JPS60138028A - Production of nickel-titanium alloy - Google Patents

Production of nickel-titanium alloy

Info

Publication number
JPS60138028A
JPS60138028A JP24707683A JP24707683A JPS60138028A JP S60138028 A JPS60138028 A JP S60138028A JP 24707683 A JP24707683 A JP 24707683A JP 24707683 A JP24707683 A JP 24707683A JP S60138028 A JPS60138028 A JP S60138028A
Authority
JP
Japan
Prior art keywords
alloy
nickel
crucible
molten metal
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24707683A
Other languages
Japanese (ja)
Inventor
Masayuki Wakamiya
若宮 正行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24707683A priority Critical patent/JPS60138028A/en
Publication of JPS60138028A publication Critical patent/JPS60138028A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PURPOSE:To prevent intrusion of a crucible material into an Ni-Ti alloy as a shape memory alloy and hydrogen storage alloy and the deterioration in the characteristic thereof in the stage of producing said alloy by constituting the crucible for melting of a specific material. CONSTITUTION:An Ni49Ti51 alloy which is an alloy having a shape memory characteristic and an Ni36Ti64 alloy or the like having a hydrogen storage characteristic are melted and produced by using sponge Ti and granular Ni respectively having high purity as a raw material. The material which contacts with the molten metal in a crucible, etc. to be used in this case is constituted of at least one kind among metallic elements such as Ca, Rb, Sr, Y, Cs, Ba, La, Eu, Tl, Pb, Bi, Th, etc. of which the interatomic distance between the nearest atoms in the crystal is >=3.4Angstrom or the oxide and nitride thereof. The alloy having the high-purity compsn. is obtd. without intrusion of the crucible material into the Ni-Ti alloy and the deterioration in the shape memory characteristic and hydrogen storage characteristic is obviated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、形状記憶合金や水素吸蔵合金などに使われる
ニッケル・チタニウム合金の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a nickel-titanium alloy used for shape memory alloys, hydrogen storage alloys, and the like.

従来例の構成とその問題点 最近、ニッケル・チタニウム合金は、形状記憶合金や水
素吸蔵合金などとして、注目を集めている。一般に、こ
の合金はニッケル金属とチタニウム金属を適量準備し、
混合溶解後、冷却凝固させることによって得られている
。しかし、この合金と各種金属あるいは金属酸化物(S
iOユなどを含む)は非常に反応し易く、特に上記作製
工程の溶解時に、この溶湯な保持するルツボ材と反応し
、ルツボ材を構成する元素がニッケル・チタニウム合金
に拡散したり、逆にニッケルやチタニウムがルツボ中に
入り、ルツボ材質を変化させ、ルツボな破壊させたりす
る。このような理由で、これまでニッケル・チタニウム
合金を作製する際の適当なルツボ材はなかった。最近、
カーボンルツボがこの合金用溶解ルツボとして広範に使
用され始めているが、できるだけ低温で溶解する必要が
あり、この゛ような配慮をしても数百pp腸組以上炭素
がニッケル・チタニウム合金に混入する。またこの炭素
混入量は溶解時間の増加に伴い多くなる。
Structures of conventional examples and their problems Recently, nickel-titanium alloys have been attracting attention as shape memory alloys, hydrogen storage alloys, and the like. Generally, this alloy is prepared by preparing appropriate amounts of nickel metal and titanium metal,
It is obtained by cooling and solidifying after mixing and dissolving. However, this alloy and various metals or metal oxides (S
(including iO) is very reactive, and in particular during melting in the above manufacturing process, it reacts with the crucible material holding this molten metal, causing the elements constituting the crucible material to diffuse into the nickel-titanium alloy, or vice versa. Nickel and titanium enter the crucible, changing the crucible material and causing its destruction. For these reasons, until now there has been no suitable crucible material for producing nickel-titanium alloys. recently,
Carbon crucibles are beginning to be widely used as melting crucibles for this alloy, but it is necessary to melt at the lowest possible temperature, and even with these considerations, more than a few hundred ppm of carbon will be mixed into the nickel-titanium alloy. . Further, the amount of carbon mixed in increases as the dissolution time increases.

