JP3548910B2 - Method for producing ZnO single crystal - Google Patents

Method for producing ZnO single crystal Download PDF

Info

Publication number
JP3548910B2
JP3548910B2 JP2000394927A JP2000394927A JP3548910B2 JP 3548910 B2 JP3548910 B2 JP 3548910B2 JP 2000394927 A JP2000394927 A JP 2000394927A JP 2000394927 A JP2000394927 A JP 2000394927A JP 3548910 B2 JP3548910 B2 JP 3548910B2
Authority
JP
Japan
Prior art keywords
zno
single crystal
crystal
mol
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000394927A
Other languages
Japanese (ja)
Other versions
JP2002193698A (en
Inventor
邦彦 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000394927A priority Critical patent/JP3548910B2/en
Publication of JP2002193698A publication Critical patent/JP2002193698A/en
Application granted granted Critical
Publication of JP3548910B2 publication Critical patent/JP3548910B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
この発明は酸化亜鉛の溶液ひきあげ法と溶媒移動帯溶融法による単結晶製造方法ならびに液相成長による単結晶膜作成方法に関するものである。
【0002】
【従来の技術】
酸化亜鉛は酸化物でありながらバンドギャップが3.3eV の直接遷移型半導体になる興味ある物質で、青色・紫外発光材料として応用の期待できる材料である。そのほかにも圧電性、蛍光性、光伝導性を示し、多様な機能を備えており、広く応用が考えられる物質である。そのためには大型の良質な単結晶が必要となり、その製造方法の開発が望まれている。
ZnOは1975℃の高融点で、蒸発しやすい物質であるため、単結晶と同一組成の原料から単結晶を製造することが出来ない。
そのためチョクラルスキー法が適用できない。そのため単結晶は目的物質(ZnO)を溶媒に混合し、その混合溶液を降温する事によってその混合溶液を過飽和濃度以上の状態にし、目的物質を融液から単結晶として析出させて得る静置徐冷法や水熱合成法が製造方法として採用されていた。
しかし望みの結晶軸方向に長い大型単結晶を得ることができず、結晶製造に長時間要する欠点があった。
【0003】
静置徐冷法では溶媒としてPbFを用いることが多く、30X30ミリの大きい結晶を育成した例が報告されている(参考文献1J.W.Nielsen and E.F.Dearborn J. Phys. Chem. 64, (1960) 1762)。
また WanklynはVやPを溶媒に用いたが、単独でもVを用いている(参考文献2 B.M.Wanklyn J.Cryst. Growth 7, (1970) 107)。
しかし、われわれが参考にしたZnOーV系の相図(参考文献3V.A.Makarov, A.A.Fotiev and L.N.SereBryakova, Zh. Neorg. Kim., 16, (1971) 2849)が発表される以前の報告なので、ZnO単結晶を初晶として析出する組成範囲外(ZnO:V=3:1と2.84:1)の組成から育成していて、ZnO単結晶が育成されたことが不思議である。
