JPH04164858A - Sintered material of light rare earth oxide, production thereof and crucible comprising the same sintered material - Google Patents

Sintered material of light rare earth oxide, production thereof and crucible comprising the same sintered material

Info

Publication number
JPH04164858A
JPH04164858A JP29086190A JP29086190A JPH04164858A JP H04164858 A JPH04164858 A JP H04164858A JP 29086190 A JP29086190 A JP 29086190A JP 29086190 A JP29086190 A JP 29086190A JP H04164858 A JPH04164858 A JP H04164858A
Authority
JP
Japan
Prior art keywords
rare earth
light rare
oxide
crucible
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29086190A
Other languages
Japanese (ja)
Inventor
Masami Uzawa
正美 鵜澤
Yasuhisa Mihara
康央 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onoda Cement Co Ltd
Original Assignee
Onoda Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onoda Cement Co Ltd filed Critical Onoda Cement Co Ltd
Priority to JP29086190A priority Critical patent/JPH04164858A/en
Publication of JPH04164858A publication Critical patent/JPH04164858A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a dense sintered material hardly collapsing, having excellent water resistance by sintering a compound of light rare earth element with a compound of a specific element to give an oxide. CONSTITUTION:(A) An oxide of a light rare earth element (selected from La, Ce, Pr and Nd) and (B) an oxide of element selected from Sc, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm Yb, Lu, Al, In, Tl, Ti, Zr, Hf, Si, Ge, Sn, Pb and Ni are used to give a sintered material of light rare earth element. The ratio of each composition of the component A:B is 99:1-50:50 in molar ratio of element. The sintered material is produced by molding a mixture of the raw material compound in a given ratio by using an ordinary monoaxial press and sintering at 1,000-1,900 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は緻密で優れた耐水性を有する軽希土類酸化物焼
結体、その製造方法及びこれを用いたルツボに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a light rare earth oxide sintered body that is dense and has excellent water resistance, a method for producing the same, and a crucible using the same.

〔従来の技術〕[Conventional technology]

近年、電子・光材料、半導体材料、磁性材料、超伝導材
料、ニューセラミックス材料等新素材・材料の開発が世
界的規模で盛んに行われている。
In recent years, the development of new materials such as electronic/optical materials, semiconductor materials, magnetic materials, superconducting materials, and new ceramic materials has been actively carried out on a global scale.

このような新材料の開発にあたっては、材料の本質的な
物性評価が極めて重要であり、このような評価をするに
は高純度の材料が必要となる。例えば、超伝導現象解明
の手がかりとして、単結晶体の解析が考えられる。正確
な解析には、高純度の単結晶体が必要となるが、良質な
単結晶体はなかなか得られないのが現状である。その原
因の一つに単結晶合成の際に用いるルツボ等の容器の構
成元素が、単結晶体に混入してしまう、いわゆるコンタ
ミネーションが生じることが挙げられる。これを解決す
るため、超伝導体の構成元素の中から選択された元素で
作られた容器を用いることが多くなってきた。
In developing such new materials, it is extremely important to evaluate the essential physical properties of the materials, and such evaluations require highly pure materials. For example, analysis of single crystals can be considered as a clue to elucidating superconducting phenomena. Accurate analysis requires highly pure single crystals, but at present it is difficult to obtain high-quality single crystals. One of the causes is that constituent elements of a container such as a crucible used for single crystal synthesis mix into the single crystal, which is so-called contamination. To solve this problem, containers made of elements selected from among the constituent elements of superconductors are increasingly being used.

こうした状況は、エレクトロニクスやガラスの分野にお
いても生じている。
This situation is also occurring in the electronics and glass fields.

