JP5447946B2 - Silica glass crucible for pulling silicon single crystal and manufacturing method thereof - Google Patents

Silica glass crucible for pulling silicon single crystal and manufacturing method thereof Download PDF

Info

Publication number
JP5447946B2
JP5447946B2 JP2009263340A JP2009263340A JP5447946B2 JP 5447946 B2 JP5447946 B2 JP 5447946B2 JP 2009263340 A JP2009263340 A JP 2009263340A JP 2009263340 A JP2009263340 A JP 2009263340A JP 5447946 B2 JP5447946 B2 JP 5447946B2
Authority
JP
Japan
Prior art keywords
quartz glass
crucible
single crystal
silicon single
pulling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009263340A
Other languages
Japanese (ja)
Other versions
JP2011105552A (en
Inventor
弘史 岸
江梨子 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2009263340A priority Critical patent/JP5447946B2/en
Publication of JP2011105552A publication Critical patent/JP2011105552A/en
Application granted granted Critical
Publication of JP5447946B2 publication Critical patent/JP5447946B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Glass Melting And Manufacturing (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、石英ガラスルツボおよびその製造方法に関し、特に、シリコン単結晶引き上げ用の石英ガラスルツボおよびその製造方法に関する。   The present invention relates to a quartz glass crucible and a method for producing the same, and more particularly to a quartz glass crucible for pulling a silicon single crystal and a method for producing the same.

一般に、半導体製造用のシリコン単結晶の製造方法として、チョクラルスキー法(CZ法)が広く用いられている。このCZ法は、図1および図2に示すように、まず、石英ガラス製のルツボ100内で溶融させた多結晶シリコン101に、単結晶の種結晶102を浸漬させる。この時、種結晶102は急激な熱衝撃を受けるために、種結晶先端部に転位が発生してしまう。この転位を除去するため、所定の方法によりネック部103を形成し、転位がその後成長するシリコンに引き継がれないようにする。その後、引き上げ速度および融液温度を制御しながら、種結晶102を回転させて徐々に引き上げることにより、次第に直径を大きくして肩部104を形成する。所望の直径となったら、一定の直径になるよう制御しながら引き上げを続け、直胴部105を形成する。最後に、徐々に直径を小さくしながら尾部106を形成してシリコン単結晶のインゴット107を製造する。   In general, the Czochralski method (CZ method) is widely used as a method for producing a silicon single crystal for semiconductor production. In this CZ method, as shown in FIGS. 1 and 2, first, a single crystal seed crystal 102 is immersed in a polycrystalline silicon 101 melted in a crucible 100 made of quartz glass. At this time, since the seed crystal 102 is subjected to a rapid thermal shock, dislocation occurs at the tip of the seed crystal. In order to remove the dislocations, the neck portion 103 is formed by a predetermined method so that the dislocations are not taken over by the subsequently grown silicon. Thereafter, while controlling the pulling speed and the melt temperature, the seed crystal 102 is rotated and gradually pulled, thereby gradually increasing the diameter and forming the shoulder 104. When the desired diameter is reached, the pulling is continued while controlling to a constant diameter, and the straight body portion 105 is formed. Finally, a tail portion 106 is formed while gradually reducing the diameter, and a silicon single crystal ingot 107 is manufactured.

このようなシリコン単結晶の引き上げに用いる石英ガラスルツボは、図1に示されるように、ルツボの機械的強度を高めるために外側部分に天然石英ガラス108を用い、内側部分には不純物の混入を避けるために合成石英ガラス109を用いるのが一般的である。ここで、「天然石英ガラス」とは、天然石英粉を原料として形成された石英ガラスのことを言い、「合成石英ガラス」とは、合成石英粉を原料として形成された石英ガラスのことを言う。一般に、この合成石英ガラス109とシリコン融液101との界面では、SiO2(固体)→Si(液体)+2Oの反応が生じ、合成石英ガラス109が溶解する。シリコン単結晶引き上げの際、引き上げ温度の上昇や雰囲気圧の低下などによっては、Si(液体)+O→SiO(気体)の反応が生じてSiOガスが発生し、図3(a)および図3(b)に示すように、シリコン融液101は合成石英ガラス109表面から弾かれて湯面振動が発生するおそれがある。なお、図3(a)および図3(b)は、湯面振動の状態を分かりやすく説明するため、湯面振動を誇張して描いたものである。 As shown in FIG. 1, the quartz glass crucible used for pulling up the silicon single crystal uses natural quartz glass 108 in the outer portion to increase the mechanical strength of the crucible, and impurities are mixed in the inner portion. In general, synthetic quartz glass 109 is used to avoid this. Here, “natural quartz glass” refers to quartz glass formed using natural quartz powder as a raw material, and “synthetic quartz glass” refers to quartz glass formed using synthetic quartz powder as a raw material. . In general, a reaction of SiO 2 (solid) → Si (liquid) + 2O occurs at the interface between the synthetic quartz glass 109 and the silicon melt 101, and the synthetic quartz glass 109 is dissolved. When a silicon single crystal is pulled, depending on an increase in pulling temperature or a decrease in atmospheric pressure, a reaction of Si (liquid) + O → SiO (gas) occurs to generate SiO gas, and FIGS. As shown in b), the silicon melt 101 may be repelled from the surface of the synthetic quartz glass 109 to cause molten metal surface vibration. 3 (a) and 3 (b) are drawn with exaggeration of the hot water surface vibration for easy understanding of the state of the hot water surface vibration.

このような湯面振動が発生すると、種結晶102をフラットな湯面に接合できず、また、引き上げ中にシリコンが多結晶化するなどの問題を生じる。特に、シリコン単結晶の引き上げ工程の初期段階である種付けと肩部形成の工程は、湯面振動の影響を受けやすく、この影響は、引き上げられたシリコン単結晶インゴットの品質を大きく左右する。このため、これら工程において、シリコン融液の湯面振動を抑制する技術が望まれていた。   When such molten metal surface vibration occurs, the seed crystal 102 cannot be joined to a flat molten metal surface, and problems such as silicon becoming polycrystalline during pulling occur. In particular, the seeding and shoulder formation process, which is the initial stage of the pulling process of the silicon single crystal, is easily affected by the molten metal vibration, and this influence greatly affects the quality of the pulled silicon single crystal ingot. For this reason, the technique which suppresses the molten metal surface vibration of a silicon melt in these processes was desired.

特許文献1は、本出願人によるものであって、石英ガラスルツボ内に充填したシリコン融液の湯面振動を抑制するために、引き上げ開始湯面付近のルツボ内周面層の気泡含有率を一定範囲に調整する技術を開示した。これは、シリコン引き上げ開始時のシリコン融液の湯面振動は、この湯面付近のルツボ内表面層の気泡含有率に影響されることを見出したことによるものである。   Patent Document 1 is based on the present applicant, and in order to suppress the melt surface vibration of the silicon melt filled in the quartz glass crucible, the bubble content of the inner peripheral surface layer of the crucible in the vicinity of the start surface of the pull-up is set. A technique for adjusting to a certain range has been disclosed. This is because the melt surface vibration of the silicon melt at the start of silicon pulling was found to be affected by the bubble content of the inner surface layer of the crucible near the melt surface.