水熱合成でも、ZnO単結晶が製造されているが、(参考文献4R.A.Laudise, E.D.Kolb and A.J.Caporaso, J.Am.Ceram.Soc., 47, (1964) 9,参考文献5関口、宮下、」小原、宍戸、坂上、結晶成長学会誌、26, (1999) 39)約1センチの大きさの単結晶を得るのに10〜20日もの時間を要してしまうことがわかる。
【0004】
【発明が解決しようとする課題】
上述したように静置徐冷法において育成される結晶は板状であまり大きいとはいえない。水熱合成法においては結晶育成に10〜20日と長時間を要する欠点があった。
【0005】
【問題を解決するための手段】
この発明はこのような点にに鑑み成されたもので、目的であるZnOを初晶として析出させ得る組成範囲内の溶液を酸化亜鉛と酸化バナジウムと酸化硼素から構成し、その融液を降温させることにより融液中に析出してくるZnO微結晶を融液に接触させた種結晶上ならびに基板状に結晶化させ、これを溶液ひきあげ法ならびに溶媒移動帯溶融法によってZnO単結晶を製造する方法、ならびに液相成長法によってZnO単結晶膜を製造する方法である。静置徐冷法とは異なり、種結晶あるいは基板上に、望みの方向に任意の大きさの良質な単結晶が短時間に製造できるようにしたものである。
【0006】
まず、この発明の原理について述べる。図1はZnO−V系の相図である(参考文献3)。ZnOが75から100モル%、Vが25から0モル%の組成に液相線が存在し、この間の混合組成の原料は液相線上の温度で融解し、融液を徐々に降温させるとZnOが固相となって析出し、融液の組成は液相線に沿ってV側にずれてゆく。さらに、ZnOが75モル%、Vが25モル%の点から左にずれるとZnOは析出せず、Znが固相として析出し、上記の組成範囲以外ではZnOが析出成長が出来ない。この状態図において何らかの異種元素を少量混合したときに、状態図が特性的に変わらない場合には同じZnO固溶体が固相となって析出してくる。
【0007】
また図2および図3はZnO−B系の相図である(参考文献6 D.E.Harriso andF.A.Hummel, J.Electorochem.Soc., 103, (1956) 496、参考文献7Yu.S.Leonov, Zhur. Neorg. Kim., 3, (1958) 1246.)。ZnOが約75から100モル%、Bが約25から0モル%の組成に液相線が存在し、同様にこの間の混合組成の原料は液相線上の温度で融解し、融液を徐々に降温させるとZnOが固相となって析出し、融液の組成は液相線に沿ってB側にずれてゆく。さらに。ZnOが75モル%、Bが25モル%の点から右にずれるとZnOは析出せず、他の相が固相として析出し(これらの相図ではお互いに析出相が一致していないが)、上記の組成範囲以外ではZnOが析出成長が出来ない。この状態図において何らかの異種元素を少量混合したときに、状態図が特性的に変わらない場合には同じZnO固溶体が固相となって析出してくる。
【0008】
また溶質ZnOと溶媒であるVとBのそれぞれの混合組成比はZnOが75から100モル%、溶媒が25から0モル%の組成と同じであるので、溶質ZnOに対して溶媒VとBの両者の混合物が25モル%以上にならなければ、VとBの両者をお互いに0から100モル%混合した溶媒を用いることによっても、同様にZnOが固相となって析出させることができ、何らかの異種元素を少量混合したときに、状態図が特性的に変わらない場合には同じZnO固溶体が固相となって析出してくる。
ZnOは異種元素の混入によって著しく特性を変えることが知られており、Li,Na,K,Cu,Ag,N,P,As,Cr,Al,Bi,Sb,Co,Mn,Prが数%以下混合され、p型半導体化、導電率の制御、バリスタなどの応用がある。
この発明ではこれらの結晶を同一のZnOまたは格子定数と融点の近い種子結晶上に析出したZnO単結晶を育成し、ZnO単結晶膜を基板上に成長させる。
【0009】
実施例
以下、本発明を実施例によって詳細に説明する。
実施例1
ZnO単結晶を溶液ひきあげ法によって製造する例を示す。