かかる目的で使用されている容器に希土類酸化物部、例
えばイツ) IJウム等の重希土類元素の酸化物製の容
器がある。また、最近になって、ランタン、セリウム、
プラセオジム、ネオジム等の軽希土類元素の酸化物製の
容器を作るという要望もでてきた。
Containers used for this purpose include containers made of rare earth oxides, such as oxides of heavy rare earth elements such as IJum. Also, recently, lantern, cerium,
There has also been a demand for containers made of oxides of light rare earth elements such as praseodymium and neodymium.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、軽希土類酸化物は、水分と反応して水酸
化物をつくりやすいという他の希土類酸化物にはない性
質を有しているため、それらの焼結体及びこれを用いた
容器は、短期間で崩壊してしまうという欠点があっる。
However, light rare earth oxides have a property that other rare earth oxides do not have, that is, they easily react with moisture to form hydroxides, so their sintered bodies and containers using them cannot be manufactured in the short term. It has the disadvantage of collapsing in between.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明者等は前記の問題を解決すべく種々研究
を行った結果、軽希土類化合物を特定の元素の化合物と
ともに焼結せしめれば崩壊しにくく、緻密でかつ優れた
耐水性を有する焼結体が得られること、更に当該焼結体
を用いたルツボを利用すればコンタミネーションのない
良質の新素材・材料の製造が可能になることを見出し、
本発明を完成した。
Therefore, the present inventors have conducted various studies to solve the above problems, and have found that if light rare earth compounds are sintered with compounds of specific elements, the sintered material will not disintegrate easily, will be dense, and will have excellent water resistance. We discovered that a sintered body can be obtained, and that by using a crucible using the sintered body, it is possible to produce new materials of high quality without contamination.
The invention has been completed.

すなわち、本発明は、(a)ランタン、セリウム、プラ
セオジム及びネオジムよりなる群から選択された軽希土
類元素の酸化物と、(b)スカンジウム、プロメチウム
、サマリウム、ユーロピウム、ガドリニウム、テルビウ
ム、ジスプロシウム、ホルミウム、エルビウム、ツリウ
ム、イッテルピウム、ルテチウム、アルミニウム、ガド
リニウム、インジウム、タリウム、チタン、ジルコニウ
ム、ハフニウム、珪素、ゲルマニウム、錫、鉛及びニッ
ケルよりなる群から選択された元素の酸化物とを含有す
ることを特徴とする軽希土類酸化物焼結体、並びにその
製造方法を提供するものである。
That is, the present invention provides (a) an oxide of a light rare earth element selected from the group consisting of lanthanum, cerium, praseodymium, and neodymium, and (b) scandium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, and an oxide of an element selected from the group consisting of erbium, thulium, ytterpium, lutetium, aluminum, gadolinium, indium, thallium, titanium, zirconium, hafnium, silicon, germanium, tin, lead and nickel. The present invention provides a light rare earth oxide sintered body and a method for producing the same.

更に、本発明は、少なくとも試料との接触面が、上記軽
希土類酸化物焼結体からなることを特徴とするルツボを
提供するものである。
Furthermore, the present invention provides a crucible characterized in that at least the contact surface with the sample is made of the light rare earth oxide sintered body.

本発明の軽希土類酸化物焼結体(以下、本発明焼結体と
いう)は、例えば(A)ランタン、セリウム、プラセオ
ジム及びネオジムよりなる群から選択された軽希土類元
素の化合物(以下、(A)化合物という)と、(B)カ
ンジウム、プロメチウム、サマリウム、ユーロピウム、
ガドリニウム、テルビウム、ジスプロシウム、ホルミウ
ム、エルビウム、ツリウム、イッテルピウム、ルテチウ
ム、アルミニウム、ガドリニウム、インジウム、タリウ
ム、チタン、ジルコニウム、ハフニウム、珪素、ゲルマ
ニウム、錫、鉛及びニッケルよりなる群から選択された
元素の化合物(以下、(B)化合物という)との混合物
を焼結せしめることにより製造することができる。
The light rare earth oxide sintered body of the present invention (hereinafter referred to as the sintered body of the present invention) is a compound of a light rare earth element selected from the group consisting of (A) lanthanum, cerium, praseodymium, and neodymium (hereinafter referred to as (A) ) and (B) candium, promethium, samarium, europium,
Compounds of elements selected from the group consisting of gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterpium, lutetium, aluminum, gadolinium, indium, thallium, titanium, zirconium, hafnium, silicon, germanium, tin, lead and nickel ( It can be produced by sintering a mixture with (hereinafter referred to as (B) compound).