一例として、石英ガラスルツボに大量の気泡を含有させた場合、上述したSiO2(固体)→Si(液体)+2Oの反応が進むにつれ、石英ガラスが溶解し、図4に示すような開口気泡201が現れてくる。この開口気泡201は、沸騰石が突沸を防止するのと同様の原理により、湯面振動を抑制することができる。しかしながら、石英ガラスに大量の気泡202を含有させるということは、石英ガラスルツボの体積に占めるルツボ自体の割合を実質的に小さくすることになり、気泡を設けない場合と比較して、溶解速度が大きくなってしまうという問題があり、石英ガラスルツボの短命化につながっていた。近年、大口径のシリコン単結晶を引き上げるため、大口径のルツボが求められ、これに伴って石英ガラスルツボは高価となるため、上記湯面振動抑制の効果に加え、溶解速度の小さい長寿命の石英ガラスルツボも望まれている。また、ルツボ周壁部内面直下の未開口の気泡は、引き上げ途中に膨張・破裂し、石英片がシリコン融液に混入してしまうという問題もあり、シリコン単結晶の歩留まりの向上も望まれていた。 As an example, when a large amount of bubbles are contained in a quartz glass crucible, as the reaction of SiO 2 (solid) → Si (liquid) + 2O proceeds, the quartz glass dissolves, and an open cell 201 as shown in FIG. Will appear. This open bubble 201 can suppress the molten metal surface vibration based on the same principle as the boiling stone prevents bumping. However, the inclusion of a large amount of bubbles 202 in quartz glass substantially reduces the proportion of the crucible itself in the volume of the quartz glass crucible, and the dissolution rate is lower than when no bubbles are provided. There was a problem that it became large, which led to the shortening of life of the quartz glass crucible. In recent years, a large-diameter crucible is required for pulling up a large-diameter silicon single crystal, and accordingly, a quartz glass crucible is expensive. A quartz glass crucible is also desired. In addition, unopened bubbles immediately below the inner surface of the peripheral wall of the crucible expand and rupture during pulling, and there is a problem that the quartz piece is mixed into the silicon melt, and an improvement in the yield of the silicon single crystal is also desired. .

特開2004−250304号公報JP 2004-250304 A

本発明の目的は、その内部に充填したシリコン融液の湯面振動を安定して抑制することができ、かつ長寿命のシリコン単結晶引き上げ用石英ガラスルツボおよびその製造方法を提供することにある。   An object of the present invention is to provide a quartz glass crucible for pulling a silicon single crystal having a long life and a method for producing the same, which can stably suppress the molten metal surface vibration of the silicon melt filled therein. .

上記目的を達成するため、本発明の要旨構成は以下のとおりである。
(1)周壁部、湾曲部および底部を有するシリコン単結晶引き上げ用石英ガラスルツボであって、該石英ガラスルツボは、前記周壁部の内面の特定領域に、複数個の微小凹部を具え、該微小凹部の下方位置に、複数個の気泡を具えることを特徴とするシリコン単結晶引き上げ用石英ガラスルツボ。
In order to achieve the above object, the gist of the present invention is as follows.
(1) A quartz glass crucible for pulling a silicon single crystal having a peripheral wall portion, a curved portion, and a bottom portion, wherein the silica glass crucible has a plurality of minute recesses in a specific region on the inner surface of the peripheral wall portion. A quartz glass crucible for pulling up a silicon single crystal, comprising a plurality of bubbles at a position below a recess.

(2)前記特定領域は、ルツボ高さをHとするとき、前記底部から測定して、0.50H〜0.99Hの領域内にある上記(1)に記載のシリコン単結晶引き上げ用石英ガラスルツボ。   (2) The quartz glass crucible for pulling up a silicon single crystal according to (1), wherein the specific region is in the region of 0.50H to 0.99H as measured from the bottom when the crucible height is H.

(3)前記特定領域は、ルツボ高さ方向に0.1〜5.0mmの範囲の間隔で区画された円環状の内面部分ごとに、少なくとも1個の前記微小凹部を具える上記(1)または(2)に記載のシリコン単結晶引き上げ用石英ガラスルツボ。   (3) The specific region may include at least one minute concave portion for each annular inner surface portion divided in a range of 0.1 to 5.0 mm in the crucible height direction. A quartz glass crucible for pulling up a silicon single crystal according to (1).

(4)前記微小凹部の平均直径は、1〜500μmの範囲である上記(1)、(2)または(3)に記載のシリコン単結晶引き上げ用石英ガラスルツボ。   (4) The quartz glass crucible for pulling up a silicon single crystal according to the above (1), (2) or (3), wherein the average diameter of the minute recesses is in the range of 1 to 500 μm.

(5)前記微小凹部の平均深さは、前記周壁部におけるルツボ厚さの0.05〜50%の範囲である上記(1)〜(4)のいずれか一に記載のシリコン単結晶引き上げ用石英ガラスルツボ。   (5) The quartz glass for pulling up a silicon single crystal according to any one of (1) to (4), wherein the average depth of the minute recesses is in the range of 0.05 to 50% of the crucible thickness in the peripheral wall portion. Crucible.

(6)前記気泡の平均直径は、10〜100μmの範囲で、かつ密度は、30〜300個/mm3の範囲である上記(1)〜(5)のいずれか一に記載のシリコン単結晶引き上げ用石英ガラスルツボ。 (6) The silicon single crystal according to any one of (1) to (5), wherein the average diameter of the bubbles is in the range of 10 to 100 μm and the density is in the range of 30 to 300 / mm 3. A quartz glass crucible for lifting.

(7)前記合成石英ガラス層中の複数個の気泡を具える領域は、前記周壁部におけるルツボ厚さの0.5〜30%の領域である上記(1)〜(6)のいずれか一に記載のシリコン単結晶引き上げ用石英ガラスルツボ。   (7) The region including a plurality of bubbles in the synthetic quartz glass layer is the region of 0.5 to 30% of the crucible thickness in the peripheral wall portion, as described in any one of (1) to (6) above. Quartz glass crucible for pulling silicon single crystals.

(8)周壁部、湾曲部および底部を有し、天然石英ガラス層の外層および合成石英ガラス層の内層の2層で形成されるシリコン単結晶引き上げ用石英ガラスルツボの製造方法であって、該方法は、天然石英粉からなる外層を形成する工程と、前記外層の内面上に、合成石英粉からなる内層を形成する工程と、前記内層の内面側からアーク放電を生じさせて溶融して、周壁部、湾曲部および底部を有する石英ガラスルツボを形成する工程とを具え、前記内層形成工程は、前記周壁部の内面の特定領域にその後形成されるべき複数個の微小凹部の下方に位置する内層部分に、発泡性の合成石英粉を用いることを含み、前記石英ガラスルツボ形成工程の後、前記特定領域に、複数個の微小凹部を形成する微小凹部加工工程をさらに具えることを特徴とするシリコン単結晶引き上げ用石英ガラスルツボの製造方法。   (8) A method for producing a quartz glass crucible for pulling a silicon single crystal, which has a peripheral wall portion, a curved portion, and a bottom portion, and is formed of two layers, an outer layer of a natural quartz glass layer and an inner layer of a synthetic quartz glass layer, The method includes a step of forming an outer layer made of natural quartz powder, a step of forming an inner layer made of synthetic quartz powder on the inner surface of the outer layer, an arc discharge from the inner surface side of the inner layer, and melting. Forming a quartz glass crucible having a peripheral wall portion, a curved portion and a bottom portion, wherein the inner layer forming step is positioned below a plurality of minute recesses to be subsequently formed in a specific region of the inner surface of the peripheral wall portion. Using an expandable synthetic quartz powder for the inner layer portion, and further comprising a minute recess processing step for forming a plurality of minute recesses in the specific region after the quartz glass crucible forming step. Method for manufacturing a silicon single crystal for pulling up the quartz glass crucible.

(9)前記微小凹部は、炭酸ガスレーザまたはダイヤモンドツールなどを用いた物理研削により形成される上記(8)に記載のシリコン単結晶引き上げ用石英ガラスルツボの製造方法。   (9) The method for producing a quartz glass crucible for pulling a silicon single crystal according to (8), wherein the minute recesses are formed by physical grinding using a carbon dioxide laser or a diamond tool.

