炭素材中に含有させる炭化珪素量は炭素1モルに対し、0.1〜10モルを採ることができる。また炭化珪素を炭素材中に含有させる場合には、Si原料と炭素材の比率は炭素材1モルに対し、Si 0.1モル以上とすることができる。Si量が 0.1モル未満では従来のSiC原料の昇華法と変らない。
【0016】
本発明による良質で大面積の更に大きな単結晶バルクを得るためには原料Siと炭素材を新しく交換し、運転を繰り返すバッチ方式も採ることができるが、ルツボに基板位置の上下動可能な機構を設定し、Si原料と炭化珪素含有炭素材を連続的又は間欠的に各部位に供給し且つ単結晶成長に従って基板位置を移動して単結晶の成長を持続させる事ができる。大型結晶は成長時間を稼ぐ事で達成することが可能である。又基板に関しては前回の成長単結晶から切り出した種結晶を新たに基板として配置して運転を行えば結晶欠陥が更に低減した高品位の単結晶を成長させ得る。
【0017】
【実施例】
以下実施例により本発明を具体的に説明する。
図1は実施例に用いたルツボ及びその内部の概略断面図である。
図において1は種結晶SiC基板、2はSi原料、3はSiC含有炭素材、4はタンタル炭化物被覆ルツボ、41は同蓋体、5は成長SiC単結晶 6はロート状目皿板、61は同板の小孔である。ここで使用したタンタル炭化物被覆ルツボは次のようにして製造した。
Ta製ルツボ170×46φ(肉厚0.5mm)に、先ず高純度黒鉛粉末を165g充填し、これを収容出来る大きさの黒鉛ルツボ中で2E(−3)torrの真空中で30分、脱気した後760torrのアルゴン雰囲気中で2300℃で5時間処理を行った。処理後のルツボ内壁は均一に金色化していた。このルツボ壁のX線分析ではTa2 CとTaCとTaのピークを観測した。
【0018】
(実施例1)
6H−SiC単結晶(0001)面を成長基板1とした種結晶24mm径、厚さ0.4mmを上記のタンタル炭化物被覆ルツボの蓋41の中央に設置した。ルツボ内に図1の様に半導体グレードSi結晶片2を120g収容した。炭化珪素含有炭素材3は表面をTaCで被覆したTa製目皿(小孔径1.2mm)上に高純度黒鉛微粉65gとSiC40gとの混合粉を2段にしてセットした。このルツボを高周波炉の石英管内にセットした。先ず反応装置内を1×E(−3)torrに引き、Taルツボを1450℃に昇温し30分間保持する熱処理を行った後、Si原料温度を1800℃、炭素材の温度を約2300℃、種結晶温度を2050℃に昇温しアルゴン雰囲気圧を120torrとし、5時間運転を行った。結晶先端部は殆ど平坦で中央部を中心に螺旋模様のある円形に近い断面形状であった。平均径39.3mmで高さ7.5mmであった。この結晶の成長方向の断面を切断、研磨により磨き出し、顕微鏡観察を行った結果、インクルージョンは見られず、結晶欠陥密度は2.8×10/cm2 のオーダーであった。又ラマン分光による多型同定はピーク位置から6H−SiCで、他の多型の混入のない良質な単結晶であることを確認した。
【0019】
(比較例)
ルツボに黒鉛製ルツボを用い、炭素材にSiC粉末を混合しない事を除いて実施例1と同一の条件で結晶成長を行った。結晶サイズはほぼ等しかったが、結晶表面は凹凸のある荒れたものであった。インクルージョンも無かったが、結晶断面の顕微鏡観察では欠陥密度は実施例の場合よりも約20%増しの水準であった。
【0020】
【発明の効果】
Si原料と炭素材との反応から安定して高速度で、結晶欠陥の少ない高品位のSiC単結晶をSiC種基板上に効率良くエピタキシャル成長させる事ができる。
【図面の簡単な説明】
【図1】本発明の方法に一例として用いられるルツボ及びその内部の概略断面図である。
【符号の説明】
1 種結晶SiC基板
2 Si原料
3 SiC含有炭素材
4 タンタル炭化物被覆ルツボ
5 成長SiC単結晶
6 ロート状目皿板
41 ルツボ蓋体
61 目皿板の小孔
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a silicon carbide single crystal, and more particularly to a method for producing a silicon carbide single crystal having few crystal defects and excellent quality stability with a high yield.
SiC has the characteristics that it is very stable thermally and chemically and has a wide electron energy band gap, and can be used even under high temperature and high pressure. Environment-resistant element material, radiation-resistant element material, power element material and short wavelength light-emitting element material As expected.
[0002]
[Prior art]
A silicon carbide single crystal expected as a semiconductor material is usually produced by a sublimation method using silicon carbide powder as a raw material. In the sublimation method, the raw material silicon carbide powder and the single crystal seed crystal are placed facing each other in a graphite crucible and heated to 2000 to 2400 ° C. in an inert atmosphere. The sublimation vapor generated by the decomposition and sublimation of the silicon carbide raw material powder by heating reaches the seed crystal surface held in the growth temperature range and grows epitaxially as a single crystal. In general, the gas composition deviates from the state at the time of generation due to the interaction between the inner wall of a graphite crucible used as a reaction vessel and the sublimation gas and the dissipation from the graphite wall. The sublimation gas component tends to fluctuate and greatly affects the crystallinity of the grown single crystal. As a method for suppressing and correcting these fluctuations, a method of adding a Si component and a C component has been proposed. However, crystal quality and stability are not sufficient, and further improvements are desired.
[0003]
In addition, a graphite crucible used in the prior art from the viewpoint of impurity concentration control is one of large impurity contamination sources. Japanese Laid-Open Patent Publication No. 5-306199 has been proposed as a method for preventing impurities from entering from the crucible wall, but the atmosphere gas flow is made to avoid contact with the reaction chamber wall. However, the effect is not sufficient.
On the other hand, using silicon as a raw material, the silicon vapor is heated and evaporated in a graphite crucible, the carbon vapor evaporated from the inner wall carbon of the graphite crucible reacts, moves to the silicon carbide precipitation chamber, and the inner wall has a single silicon carbide layer. A method for precipitating crystals is also known (Japanese Patent Publication No. 51-8400).
[0004]
[Problems to be solved by the invention]
Decomposition from SiC raw material powder, as sublimation gas, Si, Si 2 C, SiC 2 , SiC, etc. are generated, and the partial pressure of these sublimation gases is the reaction, incorporation, and component of the reaction system from the inner wall of the graphite crucible. It fluctuates from the state of decomposition sublimation due to uneven deviation or the like. The change in the sublimation gas component is likely to be incorporated into the crystal as a change in the stoichiometric ratio in the crystal precipitation process, which is the reverse reaction of the sublimation process, and further as an inclusion, an impurity element, and a crystal defect.