図4に使用した単結晶引き上げ装置を示す。図4において、1 は引き上げシャフト、2は白金シャフト、3は保温剤、4は高周波加熱コイル、5は熱電対、6はるつぼ支持物、7は種結晶、8は成長した単結晶、9は出発原料、10は白金るつぼである。
ZnOとVをモル比にして78:22に混合して、その混合物100gを、口径45mm、高さ30mmの発熱体を兼ねた白金るつぼ10に入れ、高周波加熱コイル4による誘導加熱方式により約1050℃まで加熱し溶融させたのち、種結晶であるZnO単結晶7を融液表面に接触させる。
融液を徐々に降温させると、融液中で最も温度の低い種結晶と接触している融液の界面にZnO微結晶が少しずつ析出してきて、種結晶7上に結晶化し成長する。このようにして成長した単結晶8を融液から徐々に引き上げる。
すなわち、融液を降温しながら、育成させた単結晶の引き上げを同時に行ってゆくのである。このときの製造条件としてはZnO単結晶8をひきあげる速度は0.5〜1.0mm/h、融液降温速度は2〜10℃/h、結晶回転数15〜30rpm、雰囲気は大気中であった。10x10x4mmの大きさの茶褐色のZnO単結晶を6時間の製造時間で得ることが出来た。
【0010】
実施例2
実施例1と同じ装置を用いてZnO単結晶を溶液ひきあげ法によって製造した。
ZnOとV2O5とB2O3をモル比にして78:11:11に混合し、不純物としてLiCOを2g添加し、その混合物102gを白金るつぼ10に入れ、製造条件としてひきあげ速度0.5〜1.0mm/h、融液降温速度2〜10℃/h、結晶回転数15〜30rpm、雰囲気は大気中で、8x8x3mmの大きさの黄色のZnO単結晶を6時間の製造時間で得ることが出来た。
【0011】
実施例3
実施例1と同じ装置を用いてZnO単結晶を溶液ひきあげ法によって製造した。
ZnOとBとモル比にして78:22に混合し、その混合物100gを白金るつぼ10に入れ、製造条件としてひきあげ速度0.5〜1.0mm/h、融液降温速度2〜10℃/h、結晶回転数15〜30rpm、雰囲気は大気中で、10x10x5mmの大きさのやや褐色のZnO単結晶を10時間の製造時間で得ることが出来た。
以上実施例中融液から気泡が出ているのが観測されたので、酸素雰囲気中での育成をおこなったが、単結晶の成長は可能であった。結晶の特性の比較は行っていない。
【0012】
実施例4
ZnO単結晶をフローティングゾーン法によって製造した。
図5に使用したフローティングゾーン単結晶製造装置を示す。図において1は原料棒、2は種結晶、3は溶融帯域(溶媒)、4および5はそれぞれ回転軸、6は石英管、7はハロゲンランプ、8は回転楕円鏡、9は観察窓、10はレンズ、11は観察用スクリーンである。
ZnO粉末を加圧成形器で直径6mm、長さ7cmの丸棒状にして1400℃で15時間均質に焼成してZnO原料棒1とする。
同様に、ZnOとVとBをモル比にして78:11:11に混合した粉末を750℃で15時間焼成し、その粉末を加圧成形器で直径6mmの丸棒状にして800℃で15時間均質に焼成して溶媒とする。しかるのち、この円柱棒状の溶媒を径方向に切断し円盤状にしてZnO原料棒に融着する。
このようにZnO原料棒の先端に溶媒を融着した円柱棒状試料を、赤外線加熱方式を採用したフローティングゾーン法単結晶製造装置の上部試料回転軸4に固定し、同様に下部回転軸5に種結晶2としてZnO焼成棒を固定する。
なお、この場合種結晶2と溶媒をつけたZnO原料棒1が回転軸に対して偏心しないように設定する。そしてハロゲンランプ7を用い赤外線を使用して上記溶媒を加熱融解したのちに種結晶を溶媒に接触させ、液体の表面張力により原料棒と種結晶の間に溶融溶媒を保持させる。しかる後に原料棒と種結晶とを互いに反対方向に30rpmで回転させる。
さらに、この融けた溶媒を0.5mm/hrの速度で原料棒方向、すなわち上方に移動させて種結晶にZnO単結晶を育成させる。この結果、直径 4mm、長さ20mmの円柱棒状のZnO結晶が得られた。
焼成棒を種結晶としたため、いくつかのグレインからなる結晶であった。また上軸の原料棒1には直径100ミクロン、長さ数ミリのZnO針状結晶が作製されており、ZnO焼成原料棒を母体(種結晶)としてZnOとVとBの請求項2で請求した組成範囲の溶液が存在すれば、ZnO針状結晶が作製されることもわかった