本発明によれば、周壁部の内面の特定領域に、複数個の微小凹部を具え、これら微小凹部の下方位置に、複数個の気泡を具えることによって、その内部に充填したシリコン融液の湯面振動を安定して抑制することができ、かつ長寿命のシリコン単結晶引き上げ用石英ガラスルツボおよびその製造方法を提供することができる。   According to the present invention, the specific region of the inner surface of the peripheral wall portion is provided with a plurality of minute recesses, and the plurality of bubbles are provided at positions below these minute recesses so that the silicon melt filled therein can be It is possible to provide a quartz glass crucible for pulling a silicon single crystal having a long life and a method for producing the same, which can stably suppress the vibration of the molten metal surface.

図1は、シリコン単結晶の製造方法を説明するための模式的断面図である。FIG. 1 is a schematic cross-sectional view for explaining a method for producing a silicon single crystal. 図2は、引き上げ法により製造される一般的なシリコンインゴットの平面図である。FIG. 2 is a plan view of a general silicon ingot manufactured by a pulling method. 図3(a)は、シリコン融液の湯面振動を説明するための模式的断面図であり、図3(b)は、シリコン融液の湯面振動を示す模式的平面図である。FIG. 3A is a schematic cross-sectional view for explaining the melt level vibration of the silicon melt, and FIG. 3B is a schematic plan view showing the melt level vibration of the silicon melt. 図4は、従来の石英ガラスルツボに含有される気泡を示すルツボ周壁部の模式的断面図である。FIG. 4 is a schematic cross-sectional view of a peripheral wall portion of the crucible showing bubbles contained in a conventional quartz glass crucible. 図5は、本発明に従うシリコン単結晶引き上げ用石英ガラスルツボを示す断面斜視図である。FIG. 5 is a cross-sectional perspective view showing a quartz glass crucible for pulling a silicon single crystal according to the present invention. 図6は、石英ガラスルツボの作製方法を示す模式的断面図である。FIG. 6 is a schematic cross-sectional view showing a method for producing a quartz glass crucible. 図7は、石英ガラスルツボとシリコン融液との界面を一部拡大した模式的断面図である。FIG. 7 is a schematic cross-sectional view in which the interface between the quartz glass crucible and the silicon melt is partially enlarged. 図8は、微小凹部の形成パターン示す断面斜視図である。FIG. 8 is a cross-sectional perspective view showing a formation pattern of minute recesses.

次に、本発明のシリコン単結晶引き上げ用石英ガラスルツボおよびその製造方法の実施形態について図面を参照しながら説明する。本発明に従うシリコン単結晶引き上げ用石英ガラスルツボ1は、一例として図5に示されるように、周壁部2、湾曲部3および底部4を有し、天然石英ガラス層8の外層および合成石英ガラス層9の内層の2層で形成され、周壁部2の内面の特定領域6に、複数個の微小凹部5を具え、これら微小凹部5の下方に位置する合成石英ガラス層9中に、複数個の気泡7を具え、かかる構成を有することにより、ルツボ使用初期においては微小凹部5が、ルツボ使用中期においてはルツボ内面に開口してきた気泡7が、その内部に充填したシリコン融液の湯面振動を抑制し、また、気泡7の配設位置を適正化したことにより、溶解速度の増大を抑制し、ルツボを長寿命化することができるものである。   Next, an embodiment of a quartz glass crucible for pulling a silicon single crystal and a method for producing the same according to the present invention will be described with reference to the drawings. As shown in FIG. 5 as an example, a quartz glass crucible 1 for pulling a silicon single crystal according to the present invention has a peripheral wall portion 2, a curved portion 3 and a bottom portion 4, and an outer layer of a natural quartz glass layer 8 and a synthetic quartz glass layer. 9 is formed of two inner layers, and a plurality of minute recesses 5 are provided in a specific region 6 on the inner surface of the peripheral wall portion 2, and a plurality of synthetic quartz glass layers 9 positioned below these minute recesses 5 By providing the bubbles 7 and having such a configuration, the micro concave portion 5 in the initial stage of using the crucible, and the bubbles 7 opening in the inner surface of the crucible in the middle stage of using the crucible cause vibration of the melt surface of the silicon melt filled therein. In addition, by suppressing the arrangement position of the bubbles 7, the increase in dissolution rate can be suppressed and the life of the crucible can be extended.

このような気泡7は、開口するに至るまで長時間高温の温度条件下に晒されているため気泡の膨張が飽和し、気泡が開口する直前に周壁部の内面の直下において破裂するおそれがなく、石英片がシリコン融液に混入するおそれがないため、シリコン単結晶の歩留まりを向上させることができる。   Such a bubble 7 is exposed to a high temperature condition for a long time until opening, so that the expansion of the bubble is saturated, and there is no possibility of bursting immediately below the inner surface of the peripheral wall portion immediately before the opening of the bubble. Further, since there is no possibility that the quartz piece is mixed into the silicon melt, the yield of the silicon single crystal can be improved.

一般に、シリコン単結晶引き上げ用石英ガラスルツボ1は、例えば図6に示すように、外側部分が天然石英粉8a、内側部分が合成石英粉9aとなるよう遠心力を用いてこれら粉末をルツボの形状に固め、この中でアーク放電を行い、天然石英粉末8aと合成石英粉末9aとを溶融させ、その後冷却することにより、天然石英ガラス8と合成石英ガラス9との2層構造を有するよう形成される。   In general, a quartz glass crucible 1 for pulling up a silicon single crystal is formed, for example, as shown in FIG. 6, by using centrifugal force so that the outer portion becomes natural quartz powder 8a and the inner portion becomes synthetic quartz powder 9a. Then, arc discharge is performed in this, and natural quartz powder 8a and synthetic quartz powder 9a are melted and then cooled to form a two-layer structure of natural quartz glass 8 and synthetic quartz glass 9. The

ここで、合成石英粉9aとは、合成石英からなるものを意味しており、合成石英とは、化学的に合成・製造した原料であって、合成石英ガラス粉は非晶質である。合成石英の原料は気体または液体であるため、容易に精製することが可能であり、合成石英粉は天然石英粉よりも高純度とすることができる。合成石英ガラス原料としては四塩化珪素などの気体の原料由来とケイ素アルコキシドのような液体の原料由来がある。本発明において、合成石英粉ガラスでは、すべての不純物を0.1ppm以下とすることが可能である。   Here, the synthetic quartz powder 9a means what consists of synthetic quartz, and synthetic quartz is a raw material chemically synthesized and manufactured, and the synthetic quartz glass powder is amorphous. Since the raw material of synthetic quartz is gas or liquid, it can be easily purified, and synthetic quartz powder can have a higher purity than natural quartz powder. Synthetic quartz glass raw materials are derived from gaseous raw materials such as silicon tetrachloride and liquid raw materials such as silicon alkoxide. In the present invention, in the synthetic quartz powder glass, all impurities can be 0.1 ppm or less.

一方、天然石英粉8aとは天然石英からなるものを意味しており、天然石英とは、自然界に存在する石英原石を掘り出し、破砕・精製などの工程を経て得られる原料であり、天然石英粉はα-石英の結晶からなる。天然石英粉ではAl、Tiが1ppm以上含まれている。またその他の金属不純物についても合成石英粉よりも高いレベルにある。天然石英粉はシラノールをほとんど含まない。天然石英粉を溶融して得られるガラスのシラノール量は50ppm未満である。   On the other hand, the natural quartz powder 8a means a material made of natural quartz, and natural quartz is a raw material obtained by digging raw quartz existing in nature, crushing and refining, etc. Consists of α-quartz crystals. Natural quartz powder contains 1 ppm or more of Al and Ti. Other metal impurities are also at a higher level than synthetic quartz powder. Natural quartz powder contains almost no silanol. Silanol content of glass obtained by melting natural quartz powder is less than 50 ppm.

これら天然石英ガラス8および合成石英ガラス9は、例えば波長245nmの紫外線で励起して得られる蛍光スペクトルを測定して蛍光ピークを観察することにより判別することが可能である。   These natural quartz glass 8 and synthetic quartz glass 9 can be discriminated by measuring a fluorescence spectrum obtained by excitation with ultraviolet light having a wavelength of 245 nm and observing the fluorescence peak, for example.