The fluctuation of the sublimation gas component during the single crystal growth process is considered to be taken into the crystal as a crystal defect and a cause of crystallinity deterioration such as polymorphism. It is important how to control these fluctuation factors. In the process of crystallizing as SiC from the components in the various sublimation gases described above, the respective reaction paths are necessarily different. It is considered that the reaction route strongly depends on various factors such as the temperature of the raw material, the temperature distribution change, the decomposition reaction form of the raw material SiC, the change in the raw material composition, and the like.
[0005]
Moreover, it is difficult to obtain a high-purity SiC raw material powder for obtaining a high-purity, high-quality single crystal for semiconductor use, and it is expensive. It is important how to reduce the fluctuations of these factors to achieve high purity.
An object of this invention is to provide the method of manufacturing a high quality silicon carbide single crystal with few crystal defects and inclusions.
[0006]
[Means for Solving the Problems]
Analyze and analyze the deviation and variation factors of the decomposition and sublimation composition of the raw materials, and the factors that cause damage to the substrate seed crystals, and identify substances that interact with sublimation gases, such as graphite materials, and that have adverse effects on impurities and substrate crystals. As a result of diligent research on how it can be removed or reduced from the system, a metal carbide-coated crucible was used, and the silicon evaporation gas from the silicon raw material in the crucible was brought into contact with the heated carbon material before reaching the seed crystal substrate. The present invention was completed by confirming that the above object was achieved by precipitating a SiC single crystal.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be specifically described below.
The inner surface of the crucible used in the present invention is coated with a refractory metal carbide. This metal carbide preferably has a melting point or decomposition temperature of 1900 ° C. or higher. Specifically, it is possible to use a material selected from TaC, ZrC, NbC, Ta 2 C, TiC, Nb 2 C, MoC, WC, Mo 2 C, etc. as a metal carbide, or a combination of these materials. .
Even though the elemental metal constituting these carbides has heat resistance, it gradually undergoes a carbonization reaction during the crystal growth process, and the gas composition changes at that time, which is not desirable.
[0008]
The crucible is only required to have the inner surface coated with the carbide, and the base material of the crucible may be a metal element or graphite constituting the carbide.
When the base material is a metal, the metal carbide can be coated by carbonizing the crucible. Specifically, high purity graphite powder is filled in the crucible and heat treatment is performed in an inert gas atmosphere or in a vacuum, or a carbon compound such as hydrocarbon is introduced into the crucible and heat treatment is performed. I can do it.
Further, when the base material is a crucible made of graphite, the inner surface of the crucible can be formed by using an electron beam heating vapor deposition method or the like.
[0009]
The Si raw material is heated to a temperature equal to or higher than the melting point, and the evaporated Si gas comes into contact with the heated carbon material, and the generated components are lower than the carbon material because the mutual collision reaction and the contact reaction process with the carbon material are repeated. It is considered that SiC crystals are deposited on the substrate surface maintained at a temperature, and as a result, epitaxial bulk SiC crystals with few crystal defects can be obtained at a relatively high rate.
[0010]
The carbon material needs to have a structure in which the contact reaction of Si vapor occurs efficiently and can pass through, and can be composed of a porous structure or a deposited layer of carbon particles. The carbon material of the present invention is a carbonaceous material including amorphous carbon to graphitized carbon. Further, silicon carbide may coexist in advance in the carbon material. Specific examples of the carbon material include the following. The structure is plate-like and fits the inner wall of the crucible, and has through holes as shown in Fig. 1, but the through holes of the carbon plate are arranged so that their centers are shifted from each other and the gas flow does not pass linearly. It can be set to reach the vicinity of the substrate while colliding with the material. In the case of carbon powder particles, it is possible to increase the collision contact area with the gas phase molecules by setting a plurality of stages of the particles deposited on the plate.