原料として用いられる(八)化合物としては、例えば上
述の軽希土類元素の酸化物;塩酸塩、硫酸塩、硝酸塩、
炭酸塩等の無機酸塩:クエン酸塩等の有機酸塩;水酸化
物;アルコキシドなどを挙げることができ、これら化合
物の1種を用いても良く、また2種以上を混合して用い
ても良い。また、(B)化合物は、焼結助剤として用い
るものであるが、その例としては、上述の元素の酸化物
;塩酸塩、硫酸塩、硝酸塩、炭酸塩等の無機酸塩;クエ
ン塩等の有機酸塩;水酸化物;アルコキシドなどを挙げ
ることができ、これら化合物の1種を用いても良く、ま
た2種以上を混合して用いても良い。ここで、アルコキ
シドは、原料を混合する際、優れた混合性を有するが、
反面高価であるため使用目的にあわせて選択すべきであ
る。なお、本発明において使用する原料は、焼結体の用
途にもよるが通常の純度、すなわち、95〜99%程度
で充分である。
Examples of the compound (8) used as a raw material include the above-mentioned oxides of light rare earth elements; hydrochlorides, sulfates, nitrates,
Examples include inorganic acid salts such as carbonates; organic acid salts such as citrates; hydroxides; alkoxides; one type of these compounds may be used, or two or more types may be used as a mixture. Also good. Further, the compound (B) is used as a sintering aid, and examples thereof include oxides of the above-mentioned elements; inorganic acid salts such as hydrochlorides, sulfates, nitrates, and carbonates; citrates, etc. Organic acid salts; hydroxides; alkoxides, etc. may be used, and one type of these compounds may be used, or two or more types may be used in combination. Here, alkoxide has excellent mixability when mixing raw materials, but
On the other hand, it is expensive, so it should be selected according to the purpose of use. Note that the raw material used in the present invention has a normal purity, that is, about 95 to 99%, which is sufficient depending on the use of the sintered body.

焼結は、これらの原料を混合し、成形後常法に従い焼結
させることにより行われる。
Sintering is performed by mixing these raw materials, molding, and then sintering according to a conventional method.

原料の混合割合は目的とする本発明焼結体における成分
(a)中に含まれる上述の軽希土類元素と、成分ら)中
に含まれる上述の元素との割合が、モル比で成分(a)
:成分(b)〜99 : 1〜50 : 50となるよ
うにするのが好ましい。成分(a)が99モル%を超え
、成分(b)が1モル%未満の場合は、焼結助剤である
成分(b)の添加効果が充分でなく焼結体中の軽希土類
酸化物(成分(a))が吸水して水酸化物になり焼結体
は崩壊するため好ましくなく、また、成分(a)が50
モル%未満で、成分ら)が50モル%を超える場合は、
焼結体中の成分ら)が作成する素材中に混入することが
あるため好ましくない。
The mixing ratio of the raw materials is such that the ratio of the above-mentioned light rare earth elements contained in component (a) and the above-mentioned elements contained in component )
: Component (b) to 99 : 1 to 50 : 50 is preferable. If component (a) is more than 99 mol% and component (b) is less than 1 mol%, the effect of adding component (b), which is a sintering aid, is not sufficient and the light rare earth oxide in the sintered body is (Component (a)) absorbs water and becomes hydroxide, which causes the sintered body to collapse, which is undesirable.
If it is less than mol% and the component (etc.) exceeds 50 mol%,
This is not preferable because the components in the sintered body may be mixed into the material to be produced.

混合方法は、乾式混合法、湿式混合法及び共沈法のいず
れを用いてもよい。乾式混合法による場合は、アルミナ
や現瑞製の乳鉢又はそれらのボールミル等を用いるのが
好ましい。湿式混合法による場合の溶剤としては、エタ
ノールやアセトン等の沸点の比較的低い有機溶剤を用い
るのが好ましい。溶剤として水を用いると添加する成分
(B)が溶けることがあるので好ましくない。また、高
沸点の有機溶剤を用いると、溶剤と混合粉との分離が困
難となるので好ましくない。一般に共沈法を用いると、
均一な混合粉が得られるが、用いた沈澱剤からの不純物
の混入や溶液中に多量に原料イオンが残存して秤量誤差
を生じることがあるので、これに注意する必要がある。
As the mixing method, any of a dry mixing method, a wet mixing method, and a coprecipitation method may be used. When using the dry mixing method, it is preferable to use an alumina or genzui mortar or a ball mill thereof. As the solvent in the wet mixing method, it is preferable to use an organic solvent with a relatively low boiling point, such as ethanol or acetone. It is not preferable to use water as a solvent because the component (B) to be added may dissolve. Further, it is not preferable to use an organic solvent with a high boiling point because it becomes difficult to separate the solvent and the mixed powder. Generally, when using the coprecipitation method,
Although a uniform mixed powder can be obtained, care must be taken as impurities from the precipitant used and large amounts of raw material ions remaining in the solution may cause weighing errors.