このような炭素などのルツボ材料のニッケル・チタニウ
ム合金への含有は、合金の機械的特性を下げたり、ある
いは形状記憶特性に複雑な#響を及ぼし、その特性制御
が極めて煩雑になる。また、これらの合金への炭素の侵
入は水素吸蔵特性についても影響し、侵入元素量が多く
なるとともに水素吸蔵量が少なくなる。上記のように、
ニッケル・チタニウム合金への異原子の侵入は、この合
金特性に大きな影響を及ぼし、この侵入原子を極力なく
することが必要である。
Inclusion of such a crucible material such as carbon in a nickel-titanium alloy lowers the mechanical properties of the alloy or has a complicated effect on the shape memory properties, making control of the properties extremely complicated. In addition, the intrusion of carbon into these alloys also affects the hydrogen storage properties, and as the amount of invading elements increases, the amount of hydrogen storage decreases. As described above,
Intrusion of foreign atoms into a nickel-titanium alloy has a significant effect on the properties of the alloy, and it is necessary to eliminate these intrusion atoms as much as possible.

発明の目的 本発明は上記のような溶解時のニッケル・チタニウム合
金への異原子の侵入を極力低減し、安定した機械的特性
、形状記憶特性および水素吸蔵特性を得ることができる
良質のニッケル・チタニウム合金を供給することを目的
とする。
Purpose of the Invention The present invention aims to reduce the intrusion of foreign atoms into the nickel-titanium alloy during melting as described above, and to obtain stable mechanical properties, shape memory properties, and hydrogen storage properties. The purpose is to supply titanium alloys.

発明の構成 上記目的達成のため、ニッケルとチタニウム金属を混合
溶解し、凝固させるニッケル台チタニウム合金の製造方
法において、溶解時溶湯と接触する溶湯保持体がカルシ
ウム、ルビジウム、ストロンチウム、イツトリウム、セ
シウム、バリウム、ランタン、ユーロピウム、タリウム
、鉛、ヒスマス、トリウムなどの、結晶中における最近
接原子−1距離が3.4A以上である金属元素あるいは
その酸化物、窒化物を少なくとも一種以上含むニッケル
台チタニウム合金の製造方法とした。
Structure of the Invention In order to achieve the above object, in a method for producing a nickel-based titanium alloy in which nickel and titanium metals are mixed and melted and solidified, the molten metal holder that comes into contact with the molten metal during melting contains calcium, rubidium, strontium, yttrium, cesium, and barium. , lanthanum, europium, thallium, lead, hismuth, thorium, etc., a nickel-base titanium alloy containing a metal element whose nearest atom-1 distance in the crystal is 3.4 A or more, or at least one of its oxides or nitrides. This is the manufacturing method.

ニッケルとチタニウム金属を溶解させる際、元素の結晶
における最近接原子間距離が3.4A以上である金属元
素あるいはその酸化物を溶湯保持材として用いれば、溶
解中に溶湯に侵入する他金属原子は際のめて少なく、I
Qppm以下であった。一方その酸化物を溶湯保持材と
して使用した場合も、金属のニッケル・チタニウム合金
への侵入は10ppm以下であり、同合金の酸素含有量
も増加しなかった。その窒化物でも酸素の場合と同様な
挙動を示した。従って、溶湯保持材はきわめて安定とな
り、数回再使用可能であった。
When melting nickel and titanium metals, if a metal element or its oxide whose nearest atomic distance in the crystal of the element is 3.4A or more is used as a molten metal holding material, other metal atoms that enter the molten metal during melting will be prevented. Very few, I
It was below Qppm. On the other hand, when the oxide was used as a molten metal holding material, the amount of metal intrusion into the nickel-titanium alloy was 10 ppm or less, and the oxygen content of the alloy did not increase. The nitride showed similar behavior to that of oxygen. Therefore, the molten metal holding material became extremely stable and could be reused several times.