[0011]
As SiC to be contained in the carbon material, highly purified αSiC can be used, but βSiC having a high purity and a fine particle size can be relatively easily prepared by CVD of silane gas and hydrocarbon gas. High purity β SiC fine powder prepared by CVD is preferable for carrying out the method of the present invention because stable reaction and high purity can be obtained if it is contained in a carbon body.
The total pressure of the reaction system in the crucible can be in the range of 0.01 to 1000 torr. The total pressure can be controlled by the amount of inert gas introduced.
[0012]
The vapor pressure of Si can be in the range of 0.01 to 1000 torr which is the same as the total pressure without using an inert gas, but is preferably 0.1 to 100 torr. If it is less than 0.01 torr, if the temperature setting is too close to the melting point of Si, the amount of Si vapor is small and the reaction and SiC deposition rate become too slow. If it exceeds 1000 torr, the temperature of the Si melt must be set to 2450 ° C. or higher, which is difficult due to the predetermined temperature distribution in the apparatus, that is, the temperature of the carbon material or silicon carbide single crystal substrate.
Although the Si vapor pressure is controlled by controlling the temperature of the Si raw material part, the Si amount existing in the raw material part can also be controlled temporally, that is, by the Si feed amount. In general, Si is supplied by heating and evaporating Si particles or the like deposited in the crucible. The Si vapor pressure may be a combination of both temperature control and feed amount.
[0013]
The temperature of the Si raw material portion can be set in the range of 1450 to 2500 ° C. below the set temperature of the carbon material portion, but is preferably 1500 to 2000 ° C.
Next, the temperature of the carbon material portion is preferably 1600 ° C. or higher and higher than the seed substrate temperature, and the difference does not exceed 300 ° C. If the temperature difference from the seed substrate exceeds 300 ° C., defects and strains are likely to be introduced into the grown SiC crystal, so a desirable set temperature is 1800 to 2600 ° C.
The substrate temperature needs to be higher than the temperature of the Si raw material portion and lower than the temperature of the carbon material portion with a temperature difference within 300 ° C. Specifically, 1700 to 2300 ° C is desirable within the range of 1500 to 2500 ° C. When the substrate temperature is low, the stoichiometry of the precipitated crystals tends to be on the Si-rich side and polymorphism tends to occur. If it is high, introduction of various crystal defects and polymorphism are likely to occur.
[0014]
In order to obtain a high-resistance single crystal for semiconductor use, it is one of the essential conditions to use a high-purity raw material, but a semiconductor grade can be used for a high-purity Si raw material. Impurity doping can also be easily performed if necessary, for example, by mixing a dopant element in the raw material portion.
The growth mechanism of SiC single crystal, that is, the mechanism by which Si vapor from the Si raw material part comes into contact with the carbon material and grows as a SiC single crystal on the seed substrate is uncertain, but the Si vapor from the Si raw material part comes into contact with the carbon material. It is considered that unreacted Si and Si 2 C, SiC, SiC 2 and the like exist mainly in the gas phase, and these gases react or interact with each other and precipitate as SiC on the seed crystal substrate. It is done.
These reaction product gas compositions can be varied depending on conditions such as Si raw material temperature, carbon material temperature, pressure, and inert gas pressure. By combining these conditions, a SiC single crystal can be stably grown on the substrate surface.
[0015]
When silicon carbide is contained in the carbon material, silicon carbide works as an initiator for the reaction between the Si vapor and the carbon material, and at the same time, the pores and reaction active points are dispersed in the carbon material. It is thought that it provides a reaction field with good time stability. The amount of silicon carbide contained in the carbon material can be 0.1 to 10 moles per mole of carbon. When silicon carbide is contained in the carbon material, the ratio of the Si raw material to the carbon material can be 0.1 mol or more of Si with respect to 1 mol of the carbon material. If the amount of Si is less than 0.1 mol, it does not change from the conventional SiC raw material sublimation method.