なお、本発明において、天然石英ガラス8と合成石英ガラス9の原料として石英粉末を使用しているが、ここでいう「石英粉末」には、上記の条件を満たしていれば、石英に限らず、二酸化ケイ素(シリカ)を含む、水晶、珪砂等、石英ガラスルツボの原材料として周知の材料の粉体をも含むことができる。   In the present invention, quartz powder is used as a raw material for the natural quartz glass 8 and the synthetic quartz glass 9, but the “quartz powder” here is not limited to quartz as long as the above conditions are satisfied. Further, powders of materials known as raw materials for quartz glass crucibles such as quartz, silica sand, etc., including silicon dioxide (silica) can also be included.

本発明に従うシリコン単結晶引き上げ用石英ガラスルツボの製造方法は、一例として図5および図6に示されるように、周壁部2、湾曲部3および底部4を有し、天然石英ガラス層8の外層および合成石英ガラス層9の内層の2層で形成されるシリコン単結晶引き上げ用石英ガラスルツボ1の製造方法であって、天然石英粉8aからなる外層を形成する工程と、この外層の内面上に、合成石英粉9aからなる内層を形成する工程と、この内層の内面側からアーク放電を生じさせて溶融して、周壁部2、湾曲部3および底部4を有する石英ガラスルツボ1を形成する工程とを具え、内層形成工程は、周壁部2の内面の特定領域6にその後形成されるべき複数個の微小凹部5の下方に位置する内層部分に、発泡性の合成石英粉を用いることを含み、石英ガラスルツボ形成工程の後、特定領域6に、複数個の微小凹部5を形成する微小凹部加工工程をさらに具え、かかる構成を有することにより、ルツボ使用初期においては微小凹部5が、ルツボ使用中期においてはルツボ内面に開口してきた気泡7が、その内部に充填したシリコン融液の湯面振動を抑制し、また、気泡7の配設位置を適正化したことにより、溶解速度の増大を抑制し、ルツボを長寿命化することができるシリコン単結晶引き上げ用石英ガラスルツボを提供することができるものである。   As shown in FIG. 5 and FIG. 6 as an example, the method for producing a silica glass crucible for pulling a silicon single crystal according to the present invention has a peripheral wall portion 2, a curved portion 3 and a bottom portion 4, and is an outer layer of a natural quartz glass layer 8. And a method for producing a quartz glass crucible 1 for pulling a silicon single crystal formed of two inner layers of a synthetic quartz glass layer 9, a step of forming an outer layer made of natural quartz powder 8a, and an inner surface of the outer layer The step of forming the inner layer made of the synthetic quartz powder 9a and the step of forming the quartz glass crucible 1 having the peripheral wall portion 2, the curved portion 3 and the bottom portion 4 by generating arc discharge from the inner surface side of the inner layer and melting it. The inner layer forming step includes using foaming synthetic quartz powder in the inner layer portion located below the plurality of minute recesses 5 to be formed in the specific region 6 on the inner surface of the peripheral wall portion 2 thereafter. After the quartz glass crucible formation step, the micro recess portion processing step for forming a plurality of minute recess portions 5 in the specific region 6 is further provided. By having such a configuration, the micro recess portion 5 is in the middle stage of crucible use at the initial stage of using the crucible. In this case, the bubbles 7 opened on the inner surface of the crucible suppress the molten metal surface vibration of the silicon melt filled therein, and the increase in the dissolution rate is suppressed by optimizing the arrangement position of the bubbles 7. It is possible to provide a quartz glass crucible for pulling a silicon single crystal that can extend the life of a crucible.

ここで、発泡性の合成石英粉とは、例えば水または空気等を含有する石英粉のことを言う。原料の段階でこれら水または空気等を含有することにより、上記石英ガラスルツボ形成工程の後、周壁部2の内面の特定領域6にその後形成されるべき複数個の微小凹部5の下方で、かつ合成石英ガラス層9中に、複数個の気泡7を有することができる。   Here, the foamable synthetic quartz powder refers to, for example, quartz powder containing water or air. By containing these water or air at the raw material stage, after the quartz glass crucible forming step, below the plurality of minute recesses 5 to be subsequently formed in the specific region 6 on the inner surface of the peripheral wall portion 2, and The synthetic quartz glass layer 9 can have a plurality of bubbles 7.

石英ガラスルツボ内のシリコン融液の量は、シリコン単結晶引き上げに伴い変化する。したがって、特定領域6は、ユーザが用いる際のルツボ内のシリコン融液の量によって適宜選択すればよく、少なくとも肩部形成のときの湯面が位置する領域(図5ではh高さ位置からh高さ位置までの領域)とすればよい。特に、この領域は、ルツボ高さをHとするとき、底部から測定して、0.50H〜0.99Hの領域内とするのが好ましい。 The amount of silicon melt in the quartz glass crucible changes as the silicon single crystal is pulled. Therefore, the specific area 6, the user may be appropriately selected depending on the amount of the silicon melt in the crucible when used by at least a shoulder portion formed melt surface is located regions (Fig. 5, h 1 height position when the h < b > 2 region). In particular, this region is preferably in the region of 0.50H to 0.99H as measured from the bottom when the crucible height is H.

このように、湯面が位置する領域において湯面振動が生じ易い理由を以下で説明する。図7は、内部にシリコン融液を有する石英ガラスルツボの湯面位置の一部を拡大した模式的断面図であるが、このように、ルツボの濡れ性によって、液体のシリコン融液は固体の石英ガラスルツボとの界面で、図7の領域Iに示すような断面形状を呈する。この領域Iでは、この領域Iの範囲外のものと比較して、シリコン融液中の酸素濃度が低い液面との距離が近いので、酸素の濃度勾配が大きくなり、上述したSiO2(固体)→Si(液体)+2Oの反応で生じたOの拡散が早い。よって、この反応が進み易く、ルツボの溶解が促進される。一般に、この領域Iは、ルツボ高さ方向に0.1〜5.0mmの範囲で生じることから、特定領域6は、ルツボ高さ方向に0.1〜5.0mmの範囲の間隔で区画(図8ではh3の間隔で区画)された円環状の内面部分ごとに、少なくとも1個の微小凹部5を具えるのが好ましい。 The reason why the molten metal surface vibration is likely to occur in the region where the molten metal surface is located will be described below. FIG. 7 is a schematic cross-sectional view in which a part of the molten metal surface position of a quartz glass crucible having a silicon melt therein is enlarged. Thus, the liquid silicon melt is solid due to the wettability of the crucible. At the interface with the quartz glass crucible, it exhibits a cross-sectional shape as shown in region I of FIG. In this region I, since the distance from the liquid surface having a low oxygen concentration in the silicon melt is shorter than that outside this region I, the concentration gradient of oxygen becomes large, and the above-mentioned SiO 2 (solid ) → Si (liquid) + 2O generated by the reaction of O diffuses quickly. Therefore, this reaction easily proceeds and the melting of the crucible is promoted. Generally, since this region I occurs in the range of 0.1 to 5.0 mm in the crucible height direction, the specific region 6 is partitioned at intervals of 0.1 to 5.0 mm in the crucible height direction (in FIG. 8, h 3 It is preferable to provide at least one minute concave portion 5 for each annular inner surface portion partitioned at intervals.

微小凹部5の平均直径は、1〜500μmの範囲であるのが好ましい。微小凹部5の平均直径が1μm未満だと、上述した沸騰石と同様の効果を十分に得ることができなくなり、一方、微小凹部5の平均直径が500μmを超えると、上述した沸騰石と同様の効果を十分に得ることができなくなるだけでなく、ルツボの溶解により微小凹部5が無くなり易くなるためである。   The average diameter of the minute recesses 5 is preferably in the range of 1 to 500 μm. If the average diameter of the minute recesses 5 is less than 1 μm, the same effect as the above-described boiling stone cannot be obtained sufficiently. On the other hand, if the average diameter of the minute recesses 5 exceeds 500 μm, This is because not only the effect cannot be obtained sufficiently, but also the minute recesses 5 are easily lost due to melting of the crucible.