一方、上述の元素の結晶における最近接原子間距離が3
.4A未満である金属元素あるいはその酸化物を溶湯保
持材とした場合数百ppm以上の該元素がニッケル・チ
タニウム合金に侵入し、溶湯保持材にもニッケル・チタ
ニウム合金が侵入する。
On the other hand, the distance between the nearest atoms in the crystal of the above element is 3
.. When a metal element or its oxide having a concentration of less than 4A is used as a molten metal holding material, several hundred ppm or more of the element invades the nickel-titanium alloy, and the nickel-titanium alloy also invades the molten metal holding material.

このためニッケル・チタニウム合金の例えば形状記憶特
性などが著しく変化し、マルテンサイトあるいはオース
テナイトへの変態開始温度制御などが極めて困難となる
。また水素吸蔵特性についても、その基本的な特性が変
化し、安定な材料供給は難しくなる。また、溶湯保持材
も材質が大きく変化するとともにクラックなど破壊現象
が生じ。
For this reason, the shape memory properties of the nickel-titanium alloy, for example, change significantly, making it extremely difficult to control the temperature at which transformation to martensite or austenite begins. Furthermore, the basic characteristics of hydrogen storage properties will change, making it difficult to provide a stable material supply. In addition, the material of the molten metal holding material changes significantly and cracks and other destructive phenomena occur.

再使用にほとんど耐えられない。It hardly stands up to reuse.

実施例の説明 以下、実施例につき説明する。Description of examples Examples will be described below.

実施例1.スポンジチタン(99,7%)と粒状−−”
/ケル(911,11%)をThe、ルツボを用い、こ
の中で溶解した。この溶解はアルゴン中で行なわれ、溶
解後、金属を銅製鋳型に鋳込んだ。このようにして旧4
BTi51(at%:原子パーセント)の合金を作製し
た。この旧−Ti合金中にはTbは2 ppmとほとん
ど含まれていなかった。酸素含有量は350ppmであ
った。また、この合金は適当に加工をすることにより安
定な形状記憶効果を示した。この量は酸化物でないルツ
ボ、例えばカーボンルツボ中での溶解とほとんど変らな
い。溶解に使用したルツボは外観上も変化はなく同様な
溶解を再度行なっても、十分使用に耐えた。
Example 1. Sponge titanium (99.7%) and granules --"
/Kel (911, 11%) was dissolved in the crucible. The melting was carried out under argon, and after melting the metal was cast into copper molds. In this way the old 4
An alloy of BTi51 (at%: atomic percent) was produced. This old-Ti alloy contained almost no Tb at 2 ppm. The oxygen content was 350 ppm. Moreover, this alloy showed stable shape memory effect when processed appropriately. This amount differs little from dissolution in a non-oxide crucible, such as a carbon crucible. There was no change in appearance of the crucible used for melting, and the crucible could withstand use even if the same melting was performed again.

実施例2.ルビジウム金属ルツボ中で、スポンジチタン
(9L?%)、粒状ニッケル(88゜9%)を加熱溶解
する。この溶解は10 m+aHgの真空中で行なわれ
、溶解後金属を銅製鋳型に鋳込んだ。このようにして旧
3sTi64(at%)の合金を作製した。
Example 2. Sponge titanium (9L?%) and granular nickel (88°9%) are heated and melted in a rubidium metal crucible. The melting was carried out in a vacuum of 10 m+aHg, and after melting the metal was cast into copper molds. In this way, an alloy of old 3sTi64 (at%) was produced.

このNi−Ti合金中にはRbは1 ppmとほとんど
含まれていなかった。また酸素および窒素含有量もそれ
ぞれ400PPm、300pPIlと極めて低濃度であ
った。又、この合金を母合金として液体急冷法により作
製したアモルファス合金は安定な水素吸蔵特性を示した
。ルツボは外観上も変化はなく水分子と接触させなけれ
ば再使用が可能であった。
This Ni-Ti alloy contained almost no Rb at 1 ppm. Furthermore, the oxygen and nitrogen contents were extremely low at 400 PPm and 300 pPIl, respectively. Furthermore, an amorphous alloy produced by a liquid quenching method using this alloy as a master alloy exhibited stable hydrogen storage properties. The crucible did not change in appearance and could be reused as long as it did not come into contact with water molecules.