[0016]
In order to obtain a large single crystal bulk with good quality and a large area according to the present invention, a batch system in which the raw material Si and carbon material are newly exchanged and the operation is repeated can be adopted. The Si raw material and the silicon carbide-containing carbon material can be continuously or intermittently supplied to each part, and the substrate position can be moved according to the single crystal growth, so that the single crystal growth can be continued. Large crystals can be achieved by increasing the growth time. As for the substrate, if a seed crystal cut out from the previously grown single crystal is newly arranged as a substrate and operated, a high-quality single crystal with further reduced crystal defects can be grown.
[0017]
【Example】
The present invention will be specifically described below with reference to examples.
FIG. 1 is a schematic cross-sectional view of the crucible used in the embodiment and the inside thereof.
In the figure, 1 is a seed crystal SiC substrate, 2 is a Si raw material, 3 is a SiC-containing carbon material, 4 is a tantalum carbide-coated crucible, 41 is the same lid, 5 is a grown SiC single crystal, 6 is a funnel shaped plate, 61 is It is a small hole in the same plate. The tantalum carbide-coated crucible used here was manufactured as follows.
First, 165 g of high-purity graphite powder is charged into a Ta crucible 170 × 46φ (thickness: 0.5 mm), and this is removed in a 2E (−3) torr vacuum for 30 minutes in a graphite crucible large enough to accommodate this. After gassing, treatment was performed at 2300 ° C. for 5 hours in an argon atmosphere of 760 torr. The inner wall of the crucible after the treatment was uniformly gold. In the X-ray analysis of the crucible wall, Ta 2 C, TaC and Ta peaks were observed.
[0018]
(Example 1)
A seed crystal having a diameter of 24 mm and a thickness of 0.4 mm with a 6H—SiC single crystal (0001) plane as the growth substrate 1 was placed in the center of the lid 41 of the tantalum carbide-coated crucible. As shown in FIG. 1, 120 g of semiconductor-grade Si crystal pieces 2 were accommodated in the crucible. The silicon carbide-containing carbon material 3 was set in a two-stage mixed powder of 65 g of high-purity graphite fine powder and 40 g of SiC on a Ta plate (small hole diameter 1.2 mm) whose surface was coated with TaC. This crucible was set in a quartz tube of a high frequency furnace. First, the inside of the reaction apparatus was pulled to 1 × E (−3) torr, and a heat treatment was performed in which the Ta crucible was heated to 1450 ° C. and held for 30 minutes. The seed crystal temperature was raised to 2050 ° C., the argon atmosphere pressure was 120 torr, and the operation was performed for 5 hours. The crystal tip was almost flat and had a circular cross section with a spiral pattern around the center. The average diameter was 39.3 mm and the height was 7.5 mm. As a result of cutting and polishing the cross section in the growth direction of the crystal and performing microscopic observation, no inclusion was observed and the crystal defect density was on the order of 2.8 × 10 / cm 2 . In addition, polymorph identification by Raman spectroscopy was 6H-SiC from the peak position, and it was confirmed that the single crystal was a good quality with no other polymorphs mixed.
[0019]
(Comparative example)
Crystal growth was performed under the same conditions as in Example 1 except that a graphite crucible was used as the crucible and no SiC powder was mixed with the carbon material. The crystal size was almost equal, but the crystal surface was rough with unevenness. Although there was no inclusion, the defect density in the microscopic observation of the crystal cross section was about 20% higher than that in the example.
[0020]
【The invention's effect】
A high-quality SiC single crystal with few crystal defects can be efficiently epitaxially grown on a SiC seed substrate stably and at a high speed from the reaction between the Si raw material and the carbon material.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a crucible used as an example in the method of the present invention and its interior.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Seed-crystal SiC substrate 2 Si raw material 3 SiC containing carbon material 4 Tantalum carbide covering crucible 5 Grown SiC single crystal 6 Funnel-shaped eye plate 41 Crucible lid 61 Small hole of eye plate