【0013】
【本発明の効果】
本発明のZnO単結晶の製造方法は、望みの方向に任意の大きさの良質な単結晶が短時間に製造できることが確認された。
【図面の簡単な説明】
【図1】は、ZnO−V系の相図
【図2】は、ZnO−B系の相図
【図3】は、ZnO−B系の相図
【図4】は、単結晶引き上げ装置
【図5】は、赤外線集中加熱方式の単結晶製造装置
【符号の説明】
1 引き上げシャフト
2 白金シャフト
3 保温剤
4 高周波加熱コイル
5 熱電対
6 るつぼ支持物
7 種結晶
8 成長した単結晶
9 出発原料
10白金るつぼ
[0001]
[Industrial applications]
The present invention relates to a method for producing a single crystal by a zinc oxide solution drawing method and a solvent transfer zone melting method, and a method for forming a single crystal film by liquid phase growth.
[0002]
[Prior art]
Zinc oxide is an interesting substance that can be a direct transition semiconductor having a band gap of 3.3 eV while being an oxide, and is a material that can be expected to be applied as a blue-ultraviolet light-emitting material. In addition, it exhibits piezoelectricity, fluorescence, and photoconductivity, has various functions, and is a substance that can be widely applied. For that purpose, a large-sized high-quality single crystal is required, and development of a manufacturing method thereof is desired.
Since ZnO has a high melting point of 1975 ° C. and is a substance that is easily evaporated, a single crystal cannot be manufactured from a raw material having the same composition as a single crystal.
Therefore, the Czochralski method cannot be applied. Therefore, a single crystal is prepared by mixing the target substance (ZnO) with a solvent, lowering the temperature of the mixed solution to bring the mixed solution to a state of supersaturated concentration or higher, and precipitating the target substance as a single crystal from the melt to obtain a single crystal. And a hydrothermal synthesis method have been adopted as production methods.
However, a large single crystal which is long in the desired crystal axis direction cannot be obtained, and there is a disadvantage that the crystal production requires a long time.
[0003]
In the stationary slow cooling method, PbF 2 is often used as a solvent, and an example in which a large crystal of 30 × 30 mm is grown has been reported (Ref. 1 JW Nielsen and EF Dearborn J. Phys. Chem. 64, (1960) 1762).
While Wanklyn used V 2 O 5 or P 2 O 5 as a solvent, it also used V 2 O 5 alone (Ref. 2 BM Wanklyn J. Cryst. Growth 7, (1970) 107). .
However, the phase diagram of the ZnO-V 2 O 5 system referred to by us (Reference 3 VA Akamarov, AA Fotiev and LN. SereBryakova, Zh. Neorg. Kim., 16, 1971) 2849) was reported before it was published, so ZnO was grown from a composition outside the composition range (ZnO: V 2 O 5 = 3: 1 and 2.84: 1) in which ZnO single crystals were precipitated as primary crystals. It is strange that a single crystal was grown.
Although a ZnO single crystal is also produced by hydrothermal synthesis, (Reference 4 RA Laudise, ED Kolb and AJ Caporaso, J. Am. Ceram. Soc., 47, (1964) 9, References 5 Sekiguchi, Miyashita, "Ohara, Shishido, Sakagami, Journal of Crystal Growth, 26, (1999) 39) It takes 10 to 20 days to obtain a single crystal about 1 cm in size. You can see that
[0004]
[Problems to be solved by the invention]
As described above, the crystals grown in the stationary slow cooling method are plate-like and not very large. The hydrothermal synthesis method has a disadvantage that it takes a long time of 10 to 20 days to grow crystals.
[0005]
[Means to solve the problem]
The present invention has been made in view of such a point, and a solution in a composition range capable of precipitating ZnO as a primary crystal is composed of zinc oxide, vanadium oxide, and boron oxide, and the melt is cooled. By doing so, ZnO microcrystals precipitated in the melt are crystallized on the seed crystal contacted with the melt and on a substrate, and this is produced as a ZnO single crystal by a solution drawing method and a solvent transfer zone melting method. And a method of manufacturing a ZnO single crystal film by a liquid phase growth method. Unlike the stationary slow cooling method, a high-quality single crystal of any size in a desired direction can be produced on a seed crystal or a substrate in a short time.
[0006]
First, the principle of the present invention will be described. FIG. 1 is a phase diagram of the ZnO—V 2 O 5 system (Reference Document 3). A liquidus exists in a composition in which ZnO is 75 to 100 mol% and V 2 O 5 is 25 to 0 mol%. Raw materials having a mixed composition during this period are melted at a temperature on the liquidus, and the melt is gradually cooled. Then, ZnO is precipitated as a solid phase, and the composition of the melt shifts toward V 2 O 5 along the liquidus line. Furthermore, if ZnO is shifted to the left from the point of 75 mol% and V 2 O 5 is shifted to 25 mol%, ZnO does not precipitate, but Zn 4 V 2 O 9 precipitates as a solid phase. Precipitation growth is not possible. In this phase diagram, when a small amount of different elements are mixed, if the phase diagram does not change in characteristics, the same ZnO solid solution is precipitated as a solid phase.