微小凹部5の平均深さは、周壁部におけるルツボ厚さの0.05〜50%の範囲であるのが好ましい。微小凹部5の平均深さが周壁部におけるルツボ厚さの0.05%未満だと、ルツボの溶解により微小凹部5がなくなりやすく、また、未開口の気泡の膨張が飽和していないおそれがあり、一方、微小凹部5の平均深さが周壁部2におけるルツボ厚さの50%を超えると、ルツボの壁部強度に影響を与えるおそれがある。なお、周壁部2の厚さは、一例として、100〜1000μmの範囲とするのが好ましい。   The average depth of the minute recesses 5 is preferably in the range of 0.05 to 50% of the crucible thickness in the peripheral wall portion. If the average depth of the micro-recesses 5 is less than 0.05% of the crucible thickness in the peripheral wall part, the micro-recesses 5 are likely to disappear due to melting of the crucible, and the expansion of the unopened bubbles may not be saturated. If the average depth of the minute recesses 5 exceeds 50% of the thickness of the crucible in the peripheral wall 2, the wall strength of the crucible may be affected. In addition, it is preferable that the thickness of the surrounding wall part 2 shall be the range of 100-1000 micrometers as an example.

また、微小凹部5の平均直径の平均深さに対する比は、0超え0.8未満とするのが好ましい。ルツボの溶解により凹部がなくなってしまうのを抑制するためには、上記SiO2(固体)→Si(液体)+2Oの反応を抑制する必要がある。そのためには、ルツボと融液との界面におけるシリコン融液中の酸素濃度を高くすれば上記反応が進みにくくなる。これには、一旦上記反応により生じた酸素が凹部から拡散しないようにすればよく、シリコン融液の熱対流の影響を受けにくくするよう、上記比の範囲となるよう直径および深さを規定するのが好ましい。 The ratio of the average diameter of the minute recesses 5 to the average depth is preferably more than 0 and less than 0.8. In order to prevent the recess from disappearing due to melting of the crucible, it is necessary to suppress the reaction of SiO 2 (solid) → Si (liquid) + 2O. For this purpose, if the oxygen concentration in the silicon melt at the interface between the crucible and the melt is increased, the above reaction becomes difficult to proceed. For this purpose, once the oxygen generated by the reaction is prevented from diffusing from the recess, the diameter and the depth are regulated so that the ratio is within the above range so as not to be affected by the thermal convection of the silicon melt. Is preferred.

気泡7の平均直径は、10〜100μmの範囲で、かつ密度は、30〜300個/mm3の範囲とするのが好ましい。気泡7の平均直径が10μm未満だと、湯面振動を抑制する効果が十分得られず、一方、気泡7の平均直径が100μmを超えると、気泡7の膨張によりルツボの内表面が変形し、石英片などをシリコン融液に混入させてしまうおそれがあるためである。また、密度が30個/mm3未満だと、湯面振動を抑制する効果が十分得られず、一方、気泡7の密度が300個/mm3を超えると、気泡7の膨張によりルツボの内表面が変形し、石英片などをシリコン融液に混入させてしまうおそれがあるためである。 The average diameter of the bubbles 7 is preferably in the range of 10 to 100 μm, and the density is preferably in the range of 30 to 300 / mm 3 . If the average diameter of the bubbles 7 is less than 10 μm, the effect of suppressing the hot water surface vibration cannot be sufficiently obtained. On the other hand, if the average diameter of the bubbles 7 exceeds 100 μm, the inner surface of the crucible is deformed by the expansion of the bubbles 7, This is because quartz pieces or the like may be mixed into the silicon melt. Further, if the density is less than 30 / mm 3 , the effect of suppressing the molten metal surface vibration cannot be sufficiently obtained. On the other hand, if the density of the bubbles 7 exceeds 300 / mm 3 , the expansion of the bubbles 7 causes the inside of the crucible. This is because the surface may be deformed and quartz pieces or the like may be mixed into the silicon melt.

合成石英ガラス層9中の複数個の気泡7を具える領域は、前記周壁部におけるルツボ厚さの0.5〜30%の領域であるのが好ましい。気泡7を、微小凹部5の下方位置である合成石英ガラス層9中に具えることにより、気泡7中の空気が熱により膨張して破裂し、石英片などをシリコン融液に混入させてしまうのを防ぐことができ、また、この合成石英ガラス層9中の複数個の気泡7を具える領域を上記範囲とすることにより、ルツボの合成石英ガラスが溶解して微小凹部5がなくなっても、開口して表れてきた気泡7がシリコン融液の湯面振動を抑制することができることから、石英ガラスルツボの長寿命化を達成することができる。   The region including the plurality of bubbles 7 in the synthetic quartz glass layer 9 is preferably a region of 0.5 to 30% of the crucible thickness in the peripheral wall portion. By providing the bubble 7 in the synthetic quartz glass layer 9 below the minute recess 5, the air in the bubble 7 expands and bursts due to heat, and the quartz piece or the like is mixed into the silicon melt. In addition, by making the region including the plurality of bubbles 7 in the synthetic quartz glass layer 9 in the above range, even if the synthetic quartz glass of the crucible is dissolved and the minute recesses 5 are eliminated. Since the bubbles 7 appearing in the opening can suppress the molten metal surface vibration of the silicon melt, the life of the quartz glass crucible can be extended.

微小凹部5は、炭酸ガスレーザまたはダイヤモンドツールを用いて形成されるのが好ましい。例えば、炭酸ガスレーザの照射面をルツボの内表面に対峙させ、10.6μmの赤外光を照射することにより、微小凹部を形成する。あるいは、三菱マテリアル製ダイヤモンドコーティング脆性材加工用ドリルに水をかけながらルツボの内面に当てて、微小凹部を形成する。『研削・ルツボの回転あるいは昇降』を繰り返し、ある特定領域の内面全体に凹部を形成する。   The minute recess 5 is preferably formed using a carbon dioxide laser or a diamond tool. For example, the irradiation surface of the carbon dioxide laser is opposed to the inner surface of the crucible, and irradiation with 10.6 μm infrared light forms the minute recesses. Alternatively, a minute recess is formed by applying water to a diamond-coated brittle material drill made by Mitsubishi Materials and applying it to the inner surface of the crucible. Repeated “grinding / crucible rotation or elevation” to form a recess on the entire inner surface of a specific area.

上述したところは、一例として示されたものであって、本発明はこの実施形態に限定されるものではない。   The above description is given as an example, and the present invention is not limited to this embodiment.