Claims (6)

種基板結晶上にSiC単結晶を成長させる昇華法による炭化珪素単結晶の製造方法に於いて、金属炭化物で被覆されたルツボを用い、該ルツボ内の珪素原料を1450〜2500℃の範囲内で加熱し、珪素原料から生じた蒸発ガスを、1800〜2600℃の範囲内で珪素原料の加熱温度以上で、かつ種結晶基板温度より300℃を超えない範囲で高く加熱した炭素材に接触させた後、1500〜2500℃の範囲内で加熱した前記種結晶基板上に到達させることを特徴とする炭化珪素単結晶の製造方法。In a method for producing a silicon carbide single crystal by a sublimation method in which a SiC single crystal is grown on a seed substrate crystal, a crucible coated with metal carbide is used, and the silicon raw material in the crucible is within a range of 1450 to 2500 ° C. The evaporated gas generated from the silicon raw material was brought into contact with the carbon material heated within the range of 1800 to 2600 ° C. above the heating temperature of the silicon raw material and higher than 300 ° C. above the seed crystal substrate temperature . Then , it reaches on the seed crystal substrate heated within the range of 1500-2500 degreeC , The manufacturing method of the silicon carbide single crystal characterized by the above-mentioned. 反応系内の圧力が0.01〜1000torrである請求項1記載の炭化珪素単結晶の製造方法。2. The method for producing a silicon carbide single crystal according to claim 1, wherein the pressure in the reaction system is 0.01 to 1000 torr. ルツボを被覆する金属炭化物がTaの炭化物である請求項1又は2記載の炭化珪素単結晶の製造方法。The method for producing a silicon carbide single crystal according to claim 1 or 2, wherein the metal carbide covering the crucible is a carbide of Ta. 炭素材が珪素原料と種結晶との間に配置されていることを特徴とする請求項1〜3のいずれか1項に記載の炭化珪素単結晶の製造方法。The method for producing a silicon carbide single crystal according to any one of claims 1 to 3, wherein the carbon material is disposed between the silicon raw material and the seed crystal. 炭素材が複数の多孔質の構造体又は複数の炭素材粉粒体の堆積層で構成されている請求項1〜4記載の炭化珪素単結晶の製造方法。The method for producing a silicon carbide single crystal according to claim 1, wherein the carbon material is composed of a plurality of porous structures or a deposited layer of a plurality of carbon material particles. 炭素材に炭化珪素を含有することを特徴とする請求項1〜のいずれか1項に記載の炭化珪素単結晶の製造方法。The silicon carbide single crystal according to any one of claims 1 to 5 , wherein the carbon material contains silicon carbide.
JP00501898A 1998-01-13 1998-01-13 Method for producing silicon carbide single crystal Expired - Lifetime JP4110601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00501898A JP4110601B2 (en) 1998-01-13 1998-01-13 Method for producing silicon carbide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00501898A JP4110601B2 (en) 1998-01-13 1998-01-13 Method for producing silicon carbide single crystal