[0007]
The 2 and 3 are phase diagram of ZnO-B 2 O 3 system (ref 6 D.E.Harriso andF.A.Hummel, J.Electorochem.Soc., 103 , (1956) 496, reference 7 Yu.S.Leonov, Zhur.Neorg.Kim., 3, (1958) 1246.). A liquidus exists at a composition of about 75 to 100 mol% of ZnO and about 25 to 0 mol% of B 2 O 3 , and similarly, the raw material of the mixed composition during this period melts at a temperature on the liquidus line, and When the temperature is gradually lowered, ZnO becomes a solid phase and precipitates, and the composition of the melt shifts to the B 2 O 3 side along the liquidus line. further. If ZnO is shifted to the right from the point of 75 mol% and B 2 O 3 is shifted to the right by 25 mol%, ZnO does not precipitate, but another phase precipitates as a solid phase (in these phase diagrams, the precipitated phases coincide with each other). However, ZnO cannot be deposited and grown outside the above composition range. In this phase diagram, when a small amount of different elements are mixed, if the phase diagram does not change in characteristics, the same ZnO solid solution is precipitated as a solid phase.
[0008]
Further, the mixing composition ratio of solute ZnO and the solvents V 2 O 5 and B 2 O 3 is the same as the composition of ZnO of 75 to 100 mol% and the solvent of 25 to 0 mol%. If the mixture of the solvents V 2 O 5 and B 2 O 3 does not exceed 25 mol%, use a solvent in which both V 2 O 5 and B 2 O 3 are mixed at 0 to 100 mol% with each other. In the same way, ZnO can be precipitated as a solid phase in the same manner, and when a small amount of a different kind of element is mixed, if the phase diagram does not change in characteristics, the same ZnO solid solution precipitates as a solid phase. Come.
It is known that the characteristics of ZnO are remarkably changed by mixing different kinds of elements, and Li, Na, K, Cu, Ag, N, P, As, Cr, Al, Bi, Sb, Co, Mn, and Pr are several%. The following are mixed, and there are applications such as p-type semiconductor conversion, conductivity control, and varistor.
In the present invention, a ZnO single crystal in which these crystals are precipitated on the same ZnO or a seed crystal having a lattice constant and a melting point close to each other is grown, and a ZnO single crystal film is grown on the substrate.
[0009]
Examples Hereinafter, the present invention will be described in detail with reference to examples.
Example 1
An example in which a ZnO single crystal is manufactured by a solution drawing method will be described.
FIG. 4 shows the single crystal pulling apparatus used. In FIG. 4, 1 is a lifting shaft, 2 is a platinum shaft, 3 is a heat insulator, 4 is a high frequency heating coil, 5 is a thermocouple, 6 is a crucible support, 7 is a seed crystal, 8 is a grown single crystal, and 9 is a grown single crystal. The starting material 10 is a platinum crucible.
ZnO and V 2 O 5 were mixed at a molar ratio of 78:22, and 100 g of the mixture was placed in a platinum crucible 10 also serving as a heating element having a diameter of 45 mm and a height of 30 mm, and induction heating using a high-frequency heating coil 4. After heating to about 1050 ° C. and melting, the ZnO single crystal 7 as a seed crystal is brought into contact with the surface of the melt.
When the temperature of the melt is gradually lowered, ZnO microcrystals are gradually deposited at the interface of the melt in contact with the seed crystal having the lowest temperature in the melt, and crystallize and grow on the seed crystal 7. The single crystal 8 thus grown is gradually pulled up from the melt.
That is, the grown single crystal is simultaneously pulled while the temperature of the melt is lowered. The production conditions at this time are as follows: the rate at which the ZnO single crystal 8 is pulled up is 0.5 to 1.0 mm / h, the rate of cooling the melt is 2 to 10 ° C./h, the number of crystal rotations is 15 to 30 rpm, and the atmosphere is air. Was. A brown ZnO single crystal having a size of 10 × 10 × 4 mm was obtained with a production time of 6 hours.
[0010]
Example 2
Using the same apparatus as in Example 1, a ZnO single crystal was produced by a solution drawing method.