次に、得られた混合粉を成形し、焼結せしめる。Next, the obtained mixed powder is shaped and sintered.

成形には、通常の一軸ブレスが使用できる。焼結に要す
る温度は1000〜1900℃の範囲が好ましい。
A normal uniaxial press can be used for molding. The temperature required for sintering is preferably in the range of 1000 to 1900°C.

1000℃未満の場合は、焼結が充分でないため緻密な
焼結体が得られず、また1900℃をこえる場合は、添
加する(B)成分が揮発したり、焼結体が溶融すること
があるので好ましくない。また、焼結にあたっては、5
00〜1200℃で仮焼した後に焼結を行うと、得られ
る焼結体の密度が向上することがある。
If the temperature is less than 1000°C, sintering is not sufficient and a dense sintered body cannot be obtained, and if it exceeds 1900°C, the added component (B) may volatilize or the sintered body may melt. I don't like it because it is. In addition, for sintering, 5
If sintering is performed after calcination at 00 to 1200°C, the density of the resulting sintered body may be improved.

かくして得られる本発明焼結体は、崩壊しにくく、緻密
で耐水性に優れたものであるため、焼結に際してルツボ
の形状に成形した後に焼結せしめれば、かかる性質を具
備した本発明のルツボが得られる。
The thus obtained sintered body of the present invention is difficult to disintegrate, is dense, and has excellent water resistance. Therefore, if it is formed into a crucible shape and then sintered, the sintered body of the present invention having such properties can be obtained. A crucible is obtained.

本発明のルツボは、少なくとも試料との接触面が本発明
焼結体で構成されていればよい。従って、他の組成から
なるルツボ型の構造体に溶射法によって本発明焼結体か
らなる溶射層を形成せしめることによっても本発明のル
ツボを製造することができる。ここで、他の組成からな
る構造体の材料としては、TaSMo、賀、Nb、 H
f等の高融点金属や炭素、炭化珪素等の耐熱性材料が使
用できる。良質の溶射層を得るための各パラメーターは
、使用ガスH2/N2、電圧20〜60v、電流600
〜1000^、原料送り量20〜60g/分とするのが
好ましい。
The crucible of the present invention only needs to have at least the contact surface with the sample made of the sintered body of the present invention. Therefore, the crucible of the present invention can also be manufactured by forming a sprayed layer made of the sintered body of the present invention on a crucible-shaped structure having another composition by a thermal spraying method. Here, materials for the structure having other compositions include TaSMo, Ga, Nb, H
High melting point metals such as f and heat resistant materials such as carbon and silicon carbide can be used. The parameters for obtaining a high-quality sprayed layer are gas H2/N2, voltage 20-60V, and current 600V.
~1000^, and the raw material feed rate is preferably 20 to 60 g/min.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、崩壊しに<<、緻密で優れた耐水性を
有する軽希土類酸化物焼結体及びルツボが得られる。そ
して、本発明のルツボを用いれば、コンタミネーション
のない良質の新規素材・材料が製造できる。
According to the present invention, a light rare earth oxide sintered body and a crucible that are dense and have excellent water resistance are obtained. By using the crucible of the present invention, high-quality new raw materials without contamination can be produced.

〔実施例〕〔Example〕

以下、実施例を挙げて更に詳細に説明するが、本発明は
これらに限定されるものではない。
Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto.

実施例1 純度99,9%の水酸化ランタンと水酸化アルミニウム
とを酸化物換算の重量比で90 : 10 (元素モル
比でLa:^1〜74 : 26)となるよう秤量し、
湿式混合法で混合した。混合原料を1000℃で5時間
仮焼した後、成形し1550℃で10時間焼結した。得
られた焼結体は理論密度の99%であった。この焼結体
を相対湿度90%、30℃の恒温恒湿室に放置したとこ
ろ、30日経過後の焼結体密度は焼結時と同一で外見上
回の変化も見いだせなかった。
Example 1 Lanthanum hydroxide with a purity of 99.9% and aluminum hydroxide were weighed so that the weight ratio in terms of oxide was 90:10 (element molar ratio La:^1 to 74:26),
Mixed by wet mixing method. The mixed raw materials were calcined at 1000°C for 5 hours, then molded and sintered at 1550°C for 10 hours. The obtained sintered body had a theoretical density of 99%. When this sintered body was left in a constant temperature and humidity room at 90% relative humidity and 30° C., the density of the sintered body after 30 days was the same as that at the time of sintering, and no change in appearance was found.