Publications (2)

Publication Number Publication Date
JPH11199395A JPH11199395A (en) 1999-07-27
JP4110601B2 true JP4110601B2 (en) 2008-07-02

Family

ID=11599790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00501898A Expired - Lifetime JP4110601B2 (en) 1998-01-13 1998-01-13 Method for producing silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JP4110601B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4593099B2 (en) * 2003-03-10 2010-12-08 学校法人関西学院 Liquid crystal epitaxial growth method of single crystal silicon carbide and heat treatment apparatus used therefor
JP2006001786A (en) * 2004-06-17 2006-01-05 Hitachi Chem Co Ltd Crucible for growing calcium fluoride crystal, method for producing calcium fluoride crystal, and calcium fluoride crystal
JP4941099B2 (en) * 2007-05-24 2012-05-30 株式会社デンソー Silicon carbide single crystal manufacturing equipment
KR100848810B1 (en) 2007-08-03 2008-07-28 한국전기연구원 Method and apparatus for manufacturing single crystal
JP5087489B2 (en) * 2008-07-23 2012-12-05 株式会社ブリヂストン Silicon carbide single crystal manufacturing apparatus and silicon carbide single crystal manufacturing method
JP5327259B2 (en) * 2011-03-30 2013-10-30 株式会社デンソー Silicon carbide single crystal manufacturing equipment
JP5548174B2 (en) * 2011-09-12 2014-07-16 東洋炭素株式会社 Manufacturing method of PIT carbon core TaC tube and PIT carbon core TaC tube
KR101882321B1 (en) * 2011-12-26 2018-07-27 엘지이노텍 주식회사 Apparatus for fabricating ingot
CN105734671B (en) * 2014-12-10 2018-11-30 北京天科合达半导体股份有限公司 A kind of method of high quality growing silicon carbice crystals
CN110129880A (en) * 2019-04-26 2019-08-16 河北同光晶体有限公司 A kind of grower and growing method of low-carbon wrappage density SiC single crystal
RU2745736C1 (en) * 2020-03-26 2021-03-31 Акционерное общество "ОКБ-Планета" АО "ОКБ-Планета" Method of surface modification of silicon carbide crystals
CN113005513A (en) * 2021-04-19 2021-06-22 芯璨半导体科技(山东)有限公司 Silicon carbide steam preparation device
CN113584592A (en) * 2021-08-02 2021-11-02 哈尔滨科友半导体产业装备与技术研究院有限公司 Silicon carbide crystal growth method capable of reducing graphite inclusions
CN114574946B (en) * 2022-02-23 2024-06-14 中国电子科技集团公司第四十六研究所 Method and device for doping antimony element in heavily-doped antimony silicon single crystal

Also Published As

Publication number Publication date
JPH11199395A (en) 1999-07-27

Similar Documents

Publication Publication Date Title
JP4122548B2 (en) Method for producing silicon carbide single crystal
US6336971B1 (en) Method and apparatus for producing silicon carbide single crystal
JP4110601B2 (en) Method for producing silicon carbide single crystal
JP4733485B2 (en) Method for producing seed crystal for silicon carbide single crystal growth, seed crystal for silicon carbide single crystal growth, method for producing silicon carbide single crystal, and silicon carbide single crystal
EP2630278B1 (en) Process for growing silicon carbide single crystal and device for the same
JP4199921B2 (en) Method and apparatus for producing silicon carbide single crystal
KR101235772B1 (en) Method for growing silicon carbide single crystal
KR101346415B1 (en) METHOD AND APPARATUS FOR MANUFACTURING SiC SINGLE CRYSTAL FILM
JP4819069B2 (en) Method for producing silicon carbide single crystal
EP0954623B1 (en) Silicon carbide monocrystal growth
US6514338B2 (en) Method and apparatus for producing silicon carbide single crystal
EP1540048B1 (en) Silicon carbide single crystal and method and apparatus for producing the same
US6261363B1 (en) Technique for growing silicon carbide monocrystals
KR20150142245A (en) Silicon carbide powder, method of fabrication the same and silicon carbide single crystal
EP1158077B1 (en) Method and apparatus for producing single crystal of silicon carbide
JP4505202B2 (en) Method and apparatus for producing silicon carbide single crystal
JP3590464B2 (en) Method for producing 4H type single crystal silicon carbide
US8377204B2 (en) Group III nitride single crystal and method of its growth
JP4678212B2 (en) Group III nitride single crystal growth method
CN114585777A (en) Method for producing silicon carbide powder and single crystal silicon carbide
KR20170086982A (en) Silicon carbide powder, method of fabrication the same and silicon carbide single crystal
KR101549597B1 (en) The Manufacturing Method of SiC Single Crystal Using the Crucible coated with SiC
KR20150142246A (en) Silicon carbide powder, method of fabrication the same and silicon carbide single crystal
KR20170017424A (en) Silicon carbide powder, method of fabrication the same and silicon carbide single crystal
JP2008273819A (en) Method for manufacturing silicon carbide single crystal and silicon carbide single crystal obtained by the method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

EXPY Cancellation because of completion of term