(実施例1)
実施例1は、図6に示すように、外側部分に天然石英粉末8aを、内側部分に合成石英粉末9aとなるよう遠心力を用いてこれら粉末をルツボの形状に固め、この中でアーク放電を行うことにより、天然石英ガラス8と合成石英ガラス9との2層構造の、周壁部、湾曲部および底部を有するシリコン単結晶引き上げ用石英ガラスルツボを形成した。なお、周壁部の内面の特定領域にその後形成されるべき複数個の微小凹部の下方に位置する内層部分には、発泡性の合成石英粉を用いた。その後、図5に示すように、ルツボ高さをH(600mm)とするとき、周壁部の内面の、底部から測定して、0.50H〜0.99Hの領域に、炭酸ガスレーザを用いて、複数個の微小凹部(平均直径:300μm、平均深さ:500μm)を形成し、本発明に従うシリコン単結晶引き上げ用石英ガラスルツボを製造した。このとき、形成された微小凹部の下方に位置する内層部分(ルツボ厚さの5〜25%の領域)には、複数個の気泡(平均直径:40μm、密度:30個/mm3)が形成されている。また、特定領域は、ルツボ高さ方向に1mmの間隔で区画(図8ではhの間隔で区画)された円環状の内面部分ごとに、少なくとも1個の微小凹部をもつようにした。なお、周壁部におけるルツボ厚さは12mmであった。
Example 1
In Example 1, as shown in FIG. 6, natural quartz powder 8a is formed in the outer portion and synthetic quartz powder 9a is formed in the inner portion by centrifugal force so that these powders are hardened in the shape of a crucible. As a result, a quartz glass crucible for pulling a silicon single crystal having a peripheral wall portion, a curved portion and a bottom portion having a two-layer structure of natural quartz glass 8 and synthetic quartz glass 9 was formed. In addition, foaming synthetic quartz powder was used for the inner layer part located under the several micro recessed part which should be formed after that in the specific area | region of the inner surface of a surrounding wall part. Thereafter, as shown in FIG. 5, when the height of the crucible is set to H (600 mm), a plurality of carbon dioxide lasers are used in the region of 0.50H to 0.99H as measured from the bottom of the inner surface of the peripheral wall. Were formed, and a quartz glass crucible for pulling a silicon single crystal according to the present invention was manufactured. At this time, a plurality of bubbles (average diameter: 40 μm, density: 30 / mm 3 ) are formed in the inner layer portion (region of 5 to 25% of the crucible thickness) located below the formed minute recess. Has been. Further, specific area, for each inner surface portion of the annular partitioned at intervals of 1mm in the crucible height direction (defined by distance in FIG. 8 h 3), and to have at least one micro recesses. The crucible thickness in the peripheral wall portion was 12 mm.

(実施例2)
複数個の微小凹部を、周壁部の内面の、底部から測定して、0.3H〜0.4Hの領域に形成したこと以外は、実施例1と同様の方法により本発明に従うシリコン単結晶引き上げ用石英ガラスルツボを製造した。
(Example 2)
Quartz for pulling a silicon single crystal according to the present invention by the same method as in Example 1 except that a plurality of minute recesses are formed in the region of 0.3H to 0.4H as measured from the bottom of the inner surface of the peripheral wall. A glass crucible was produced.

(実施例3)
ルツボ高さ方向に6mmの間隔で区画された円環状の内面部分のうち、少なくとも一区画が、微小凹部を1個も有さないこと以外は、実施例1と同様の方法により本発明に従うシリコン単結晶引き上げ用石英ガラスルツボを製造した。
(Example 3)
Silicon according to the present invention is produced in the same manner as in Example 1 except that at least one of the annular inner surface portions divided at intervals of 6 mm in the crucible height direction does not have any minute recesses. A quartz glass crucible for pulling a single crystal was manufactured.

(実施例4)
微小凹部の平均直径が550μmであること以外は、実施例1と同様の方法により本発明に従うシリコン単結晶引き上げ用石英ガラスルツボを製造した。
Example 4
A quartz glass crucible for pulling a silicon single crystal according to the present invention was manufactured by the same method as in Example 1 except that the average diameter of the minute recesses was 550 μm.

(実施例5)
微小凹部の平均深さが0.004mmであること以外は、実施例1と同様の方法により本発明に従うシリコン単結晶引き上げ用石英ガラスルツボを製造した。
(Example 5)
A quartz glass crucible for pulling a silicon single crystal according to the present invention was manufactured by the same method as in Example 1 except that the average depth of the minute recesses was 0.004 mm.

(実施例6)
気泡の平均直径が120μmであること以外は、実施例1と同様の方法により本発明に従うシリコン単結晶引き上げ用石英ガラスルツボを製造した。
(Example 6)
A quartz glass crucible for pulling a silicon single crystal according to the present invention was produced by the same method as in Example 1 except that the average diameter of the bubbles was 120 μm.

(実施例7)
気泡の密度が25個/mm3であること以外は、実施例1と同様の方法により本発明に従うシリコン単結晶引き上げ用石英ガラスルツボを製造した。
(Example 7)
A quartz glass crucible for pulling a silicon single crystal according to the present invention was produced by the same method as in Example 1 except that the density of the bubbles was 25 / mm 3 .

(実施例8)
複数個の気泡を具える領域が、周壁部におけるルツボ厚さの32〜50%の領域であること以外は、実施例1と同様の方法により本発明に従うシリコン単結晶引き上げ用石英ガラスルツボを製造した。
(Example 8)
A quartz glass crucible for pulling a silicon single crystal according to the present invention is manufactured in the same manner as in Example 1 except that the region having a plurality of bubbles is a region of 32 to 50% of the crucible thickness in the peripheral wall portion. did.

(実施例9)
微小凹部の形成にダイヤモンドツールを用いたこと以外は、実施例1と同様の方法により本発明に従うシリコン単結晶引き上げ用石英ガラスルツボを製造した。
Example 9
A quartz glass crucible for pulling a silicon single crystal according to the present invention was manufactured by the same method as in Example 1 except that a diamond tool was used for forming the minute recesses.

(比較例1)
微小凹部を具えないこと以外は、実施例1と同様の方法によりシリコン単結晶引き上げ用石英ガラスルツボを製造した。
(Comparative Example 1)
A quartz glass crucible for pulling up a silicon single crystal was manufactured in the same manner as in Example 1 except that no minute recess was provided.

(比較例2)
形成された微小凹部の下方に位置する内層部分に気泡を具えないこと以外は、実施例1と同様の方法によりシリコン単結晶引き上げ用石英ガラスルツボを製造した。
(Comparative Example 2)
A quartz glass crucible for pulling up a silicon single crystal was manufactured by the same method as in Example 1 except that the inner layer portion located below the formed minute recess did not have bubbles.

(比較例3)
微小凹部および内層部分の気泡を具えないこと以外は、実施例1と同様の方法によりシリコン単結晶引き上げ用石英ガラスルツボを製造した。
(Comparative Example 3)
A quartz glass crucible for pulling up a silicon single crystal was manufactured in the same manner as in Example 1 except that it did not have microscopic recesses and bubbles in the inner layer portion.

(評価1)
このようにして製造されたシリコン単結晶引き上げ用石英ガラスルツボについて、湯面振動の評価を行った。これら実施例1〜9および比較例1〜3のルツボの特定領域からサンプル片(30mm×30mm)を切り出し、これらサンプル片を真空炉に設置し、これらサンプル片上に高純度シリコン10gを載せ、アルゴン圧20Torr、温度1560℃に調整して高純度シリコンを溶融した。表面張力により、ドロップ状に融解したシリコンの表面を高倍率レンズと1秒間に500枚以上撮影できるハイスピードカメラを備えた装置により、表面の昇降を測定し、シリコン融液の振動周期を測定した。
(Evaluation 1)
With respect to the quartz glass crucible for pulling up the silicon single crystal thus produced, the molten metal surface vibration was evaluated. Sample pieces (30 mm × 30 mm) were cut out from specific regions of the crucibles of Examples 1 to 9 and Comparative Examples 1 to 3, these sample pieces were placed in a vacuum furnace, 10 g of high-purity silicon was placed on these sample pieces, argon High-purity silicon was melted by adjusting the pressure to 20 Torr and the temperature to 1560 ° C. Using a device equipped with a high-power lens and a high-speed camera that can photograph 500 or more silicon surfaces melted in a drop shape by surface tension per second, the elevation of the surface was measured, and the vibration cycle of the silicon melt was measured. .