実施例2 純度99.9%の水酸化ランタンと酸化チタンとを酸化
物換算の重量比で90 : 10 (元素モル比でLa
:Ti=81 : 19)となるよう秤量し、湿式混合
法で混合した。混合原料を1000℃で5時間仮焼した
後、成形し1550℃で10時間焼結した。得られた焼
結体は理論密度の99%であった。この焼結体を相対湿
度90%、30℃の恒温恒湿室に放置したところ、15
日経過後の焼結体密度は焼結時と同一で外見上回の変化
も見いだせなかった。
Example 2 Lanthanum hydroxide with a purity of 99.9% and titanium oxide were mixed in a weight ratio of 90:10 (elemental molar ratio of La
: Ti = 81 : 19) and mixed by a wet mixing method. The mixed raw materials were calcined at 1000°C for 5 hours, then molded and sintered at 1550°C for 10 hours. The obtained sintered body had a theoretical density of 99%. When this sintered body was left in a constant temperature and humidity room at 90% relative humidity and 30°C,
The density of the sintered body after one day was the same as that during sintering, and no change in appearance was found.

実施例3 純度99%の水酸化ランタンと酸化タリウムとを酸化物
重量換算でそれぞれ3.Okg、1.Okg(元素モル
比でしa:TA’ =81 : 19)となるよう秤量
した原料粉に、蒸留水900cc 、ポリカルボン酸ア
ンモニウム35g1アクリル酸エマルジヨン78gを加
え混合しスラリーを調製した。このスラリーを成形型に
流し込みルツボの形に成形した後、1500℃で20時
間焼結してルツボを得た。なお、焼結体の密度は理論密
度の99%であった。
Example 3 Lanthanum hydroxide and thallium oxide with a purity of 99% were each weighed 3.0% in terms of oxide weight. Okg, 1. A slurry was prepared by adding 900 cc of distilled water, 35 g of ammonium polycarboxylate, and 78 g of acrylic acid emulsion to the raw material powder weighed so that the molar ratio of elements was 0 kg (element molar ratio a:TA' = 81:19). This slurry was poured into a mold and formed into a crucible shape, and then sintered at 1500° C. for 20 hours to obtain a crucible. Note that the density of the sintered body was 99% of the theoretical density.

このルツボに酸化ランタン、炭酸ストロンチウム、酸化
銅をLa +、 essr o、 I 5CUO4とな
るよう秤量し、これにフラックス剤として酸化銅を3倍
重量加え混合した原料を1100℃で2時間溶融後、0
.1t/minの冷却速度で900℃まで冷却し、その
後3℃/minで降温し目的の単結晶を得た。蛍光xi
分析の結果、この試料中には原料以外の元素の混入(コ
ンタミネーション)はなかった。
Into this crucible, lanthanum oxide, strontium carbonate, and copper oxide were weighed to give La+, essro, I5CUO4, and copper oxide was added three times the weight as a fluxing agent.The mixed raw materials were melted at 1100°C for 2 hours. 0
.. It was cooled to 900° C. at a cooling rate of 1 t/min, and then lowered at a rate of 3° C./min to obtain the desired single crystal. fluorescence xi
As a result of the analysis, there was no contamination of elements other than the raw materials in this sample.

実施例4 純度99%の酸化ランタンと酸化ユーロピウムとを酸化
物重量換算で88 : 12 (元素モル比でLa :
 Bu=89:11)になるよう秤量し、混合した。T
a製の耐熱製ルツボに電圧82V、電流850^の条件
で厚さ1 mmのプラズマ溶射膜を形成した。
Example 4 Lanthanum oxide with a purity of 99% and europium oxide were mixed in a ratio of 88:12 in terms of oxide weight (Element molar ratio: La:
Bu=89:11) and mixed. T
A plasma sprayed film with a thickness of 1 mm was formed in a heat-resistant crucible manufactured by A, under conditions of a voltage of 82 V and a current of 850^.