The ZnO and V2O5 and B2O3 in the molar ratio and mixed in 78:11:11, the Li 2 CO 3 was added 2g as an impurity, put the mixture 102g in a platinum crucible 10, pulling rate 0.5 as manufacturing conditions 0.0 mm / h, melt cooling rate 2-10 ° C./h, crystal rotation speed 15-30 rpm, atmosphere is air, and a yellow ZnO single crystal having a size of 8 × 8 × 3 mm can be obtained in a manufacturing time of 6 hours. Was.
[0011]
Example 3
Using the same apparatus as in Example 1, a ZnO single crystal was produced by a solution drawing method.
ZnO and B 2 O 3 were mixed at a molar ratio of 78:22, 100 g of the mixture was put into a platinum crucible 10, and the production conditions were a pulling rate of 0.5 to 1.0 mm / h and a melt cooling rate of 2 to 10. A slightly brown ZnO single crystal having a size of 10 × 10 × 5 mm was obtained in a temperature of 10 ° C./h, a crystal rotation number of 15 to 30 rpm, and an atmosphere in the atmosphere in a production time of 10 hours.
Since bubbles were observed to emerge from the melt in the above examples, growth was carried out in an oxygen atmosphere, but single crystal growth was possible. No comparison of crystal properties was made.
[0012]
Example 4
A ZnO single crystal was manufactured by a floating zone method.
FIG. 5 shows a floating zone single crystal manufacturing apparatus used. In the figure, 1 is a raw material rod, 2 is a seed crystal, 3 is a melting zone (solvent), 4 and 5 are rotation axes, 6 is a quartz tube, 7 is a halogen lamp, 8 is a spheroid mirror, 9 is an observation window, 10 Denotes a lens, and 11 denotes an observation screen.
The ZnO powder is formed into a round bar having a diameter of 6 mm and a length of 7 cm using a pressure molding machine and is uniformly fired at 1400 ° C. for 15 hours to obtain a ZnO raw material rod 1.
Similarly, a powder obtained by mixing ZnO, V 2 O 5, and B 2 O 3 in a molar ratio of 78:11:11 is fired at 750 ° C for 15 hours, and the powder is shaped into a round bar having a diameter of 6 mm by a pressure molding machine. And then calcined homogeneously at 800 ° C. for 15 hours to obtain a solvent. Thereafter, the columnar rod-shaped solvent is cut in the radial direction to be disc-shaped and fused to the ZnO raw material rod.
The cylindrical rod-shaped sample obtained by fusing the solvent to the tip of the ZnO raw material rod is fixed to the upper sample rotation shaft 4 of the floating zone method single crystal manufacturing apparatus employing the infrared heating method, and the seed is similarly applied to the lower rotation shaft 5. A ZnO firing rod is fixed as the crystal 2.
In this case, the seed crystal 2 and the ZnO raw material rod 1 with the solvent are set so as not to be eccentric with respect to the rotation axis. Then, after the solvent is heated and melted using infrared rays using a halogen lamp 7, the seed crystal is brought into contact with the solvent, and the molten solvent is held between the raw material rod and the seed crystal by the surface tension of the liquid. Thereafter, the raw material rod and the seed crystal are rotated at a speed of 30 rpm in directions opposite to each other.
Further, the molten solvent is moved at a rate of 0.5 mm / hr in the direction of the raw material rod, that is, upward, to grow a ZnO single crystal as a seed crystal. As a result, a cylindrical rod-shaped ZnO crystal having a diameter of 4 mm and a length of 20 mm was obtained.
Since the firing rod was a seed crystal, it was a crystal composed of several grains. The 100 micron diameter in feed rod 1 of the upper shaft are fabricated ZnO acicular crystals of a few millimeters long, maternal and ZnO sintered raw material rod (seed crystal) ZnO and V 2 O 5 and B 2 O 3 as It was also found that if a solution having the composition range claimed in claim 2 was present, needle-like ZnO crystals were produced.
[0013]
[Effects of the present invention]
It was confirmed that the method for producing a ZnO single crystal of the present invention can produce a high-quality single crystal of any size in a desired direction in a short time.
[Brief description of the drawings]
FIG. 1 is a phase diagram of a ZnO—V 2 O 5 system. FIG. 2 is a phase diagram of a ZnO—B 2 O 3 system. FIG. 3 is a phase diagram of a ZnO—B 2 O 3 system. 4) Single crystal pulling device [Fig. 5] is an infrared concentrated heating type single crystal manufacturing device [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Pulling shaft 2 Platinum shaft 3 Insulating agent 4 High frequency heating coil 5 Thermocouple 6 Crucible support 7 Seed crystal 8 Grown single crystal 9 Starting material 10 Platinum crucible