(評価2)
さらに、実施例1〜9および比較例1〜3のルツボを用いて、CZ法により、各々複数のシリコン単結晶インゴットを作製し、1本目と3本目のシリコン単結晶インゴット作製時のシリコン融液の湯面振動の状態を観察した。この観察は、表面張力により石英ガラスとシリコン融液が濡れている部分(シリコン融液の最外周表面と石英ガラスの接触部)の昇降を高倍率レンズと1秒間に500枚以上撮影できるハイスピードカメラを備えた装置により観測し、シリコン融液の振動周期を測定した。振動周期が1秒以上なものを◎、1/6秒以上1秒未満なものを○、1/6秒未満なものを×として評価した。
(Evaluation 2)
Furthermore, using the crucibles of Examples 1 to 9 and Comparative Examples 1 to 3, a plurality of silicon single crystal ingots were produced by the CZ method, respectively, and silicon melts for producing the first and third silicon single crystal ingots were produced. The hot water surface vibration was observed. This observation is a high-speed lens that can capture more than 500 shots per second with a high-power lens when the quartz glass and silicon melt are wetted by the surface tension (the contact area between the outermost surface of the silicon melt and the quartz glass). Observation was made with an apparatus equipped with a camera, and the vibration period of the silicon melt was measured. Evaluation was made with ◎ as the vibration cycle of 1 second or more, ○ as 1/6 seconds or more and less than 1 second, and × as less than 1/6 second.

表1に、評価1および評価2の結果ならびに、ルツボの周壁部の厚さが9mmとなるまでに引き上げることができたシリコン単結晶インゴットの本数を示す。   Table 1 shows the results of Evaluation 1 and Evaluation 2, and the number of silicon single crystal ingots that were able to be pulled up until the thickness of the peripheral wall of the crucible reached 9 mm.

Figure 0005447946
Figure 0005447946

なお、表中の引き上げ時間とは、ルツボが1400℃以上に一度到達してからの経過時間を示す。
また、石英ガラスルツボは使用可能な最長時間は300時間である。それは、ルツボの内面はシリコン融液と石英ガラスの反応によりできる円状の結晶(内面はクリストバライトで、外見の特徴は縁が茶色、内面が乳白色である)に覆われるが、その結晶が300時間を越えると剥離し、シリコン融液に混入してシリコン単結晶を多結晶化させるので、その時間を越えての使用は難しい。比較例1では、内表面に微小凹部がないので、気泡が表面に露出するまでは湯面振動は大きい。露出後(約180時間後)は、湯面振動は抑制されるので、シリコン単結晶を引き上げことができるが、残りの120時間で引き上げできる本数は限られる。
比較例2では、微小凹部が無くなる(約180時間)までは湯面振動は抑制されるが、その後は湯面振動は抑制されないので、残りの時間内でシリコン単結晶を引き上げることができる。
比較例3では終始、湯面振動が発生しているので、シリコン単結晶を引き上げることはできない。
In addition, the raising time in the table indicates an elapsed time after the crucible reaches 1400 ° C. or more once.
In addition, the quartz glass crucible has a maximum usable time of 300 hours. The inner surface of the crucible is covered with a circular crystal formed by the reaction of silicon melt and quartz glass (the inner surface is cristobalite, the appearance is brown in the edge and the inner surface is milky white), but the crystal is 300 hours If it exceeds the upper limit, it peels off and mixes into the silicon melt to polycrystallize the silicon single crystal, making it difficult to use beyond that time. In Comparative Example 1, since there are no minute recesses on the inner surface, the molten metal surface vibration is large until bubbles are exposed on the surface. After exposure (after about 180 hours), the molten metal surface vibration is suppressed, so that the silicon single crystal can be pulled up, but the number that can be pulled up in the remaining 120 hours is limited.
In Comparative Example 2, the molten metal surface vibration is suppressed until the minute concave portion disappears (about 180 hours), but thereafter, the molten metal surface vibration is not suppressed, so that the silicon single crystal can be pulled up within the remaining time.
In Comparative Example 3, since the molten metal surface vibration is generated from beginning to end, the silicon single crystal cannot be pulled up.

表1に示すとおり、本発明に従う実施例1〜9の石英ガラスルツボは、比較例1〜3と比較して、シリコン融液の湯面振動を安定して抑制することができ、かつ長寿命であることがわかる。   As shown in Table 1, the quartz glass crucibles of Examples 1 to 9 according to the present invention can stably suppress the molten metal surface vibration of the silicon melt and have a long life as compared with Comparative Examples 1 to 3. It can be seen that it is.

本発明によれば、周壁部の内面の特定領域に、複数個の微小凹部を具え、これら微小凹部の下方に位置する合成石英ガラス層中に、複数個の気泡を具えることによって、その内部に充填したシリコン融液の湯面振動を安定して抑制することができ、かつ長寿命のシリコン単結晶引き上げ用石英ガラスルツボおよびその製造方法を提供することができる。   According to the present invention, a plurality of fine recesses are provided in a specific region of the inner surface of the peripheral wall portion, and a plurality of bubbles are provided in the synthetic quartz glass layer located below these fine recesses, thereby providing an interior thereof. It is possible to provide a quartz glass crucible for pulling up a silicon single crystal having a long life and a method for producing the same, which can stably suppress the molten metal surface vibration of the silicon melt filled in the metal.

1 石英ガラスルツボ
2 周壁部
3 湾曲部
4 底部
5 微小凹部
6 特定領域
7 気泡
8 天然石英ガラス
8a 天然石英粉末
9 合成石英ガラス
9a 合成石英粉末
H ルツボ高さ
100 石英ガラスルツボ
101 溶融多結晶シリコン
102 種結晶
103 ネック
104 肩部
105 直胴部
106 尾部
107 シリコンインゴット
108 天然石英ガラス
109 合成石英ガラス
201 開口気泡
202 独立気泡
DESCRIPTION OF SYMBOLS 1 Quartz glass crucible 2 Circumferential wall part 3 Curved part 4 Bottom part 5 Micro recessed part 6 Specific area | region 7 Air bubble 8 Natural quartz glass 8a Natural quartz powder 9 Synthetic quartz glass 9a Synthetic quartz powder H Crucible height 100 Quartz glass crucible 101 Molten polycrystalline silicon 102 Seed crystal 103 Neck 104 Shoulder 105 Straight body part 106 Tail part 107 Silicon ingot 108 Natural quartz glass 109 Synthetic quartz glass 201 Open cell 202 Closed cell

Claims (8)