このルツボを用いてLad、 escao、 +5cL
I04の単結晶を実施例3と同様の条件で作成したとこ
ろ、コンタミネーションはまったくなかった。
Using this crucible, Lad, escao, +5cL
When a single crystal of I04 was produced under the same conditions as in Example 3, there was no contamination at all.

実施例5 純度99%の酸化セリウムと酸化アルミニウムとを酸化
物重量換算で88 + 12 (元素モル比でCe:^
1=68 : 32)になるよう秤量し、混合した。T
al&の耐熱製ルツボに電圧82M、電流850^の条
件で厚さ1mmのプラズマ溶射膜を形成した。
Example 5 Cerium oxide and aluminum oxide with a purity of 99% were 88 + 12 in terms of oxide weight (Ce:^ in elemental molar ratio)
1=68:32) and mixed. T
A plasma sprayed film with a thickness of 1 mm was formed in a heat-resistant crucible made by Al& under conditions of a voltage of 82 M and a current of 850^.

このルツボを用いて、シa1、escao、 +s[、
uOnの単結晶を実施例3と同様の条件で作成したとこ
ろ、コンタミネーションはまったくなかった。
Using this crucible, siaa1, escao, +s[,
When a uOn single crystal was produced under the same conditions as in Example 3, there was no contamination at all.

実施例6 純度99%の酸化ブラ七オジムと酸化錫とを酸化物重量
換算でそれぞれ3.0kg、 0.6kg (元素モル
比でPr : Sn= 80 : 20)となるよう秤
量した原料粉に、蒸留水900cc 、ポリカルボン酸
アンモニウム36g、アクリル酸エマルジョン79gを
加え混合しスラリーを調製した。このスラリーを成形型
に流し込みルツボの形に成形した後、1500℃で20
時間焼結してルツボを得た。なお、焼結体の密度は理論
密度の99%であった。
Example 6 99% pure Brasinazodium oxide and tin oxide were weighed to give a weight of 3.0 kg and 0.6 kg (element molar ratio: Pr:Sn=80:20), respectively, in terms of oxide weight. , 900 cc of distilled water, 36 g of ammonium polycarboxylate, and 79 g of acrylic acid emulsion were added and mixed to prepare a slurry. After pouring this slurry into a mold and forming it into a crucible shape, it was heated to 1500℃ for 20 minutes.
A crucible was obtained by time sintering. Note that the density of the sintered body was 99% of the theoretical density.

このルツボを用いてLad、 essro、 15CU
Osの単結晶を実施例3と同様の条件で作成したところ
、コンタミネーションはまったくなかった。
Lad, essro, 15CU using this crucible
When a single crystal of Os was produced under the same conditions as in Example 3, there was no contamination at all.

実施例7 純度99%の酸化ランタンと酸化チタンとを酸化物重量
換算で80 : 20 (元素モル比でLa : Ti
=66 :34)になるよう秤量し、混合した。Ta製
の耐熱製ルツボに電圧82v1電流850^の条件で厚
さ1mmのプラズマ溶射膜を形成した。
Example 7 Lanthanum oxide with a purity of 99% and titanium oxide were mixed in a ratio of 80:20 (element molar ratio: La:Ti) in terms of oxide weight.
= 66:34) and mixed. A plasma sprayed film with a thickness of 1 mm was formed on a heat-resistant crucible made of Ta under the conditions of a voltage of 82 v and a current of 850^.

このルツボを用いてLad、 5scao、 +5Cu
O<の単結晶を実施例3と同様の条件で作成したところ
、コンタミネーションはまったくなかった。
Using this crucible, Lad, 5scao, +5Cu
When a single crystal of O< was produced under the same conditions as in Example 3, there was no contamination at all.

比較例1 純度99%の酸化ランタンを実施例1と同様の方法で焼
結体を作成した。この焼結体は空気中5時間で崩壊した
。これは酸化ランタンが水酸化ランタンに変化したため
と理解された。
Comparative Example 1 A sintered body of 99% pure lanthanum oxide was prepared in the same manner as in Example 1. This sintered body disintegrated in air for 5 hours. This was understood to be due to the conversion of lanthanum oxide to lanthanum hydroxide.

