JPH02167893A - Production of single crystal of lead titanate - Google Patents

Production of single crystal of lead titanate

Info

Publication number
JPH02167893A
JPH02167893A JP32178288A JP32178288A JPH02167893A JP H02167893 A JPH02167893 A JP H02167893A JP 32178288 A JP32178288 A JP 32178288A JP 32178288 A JP32178288 A JP 32178288A JP H02167893 A JPH02167893 A JP H02167893A
Authority
JP
Japan
Prior art keywords
single crystal
melt
crystal
mol
lead titanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32178288A
Other languages
Japanese (ja)
Other versions
JPH0478595B2 (en
Inventor
Kunihiko Oka
邦彦 岡
Hiromi Unoki
鵜木 博海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP32178288A priority Critical patent/JPH02167893A/en
Publication of JPH02167893A publication Critical patent/JPH02167893A/en
Publication of JPH0478595B2 publication Critical patent/JPH0478595B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain high-quality single crystal of PbTiO3 by blending lead oxide with titanium oxide, crystallizing crystallite of PbTiO3 precipitating in the melt of the blend on seed crystal and pulling up the single crystal. CONSTITUTION:A mixed raw material a having a composition of 88.0-75.0mol% lead oxide and 12.0-25.0mol% titanium oxide is heated and melted (high-frequency heating coil 4), temperature of the melt is lowered to precipitate single crystal of lead titanate and seed crystal 7 is crystallized. Single crystal 8 of lead titanate thus grown is pulled up from the melt.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、純度の高い大型単結晶を得る標準的な手段
として、目的とする結晶を同一組成の融液から種子結晶
によって引き上げるチョクラルスキー法を原型とするチ
タン酸鉛単結晶の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention is a standard method for obtaining large single crystals with high purity. The present invention relates to a method for manufacturing lead titanate single crystals using the method as a prototype.

〔従来の技術〕[Conventional technology]

PbTiO3(チタン酸鉛)は490tl:17)高い
キュリー点を示す強誘電物質であり、高温まで使用でき
る圧電材料として、また、比誘電率が小さく高周波用に
も適している等の特徴を持っている。
PbTiO3 (lead titanate) is a ferroelectric material that exhibits a high Curie point of 490 tl: 17), and has the characteristics of being a piezoelectric material that can be used up to high temperatures, and that it has a small dielectric constant and is suitable for high frequency applications. There is.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、PbTi0.は焼結が困難であり、抗電界が
非常に大きいため分極が難しく実用材料として開発が遅
れており、良質の大型単結晶を得ることが期待されてい
る。
By the way, PbTi0. It is difficult to sinter, and its coercive electric field is extremely large, making it difficult to polarize, so its development as a practical material has been delayed, and it is hoped that it will be able to produce high-quality, large-sized single crystals.

このようにP b T i Osの単分域の良質な単結
晶が得られていない理由の一つとして、PbTiO3が
1285℃という高温で融解するため、有毒なPbOの
蒸発が激しく、そのまま融解してから単結晶を育成する
方法が困難であることがあげられる。そのため、融剤を
用いて結晶育成温度を低くするフラックス法が、この単
結晶の育成に専ら用いられており、融剤の種類も多数報
告されているが、育成されている単結晶の大きさは5m
m角程度にすぎないという問題点があった。[J、P。
One of the reasons why high-quality single crystals of PbTiOs in a single domain have not been obtained is that PbTiO3 melts at a high temperature of 1285°C, which causes rapid evaporation of toxic PbO. One problem is that it is difficult to grow single crystals after this process. Therefore, the flux method, which uses a flux to lower the crystal growth temperature, is exclusively used to grow this single crystal, and although many types of flux have been reported, the size of the single crystal grown is 5m
There was a problem that it was only about m square. [J, P.

Remeika  and  A、M、Glass  
Mat、Res、Bull、Vol、5P、37 (1
970)参照] 従来のフラックス法では[小林托三、PbTiO3およ
びCa2 S r (C2O5CO2)aの結晶成長1
日本物理学会誌20巻3号203頁参照コ、Pk)O,
KF、PbF2 、V20s等の融剤にPbTiO3を
混入し、結晶育成後に融剤だけを薬品で取り去るか、徐
冷中にるつぼを炉から取り出して固化していない融剤だ
けを捨て去ってPbTiO3単結晶を取り出してきた。
Remeika and A, M, Glass
Mat, Res, Bull, Vol, 5P, 37 (1
970)] Conventional flux method [Takuzo Kobayashi, Crystal growth of PbTiO3 and Ca2S r (C2O5CO2)a 1
See Journal of the Physical Society of Japan, Vol. 20, No. 3, p. 203, Pk) O,
PbTiO3 is mixed into a flux such as KF, PbF2, V20s, etc., and only the flux is removed with chemicals after crystal growth, or the crucible is removed from the furnace during slow cooling, only the unsolidified flux is discarded, and the PbTiO3 single crystal is taken out. It's here.