周壁部、湾曲部および底部を有するシリコン単結晶引き上げ用石英ガラスルツボであって、該石英ガラスルツボは、
内層として合成石英ガラス層を備え、
前記周壁部の内面の特定領域に、複数個の微小凹部を具え
数個の気泡を具え、
前記特定領域は、少なくとも肩部形成のときの湯面が位置する領域であり、
前記合成石英ガラス層中の複数個の気泡を具える領域は、前記微少凹部が備えられた領域の前記周壁部におけるルツボ厚さの0.5〜30%の領域であることを特徴とするシリコン単結晶引き上げ用石英ガラスルツボ。
A quartz glass crucible for pulling a silicon single crystal having a peripheral wall portion, a curved portion and a bottom portion, the quartz glass crucible is
It has a synthetic quartz glass layer as an inner layer,
In a specific region of the inner surface of the peripheral wall portion, a plurality of minute recesses are provided ,
Comprising a multi-several of the bubble,
The specific region is a region where the hot water surface at the time of shoulder formation is located,
The region having a plurality of bubbles in the synthetic quartz glass layer is a region having a thickness of 0.5 to 30% of the crucible thickness in the peripheral wall portion of the region having the minute recesses. A quartz glass crucible for lifting.
前記特定領域は、ルツボ高さをHとするとき、前記底部から測定して、0.50H〜0.99Hの領域内にある請求項1に記載のシリコン単結晶引き上げ用石英ガラスルツボ。 The quartz glass crucible for pulling a silicon single crystal according to claim 1, wherein the specific region is in a region of 0.50H to 0.99H as measured from the bottom when the crucible height is H. 前記特定領域は、ルツボ高さ方向に0.1〜5.0mmの範囲の間隔で区画された円環状の内面部分ごとに、少なくとも1個の前記微小凹部を具える請求項1または2に記載のシリコン単結晶引き上げ用石英ガラスルツボ。 3. The silicon single unit according to claim 1, wherein the specific region includes at least one minute concave portion for each annular inner surface portion that is partitioned in a range of 0.1 to 5.0 mm in the crucible height direction. Quartz glass crucible for crystal pulling. 前記微小凹部の平均直径は、1〜500μmの範囲である請求項1、2または3に記載のシリコン単結晶引き上げ用石英ガラスルツボ。 4. The quartz glass crucible for pulling a silicon single crystal according to claim 1, wherein an average diameter of the minute recesses is in a range of 1 to 500 μm. 前記微小凹部の平均深さは、前記周壁部におけるルツボ厚さの0.05〜50%の範囲である請求項1〜4のいずれか一項に記載のシリコン単結晶引き上げ用石英ガラスルツボ。 The quartz glass crucible for pulling a silicon single crystal according to any one of claims 1 to 4, wherein an average depth of the minute recesses is in a range of 0.05 to 50% of a crucible thickness in the peripheral wall portion. 前記気泡の平均直径は、10〜100μmの範囲で、かつ密度は、30〜300個/mm3の範囲である請求項1〜5のいずれか一項に記載のシリコン単結晶引き上げ用石英ガラスルツボ。 6. The quartz glass crucible for pulling a silicon single crystal according to claim 1, wherein an average diameter of the bubbles is in a range of 10 to 100 μm and a density is in a range of 30 to 300 / mm 3. . 周壁部、湾曲部および底部を有し、天然石英ガラス層の外層および合成石英ガラス層の内層の2層で形成されるシリコン単結晶引き上げ用石英ガラスルツボの製造方法であって、該方法は、
天然石英粉からなる外層を形成する工程と、
前記外層の内面上に、合成石英粉からなる内層を形成する工程と、
前記内層の内面側からアーク放電を生じさせて溶融して、周壁部、湾曲部および底部を有する石英ガラスルツボを形成する工程と、
を具え、前記内層形成工程は、前記周壁部におけるルツボ厚さの0.5〜30%の領域に複数個の気泡が備わるように、前記周壁部の内面の特定領域にその後形成されるべき複数個の微小凹部に位置する内層部分に、発泡性の合成石英粉を用いることを含み、
前記石英ガラスルツボ形成工程の後、前記特定領域に、複数個の微小凹部を形成する微小凹部加工工程をさらに具え、
前記特定領域は、少なくとも肩部形成のときの湯面が位置する領域であることを特徴とするシリコン単結晶引き上げ用石英ガラスルツボの製造方法。
A method for producing a quartz glass crucible for pulling a silicon single crystal, which has a peripheral wall portion, a curved portion, and a bottom portion, and is formed of two layers of an outer layer of a natural quartz glass layer and an inner layer of a synthetic quartz glass layer,
Forming an outer layer of natural quartz powder;
Forming an inner layer made of synthetic quartz powder on the inner surface of the outer layer;
Forming and melting an arc discharge from the inner surface side of the inner layer to form a quartz glass crucible having a peripheral wall portion, a curved portion and a bottom portion;
The inner layer forming step includes a plurality of bubbles to be subsequently formed in a specific region of the inner surface of the peripheral wall portion so that a plurality of bubbles are provided in a region of 0.5 to 30% of the crucible thickness in the peripheral wall portion. the inner layer portion located in fine recesses, comprises using a foaming synthetic quartz powder,
After the quartz glass crucible forming step, the specific region further includes a minute recess processing step of forming a plurality of minute recesses,
The method for producing a quartz glass crucible for pulling a silicon single crystal, wherein the specific region is a region where a molten metal surface is located at least when forming a shoulder portion.
前記微小凹部は、炭酸ガスレーザまたはダイヤモンドツールなどを用いた物理研削によりを用いて形成される請求項7に記載のシリコン単結晶引き上げ用石英ガラスルツボの製造方法。 The method for producing a quartz glass crucible for pulling up a silicon single crystal according to claim 7, wherein the minute recesses are formed by physical grinding using a carbon dioxide laser or a diamond tool.
JP2009263340A 2009-11-18 2009-11-18 Silica glass crucible for pulling silicon single crystal and manufacturing method thereof Active JP5447946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009263340A JP5447946B2 (en) 2009-11-18 2009-11-18 Silica glass crucible for pulling silicon single crystal and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009263340A JP5447946B2 (en) 2009-11-18 2009-11-18 Silica glass crucible for pulling silicon single crystal and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011105552A JP2011105552A (en) 2011-06-02
JP5447946B2 true JP5447946B2 (en) 2014-03-19

Family

ID=44229496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009263340A Active JP5447946B2 (en) 2009-11-18 2009-11-18 Silica glass crucible for pulling silicon single crystal and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5447946B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110656370A (en) * 2019-11-06 2020-01-07 西安奕斯伟硅片技术有限公司 Crucible pot

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2835452A4 (en) 2013-04-08 2016-02-24 Shinetsu Quartz Prod Silica vessel for pulling up single crystal silicon and process for producing same
JP6941042B2 (en) * 2017-12-12 2021-09-29 信越石英株式会社 Manufacturing method of mold and quartz glass crucible

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19917288C2 (en) * 1999-04-16 2001-06-28 Heraeus Quarzglas Quartz glass crucible
JP4994576B2 (en) * 2004-03-23 2012-08-08 コバレントマテリアル株式会社 Silica glass crucible
KR100847500B1 (en) * 2006-03-30 2008-07-22 코바렌트 마테리얼 가부시키가이샤 Silica glass crucible
JP4798714B2 (en) * 2007-03-28 2011-10-19 コバレントマテリアル株式会社 Silica glass crucible for pulling silicon single crystals
JP5273512B2 (en) * 2007-10-25 2013-08-28 株式会社Sumco Quartz glass crucible and its manufacturing method and application

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110656370A (en) * 2019-11-06 2020-01-07 西安奕斯伟硅片技术有限公司 Crucible pot

Also Published As

Publication number Publication date
JP2011105552A (en) 2011-06-02

Similar Documents

Publication Publication Date Title
JP5292526B2 (en) Silica glass crucible and method for producing the same
JP4948504B2 (en) Silicon single crystal pulling method
EP1094039B1 (en) Method for manufacturing quartz glass crucible
JP5588012B2 (en) Quartz crucible and method for producing the same
JP4975012B2 (en) Silica glass crucible for pulling silicon single crystal and manufacturing method thereof
JP4875229B2 (en) Silica glass crucible
JP4233059B2 (en) Silica glass crucible for pulling silicon single crystal and method for producing the same
JP4702898B2 (en) Method for producing quartz glass crucible for pulling silicon single crystal
JP2009102206A (en) Quartz glass crucible, method for producing the same, and its application
JP5377930B2 (en) Method for producing quartz glass crucible for pulling silicon single crystal
JP5500684B2 (en) Silica glass crucible and method for producing the same, and method for producing silicon ingot
JP5447946B2 (en) Silica glass crucible for pulling silicon single crystal and manufacturing method thereof
US10287705B2 (en) Pulling a semiconductor single crystal according to the Czochralski method and silica glass crucible suitable therefor
JP4803784B2 (en) Method for producing quartz glass crucible for pulling silicon single crystal
JP4678667B2 (en) Silica glass crucible for pulling silicon single crystal and method for producing the same
US9328009B2 (en) Vitreous silica crucible for pulling silicon single crystal, and method for manufacturing the same
KR101293526B1 (en) Vitreous silica crucible for pulling silicon single crystal, and method for manufacturing the same
JP2008162865A (en) Quartz glass crucible
TW201326480A (en) Crucibles with a reduced amount of bubbles, ingots and wafers produced by use of such crucibles and related methods

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110316

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130913

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131218

R150 Certificate of patent or registration of utility model

Ref document number: 5447946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250