以上 出願人 小野田セメント株式会社that's all Applicant: Onoda Cement Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 1.(a)ランタン、セリウム、プラセオジム及びネオ
ジムよりなる群から選択された軽希土類元素の酸化物と
、 (b)スカンジウム、プロメチウム、サマリウム、ユー
ロピウム、ガドリニウム、テルビウム、ジスプロシウム
、ホルミウム、エルビウム、ツリウム、イッテルピウム
、ルテチウム、アルミニウム、ガドリニウム、インジウ
ム、タリウム、チタン、ジルコニウム、ハフニウム、珪
素、ゲルマニウム、錫、鉛及びニッケルよりなる群から
選択された元素の酸化物とを含有することを特徴とする
軽希土類酸化物焼結体。
1. (a) an oxide of a light rare earth element selected from the group consisting of lanthanum, cerium, praseodymium and neodymium; (b) scandium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterpium; and an oxide of an element selected from the group consisting of lutetium, aluminum, gadolinium, indium, thallium, titanium, zirconium, hafnium, silicon, germanium, tin, lead and nickel. Body.
2.成分(a)と成分(b)の割合が、元素モル比で成
分(a):成分(b)= 99:1〜 50:50であ
る請求項1記載の軽希土類酸化物焼結体。
2. The light rare earth oxide sintered body according to claim 1, wherein the ratio of component (a) to component (b) is 99:1 to 50:50 in elemental molar ratio.
3.(A)ランタン、セリウム、プラセオジウム及びネ
オジムよりなる群から選択された軽希土類元素の化合物
と、 (B)スカンジウム、プロメチウム、サマリウム、ユー
ロピウム、ガドリニウム、テルビウム、ジスプロシウム
、ホルミウム、エルビウム、ツリウム、イッテルピウム
、ルテチウム、アルミニウム、ガドリニウム、インジウ
ム、タリウム、チタン、ジルコニウム、ハフニウム、珪
素、ゲルマニウム、錫、鉛及びニッケルよりなる群から
選択された元素の化合物とを焼結せしめることを特徴と
する請求項1記載の軽希土類酸化物焼結体の製造方法。
3. (A) a compound of a light rare earth element selected from the group consisting of lanthanum, cerium, praseodymium, and neodymium; and (B) scandium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterpium, and lutetium. , and a compound of an element selected from the group consisting of aluminum, gadolinium, indium, thallium, titanium, zirconium, hafnium, silicon, germanium, tin, lead and nickel. A method for producing a rare earth oxide sintered body.
4.少なくとも試料との接触面が請求項1記載の軽希土
類酸化物焼結体からなるルツボ。
4. A crucible in which at least a surface in contact with a sample is made of the light rare earth oxide sintered body according to claim 1.
JP29086190A 1990-10-30 1990-10-30 Sintered material of light rare earth oxide, production thereof and crucible comprising the same sintered material Pending JPH04164858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29086190A JPH04164858A (en) 1990-10-30 1990-10-30 Sintered material of light rare earth oxide, production thereof and crucible comprising the same sintered material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29086190A JPH04164858A (en) 1990-10-30 1990-10-30 Sintered material of light rare earth oxide, production thereof and crucible comprising the same sintered material

Publications (1)

Publication Number Publication Date
JPH04164858A true JPH04164858A (en) 1992-06-10

Family

ID=17761446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29086190A Pending JPH04164858A (en) 1990-10-30 1990-10-30 Sintered material of light rare earth oxide, production thereof and crucible comprising the same sintered material

Country Status (1)