Claims (4)

溶質である酸化亜鉛ZnOと、溶媒である酸化バナジウム及び/又は酸化硼素と混合して加熱融解したのち、種結晶あるいは基板を当該融解液に直接接触させることにより、酸化亜鉛ZnOの微結晶を種結晶上あるいは基板上に析出、成長させることを特徴とするZnO単結晶の製造方法。After mixing and heating and melting the solute, zinc oxide ZnO, and the solvent, vanadium oxide and / or boron oxide, the seed crystal or the substrate is brought into direct contact with the melt to seed the fine crystals of zinc oxide ZnO. A method for producing a ZnO single crystal, wherein the ZnO single crystal is deposited and grown on a crystal or a substrate. 前記酸化亜鉛ZnOと溶媒の酸化バナジウム及び/又は酸化硼素の混合比が99.9〜75モル%対0.1〜25モル%であり、溶媒である酸化バナジウムと酸化硼素の混合比は100〜0モル%対0〜100モル%であることを特徴とする請求項1項記載のZnO単結晶の製造方法。The mixing ratio of the zinc oxide ZnO and the solvent vanadium oxide and / or boron oxide is 99.9 to 75 mol% to 0.1 to 25 mol%, and the mixing ratio of the solvent vanadium oxide and boron oxide is 100 to 0 mol%. 2. The method for producing a ZnO single crystal according to claim 1, wherein the amount is from 0 to 100 mol%. 前記酸化亜鉛ZnOが少量の異種元素を含むことを特徴とする請求項1又は請求項2に記載のZnO単結晶の製造方法。The method for producing a ZnO single crystal according to claim 1, wherein the zinc oxide ZnO contains a small amount of a different element. 異種元素がZnOと固溶限界内で固溶体を形成するものから選ばれる1種または2種以上の元素である請求項1〜請求項3のいずれかひとつに記載のZnO単結晶の製造方法。The method for producing a ZnO single crystal according to any one of claims 1 to 3, wherein the different element is one or more elements selected from those forming a solid solution with ZnO within a solid solution limit.
JP2000394927A 2000-12-26 2000-12-26 Method for producing ZnO single crystal Expired - Lifetime JP3548910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000394927A JP3548910B2 (en) 2000-12-26 2000-12-26 Method for producing ZnO single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000394927A JP3548910B2 (en) 2000-12-26 2000-12-26 Method for producing ZnO single crystal