実施例3.チッ化トリウム(ThJN<=)ルツボ中で
スポンジチタン(911,7%)、粒状ニッケル(11
9,9%)を加熱溶解する。この溶解は1気圧アルゴン
雰囲気中で行なわれ、溶解後金属を銅製鋳型に鋳込んだ
。このようにしてNi51 Ti48(at%)の合金
を作製した。この旧−Ti合金中にはThは2 ppm
とほとんど含まれていなかった。酸素および窒素含有量
はそれぞれ350PPI6.350ppHと極めて低濃
度であった。また、この合金は適当に加工をすることに
より安定な形状記憶効果を示した。ルツボは外観上変化
なく再使用が可能であった。
Example 3. Sponge titanium (911,7%), granular nickel (11
9.9%) is heated and dissolved. The melting was carried out in a 1 atm argon atmosphere, and after melting the metal was cast into copper molds. In this way, an alloy of Ni51 Ti48 (at%) was produced. Th is 2 ppm in this old-Ti alloy.
was hardly included. The oxygen and nitrogen contents were extremely low at 350 PPI and 6.350 ppH, respectively. Moreover, this alloy showed stable shape memory effect when processed appropriately. The crucible could be reused without any change in appearance.

図面は本発明の実施例1と実施例3(イ)、実施例2(
ロ)と従来使用されているカーボンルツボ材(ハ)での
溶解(NioTis+)によって作製した旧−Ti合金
に含まれる溶湯保持材の溶解時間の影響を示すグラフで
ある。溶湯温度は、いずれも1400℃である。本発明
による作製が、溶湯保持材をほとんど含有しないことが
わかる。
The drawings show Embodiment 1, Embodiment 3 (A), and Embodiment 2 (A) of the present invention.
It is a graph showing the influence of the melting time of the molten metal holding material contained in the old-Ti alloy produced by melting (B) in the conventionally used carbon crucible material (C) (NioTis+). The molten metal temperature was 1400°C in both cases. It can be seen that the preparation according to the invention contains almost no molten metal retaining material.

以上、実施例では簡単な例について述べたが、この他の
カルシウム、ルビジウム、ストロンチウム、イツトリウ
ム、セシウム、バリウム、ランタン、ユーロピウム、タ
リウム、鉛、ビスマス、トリウム等についても同様な結
果が期待できる。
Although simple examples have been described in the Examples above, similar results can be expected with other materials such as calcium, rubidium, strontium, yttrium, cesium, barium, lanthanum, europium, thallium, lead, bismuth, and thorium.

発明の効果 本発明によって、ニッケル・チタニウム合金の作製の際
に、ルツボなどの溶湯保持材から、該合金に侵入する不
純物は極めて少なくなり、形状記憶合金あるいは水素貯
蔵合金として安定な特性を有する合金の供給が可能とな
った。またルツボ(溶湯保持材)もニッケルやチタニウ
ムの汚染が極めて少なくなり、再使用が可能となった。
Effects of the Invention According to the present invention, when producing a nickel-titanium alloy, impurities that enter the alloy from a molten metal holding material such as a crucible are extremely reduced, and the alloy has stable characteristics as a shape memory alloy or a hydrogen storage alloy. supply became possible. In addition, the crucible (molten metal holding material) is now extremely free from nickel and titanium contamination, making it possible to reuse it.

このことによりニッケル・チタニウム合金製造コストの
低減が期待できる。
This can be expected to reduce the manufacturing cost of nickel-titanium alloys.

また本発明は、金属溶湯を回転する金属冷却体などで急
冷する、いわゆる液体急冷法などの溶湯を保持するノズ
ル材(溶湯保持材)としても使用が可能であり、本発明
で述べたルツボと同様な効果が期待できる。
The present invention can also be used as a nozzle material (molten metal holding material) for holding molten metal in the so-called liquid quenching method, in which molten metal is rapidly cooled with a rotating metal cooling body, and can be used as a nozzle material (molten metal holding material) for holding molten metal in the crucible described in the present invention. Similar effects can be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明と従来例の溶湯保持材の溶解時間によるニ
ッケル・チタニウム合金への含有量を示すグラフである
。 代理人 弁理士 大 島 −公
The drawing is a graph showing the content of nickel-titanium alloys according to the melting time of the molten metal holding materials of the present invention and conventional examples. Agent Patent Attorney Mr. Oshima