Country Link
JP (1) JPH04164858A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010004861A1 (en) * 2008-07-07 2010-01-14 日鉱金属株式会社 Lanthanum oxide-based sintered object, sputtering target comprising the sintered object, process for producing lanthanum oxide-based sintered object, and process for sputtering target production using the process
WO2010004862A1 (en) * 2008-07-07 2010-01-14 日鉱金属株式会社 Oxide sintered object, sputtering target comprising the sintered object, process for producing the sintered object, and process for producing sputtering target comprising the sintered object
KR20210061916A (en) * 2019-11-20 2021-05-28 한국원자력연구원 Crucible with reaction preventing layer of new material and method of melting and casting using the same
CN114044687A (en) * 2021-12-17 2022-02-15 江西离子型稀土工程技术研究有限公司 Rare earth oxide body crucible and preparation method thereof
US11415369B2 (en) 2019-11-20 2022-08-16 Korea Atomic Energy Research Institute Crucible with reaction preventing layer made of advanced material and method of melting and casting metal fuel using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010004861A1 (en) * 2008-07-07 2010-01-14 日鉱金属株式会社 Lanthanum oxide-based sintered object, sputtering target comprising the sintered object, process for producing lanthanum oxide-based sintered object, and process for sputtering target production using the process
WO2010004862A1 (en) * 2008-07-07 2010-01-14 日鉱金属株式会社 Oxide sintered object, sputtering target comprising the sintered object, process for producing the sintered object, and process for producing sputtering target comprising the sintered object
CN102089256A (en) * 2008-07-07 2011-06-08 Jx日矿日石金属株式会社 Oxide sintered object, sputtering target comprising the sintered object, process for producing the sintered object, and process for producing sputtering target comprising the sintered object
JP5301541B2 (en) * 2008-07-07 2013-09-25 Jx日鉱日石金属株式会社 Lanthanum oxide-based sintered body, sputtering target comprising the sintered body, method for producing lanthanum oxide-based sintered body, and method for producing sputtering target by the same production method
JP5301542B2 (en) * 2008-07-07 2013-09-25 Jx日鉱日石金属株式会社 Oxide sintered body, sputtering target comprising the sintered body, method for producing the sintered body, and method for producing the sintered sputtering target gate
TWI452029B (en) * 2008-07-07 2014-09-11 Jx Nippon Mining & Metals Corp An oxide sintered body, a sputtering target composed of the sintered body, a method for producing the sintered body, and a method for producing the sintered body sputtering target
KR20210061916A (en) * 2019-11-20 2021-05-28 한국원자력연구원 Crucible with reaction preventing layer of new material and method of melting and casting using the same
US11415369B2 (en) 2019-11-20 2022-08-16 Korea Atomic Energy Research Institute Crucible with reaction preventing layer made of advanced material and method of melting and casting metal fuel using the same
CN114044687A (en) * 2021-12-17 2022-02-15 江西离子型稀土工程技术研究有限公司 Rare earth oxide body crucible and preparation method thereof

Similar Documents

Publication Publication Date Title
US4719187A (en) Dense sintered bodies of nitride materials
US3620781A (en) Partially stabilized zirconia refractory
JP4033451B2 (en) Translucent rare earth oxide sintered body and method for producing the same
JP3243278B2 (en) Polycrystalline transparent YAG ceramics for solid-state laser
Suda et al. Crystal growth of La2Hf2O7 by micro-pulling-down method using W crucible
JPH072525A (en) Preparation of high-temperature superconducting precursor
Dupon et al. Preparation of cordierite below 1000° C via bismuth oxide flux
JPH04164858A (en) Sintered material of light rare earth oxide, production thereof and crucible comprising the same sintered material
Hoffmann et al. Melt synthesis of Al 2 TiO 5 containing composites and reinvestigation of the phase diagram Al 2 O 3–TiO 2 by powder X-ray diffraction
JP5667218B2 (en) Production of xenotime ceramics by reactive ceramization.
JPH04164859A (en) Sintered material of light rare earth oxide, production thereof and crucible comprising the same sintered material
US4331771A (en) High density silicon oxynitride
Yokogawa et al. Formation and Stability Regions of the High‐Temperature Fluorite‐Related Phase in the R2O3‐Ta2O5 System (R= La, Nd, Sm, Ho, Er, and Yb)
JP2004091271A (en) Transparent or translucent ceramics and production method therefor
JP2004210601A (en) Dielectric material having high dielectric constant, and its manufacturing method
JPH046153A (en) Sintrred body of oxide of light rare earth element, production thereof and crucible made of same
JP5982058B2 (en) Zirconium tungstate
JPH0455367A (en) Production of light rare earth oxide sintered body
JP2000044235A (en) Production of yttrium-aluminum multiple oxide
JP3944700B2 (en) Rare earth alloy melting crucible and rare earth alloy
JP2919753B2 (en) Calcia-titania refractory material
JPH05294722A (en) Production of polycrystalline transparent yag ceramics for solid state laser
US5346538A (en) Molding of sintered strontium/calcium indate and the use thereof
CN108218415B (en) Sapphirine ceramic and synthesis method thereof
JP2003146744A (en) Method of controlling dielectric constant of dielectric ceramic for low temperature firing, dielectric ceramic for low temperature firing, and electronic parts