Publications (2)

Publication Number Publication Date
JP2002193698A JP2002193698A (en) 2002-07-10
JP3548910B2 true JP3548910B2 (en) 2004-08-04

Family

ID=18860478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000394927A Expired - Lifetime JP3548910B2 (en) 2000-12-26 2000-12-26 Method for producing ZnO single crystal

Country Status (1)

Country Link
JP (1) JP3548910B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102251281B (en) 2006-03-01 2013-01-16 三菱瓦斯化学株式会社 Process for producing Zno single crystal according to method of liquid phase growth
RU2474625C2 (en) * 2007-03-16 2013-02-10 Убе Индастриз, Лтд. Method of producing zinc oxide monocrystal

Also Published As

Publication number Publication date
JP2002193698A (en) 2002-07-10

Similar Documents

Publication Publication Date Title
TWI404841B (en) Method for producing single-crystal zno by liquid phase exitaxy
JP5067419B2 (en) Method for producing zinc oxide single crystal
JP3694736B2 (en) Method for producing zinc oxide single crystal
WO2008114845A1 (en) Mg-CONTAINING ZnO MIXED SINGLE CRYSTAL, LAMINATE THEREOF AND THEIR PRODUCTION METHODS
JP3548910B2 (en) Method for producing ZnO single crystal
JP2011190138A (en) Method for producing multiferroic single crystal
JP3870258B2 (en) Manufacturing method of oxide semiconductor single crystal
JP2684432B2 (en) Superconducting oxide single crystal and method for producing the same
JPS5938193B2 (en) Manufacturing method of corundum single crystal that emits starry colors
US4537653A (en) Synthesis of beryl crystals
JP3906359B2 (en) Method for producing P-type semiconductor SrCu2O2 single crystal
JPH0243717B2 (en) BAPBO3KEISANKABUTSUCHODENDOTAITANKETSUSHONOYOEKIHIKIAGEHONYORUSEIZOHOHO
JPS63274696A (en) Production of cupric acid-lanthanum single crystal
KR100321373B1 (en) Method for fabricating bismuth germanium oxides crystal
JPS63274697A (en) Production of cupric acid-lanthanum single crystal
JPS63274695A (en) Production of cupric acid-lanthanum single crystal
JPH04243998A (en) Production of barium beta-metaborate single crystal
CN117049494A (en) Negative thermal expansion material and preparation method thereof
JPH0512317B2 (en)
JPS6156200B2 (en)
JPS5938192B2 (en) Manufacturing method of corundum single crystal that emits starry colors
JPH08295507A (en) Optical crystal and its production
JPH02167893A (en) Production of single crystal of lead titanate
JPH0269393A (en) Method of growing superconducting oxide single crystal
JPH02252689A (en) Production of single crystal of bismuth germanate

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3548910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term