Claims (1)

【特許請求の範囲】[Claims] ニッケルとチタニウム金属を混合溶解し、凝固させるニ
ッケル・チタニウム合金の製造方法において、溶解時溶
湯と接触する溶湯保持体がカルシウム、ルビジウム、ス
トロンチウム、イツトリウム、セシウム、バリウム、ラ
ンタン、ユーロピウム、タリウム、鉛、ビスマス、トリ
ウムなどの、結晶中における最近接原子間距離が3.4
A以上である金属元素あるいはその酸化物、窒化物を少
なくとも一種以上含むことを特徴とするニッケル・チタ
ニウム合金の製造方法。
In the manufacturing method of nickel-titanium alloy in which nickel and titanium metals are mixed and melted and solidified, the molten metal holder that comes into contact with the molten metal during melting contains calcium, rubidium, strontium, yttrium, cesium, barium, lanthanum, europium, thallium, lead, The distance between the nearest atoms in crystals such as bismuth and thorium is 3.4
A method for producing a nickel-titanium alloy, characterized in that it contains at least one metal element having a grade A or higher, or its oxide or nitride.
JP24707683A 1983-12-26 1983-12-26 Production of nickel-titanium alloy Pending JPS60138028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24707683A JPS60138028A (en) 1983-12-26 1983-12-26 Production of nickel-titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24707683A JPS60138028A (en) 1983-12-26 1983-12-26 Production of nickel-titanium alloy

Publications (1)

Publication Number Publication Date
JPS60138028A true JPS60138028A (en) 1985-07-22

Family

ID=17158068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24707683A Pending JPS60138028A (en) 1983-12-26 1983-12-26 Production of nickel-titanium alloy

Country Status (1)

Country Link
JP (1) JPS60138028A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1627933A1 (en) * 2004-08-09 2006-02-22 C.R.F. Società Consortile per Azioni Method and device for adsorbing and/or desorbing hydrogen with the aid of shape memory materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1627933A1 (en) * 2004-08-09 2006-02-22 C.R.F. Società Consortile per Azioni Method and device for adsorbing and/or desorbing hydrogen with the aid of shape memory materials

Similar Documents

Publication Publication Date Title
KR920006603B1 (en) Neodyme alloy and the method of making
JP3384919B2 (en) Preparation method of oxide crystal
US3857705A (en) Small grain promoting aluminum-titanium-boron mother alloy
IE832336L (en) Alloys of aluminium and boron
JPS60138028A (en) Production of nickel-titanium alloy
JPS61210142A (en) Ni-ti alloy having superior shock resistance and its manufacture
Ivanov Preparation of CuxHg1-x Solid Solutions by Mechanical Alloying
JPS59164692A (en) Preparation of oxide single crystal
US3679394A (en) Method for casting high ti content alloys
JP2972873B1 (en) Method for producing zirconia fiber
JP3936767B2 (en) Preparation method of oxide crystals
Shimada et al. Crystal growth of NbC by flux method
JPH04164858A (en) Sintered material of light rare earth oxide, production thereof and crucible comprising the same sintered material
US1024476A (en) Article composed essentially of titanium and silver and method of producing the same.
US1025426A (en) Article composed essentially of titanium and silver and method of producing the same.
JPH0578715A (en) Production of alloy powder containing pare-earth metal
JP2737824B2 (en) Melt separation method for composite silver products
JPS62153108A (en) Fusion synthesis method
JPH04164859A (en) Sintered material of light rare earth oxide, production thereof and crucible comprising the same sintered material
Wong-Ng et al. Superconducting Phase Formation in Bi (Pb)-Sr-Ca-Cu-O Glasses: A Review
JP2714403B2 (en) Method for producing single crystals of gallotitanogallate
JPS63242997A (en) Production of ceramics superconducting material
JPH06321693A (en) Production of oxide superconducting material
JPS5938195B2 (en) Production method of brilliant chrysoberine single crystal
JPH02243519A (en) Oxide superconductor and production thereof