このように薬品を用いて長い時間を要したり、危険な操
作をしないと融液の固化物とP b T i O3単結
晶の分離はできないという問題点があった。
As described above, there was a problem that the solidified product of the melt and the P b T i O3 single crystal could not be separated without using chemicals, taking a long time, or performing dangerous operations.

この発明は、上記のような問題点を解決するためになさ
れたもので、pbo (酸化鉛)とTiO2(酸化チタ
ン)とを混合し、その融液中に析出してくるPbTiO
3微結晶を種子結晶上に結晶化させてP b T i 
Os単結晶を製造するチタン酸鉛単結晶の製造方法を得
ることを目的とする。
This invention was made in order to solve the above-mentioned problems.Pbo (lead oxide) and TiO2 (titanium oxide) are mixed, and the PbTiO precipitated in the melt is
3. Crystallize the microcrystals on the seed crystal to form P b T i
The object of the present invention is to obtain a method for producing a lead titanate single crystal for producing an Os single crystal.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係るチタン酸鉛単結晶の製造方法は、酸化鉛
を88.0〜75.0モル%、酸化チタンを12.0〜
25.0モル%の範囲の組成に混合した原料を1150
〜838℃において加熱融解した後に、その融液を降温
させることによりチタン酸鉛単結晶を析出させ、種子結
晶に育成させて引き上げるものである。
The method for producing a lead titanate single crystal according to the present invention includes 88.0 to 75.0 mol% of lead oxide and 12.0 to 75.0 mol% of titanium oxide.
1150% of raw materials mixed with a composition in the range of 25.0 mol%
After heating and melting at ~838°C, the temperature of the melt is lowered to precipitate a lead titanate single crystal, which is then grown into a seed crystal and pulled up.

〔作用) この発明において、目的物であるP b T i O3
を析出させ得る組成範囲内にpboとT i 02を混
合し、その融液を降温させることにより融液中に析出し
てくるPbTiO3微結晶を融液に接触させた種子結晶
上に結晶化させ、これを溶液引き上げ法によってPbT
iO3単結晶を製造する方法である。
[Operation] In this invention, the target product P b T i O3
By mixing pbo and T i 02 within a composition range that can precipitate the melt and lowering the temperature of the melt, the PbTiO3 microcrystals precipitated in the melt are crystallized on the seed crystals in contact with the melt. , this was made into PbT using the solution pulling method.
This is a method for producing iO3 single crystal.

(実施例) まず、この発明の原理について説明する。第1図はP 
b O−T i O2系の相平衡図である[D、E。
(Example) First, the principle of this invention will be explained. Figure 1 is P
b Phase equilibrium diagram of the O-T i O2 system [D,E.

Ra5e (1963) parsonal comm
unication B、Jaffe。
Ra5e (1963) personal comm
unication B, Jaffe.

W、R,Cook Jr and HJaffe Pi
ezoelectric Ceram−ics P、1
17 Academic Press London 
& New York(1971)参照]。
W, R, Cook Jr and HJaffe Pi
ezoelectric Ceram-ics P, 1
17 Academic Press London
& New York (1971)].

この図において、PbOが過剰の86.0〜50.1モ
ル%、TiO2が14.0〜49.9モル%の組成に混
合した原料を1285〜838℃に加熱融解したのち、
融液を徐々に降温させると過飽和溶液となりP b T
 i O3が固相となって析出してくることを示してい
る。この発明はこれを利用し、pboの蒸発の障害が事
実上問題とならないpboが88.0〜75.0モル%
、TiO2が12.0〜25.0モル%の組成範囲の融
液から種子結晶上に析出してきたP b T i O3
微結晶を育成させて引き上げる方法をとったものである
In this figure, after heating and melting a raw material containing an excess of 86.0 to 50.1 mol% of PbO and a composition of 14.0 to 49.9 mol% of TiO2 at 1285 to 838°C,
When the temperature of the melt is gradually lowered, it becomes a supersaturated solution and P b T
This shows that i O3 becomes a solid phase and precipitates. This invention takes advantage of this, and the pbo concentration is 88.0 to 75.0 mol%, in which impediment to pbo evaporation is virtually no problem.
, P b Ti O3 precipitated on seed crystals from a melt with a composition range of 12.0 to 25.0 mol % TiO2.
This method involves growing microcrystals and pulling them up.

第2図はこの発明を実施するためのPbTiO3の製造
装置を示す構成図である。なお、この製造装置は有毒の
pbo蒸気を製造者からVFAiliffするための結
晶育成観察窓付の容器に入っている。
FIG. 2 is a block diagram showing a PbTiO3 manufacturing apparatus for carrying out the present invention. Note that this production equipment is housed in a container with a crystal growth observation window for VFAiliffing toxic PBO vapor from the manufacturer.

この図で、1は水冷シャフト、2は白金シャフト、3は
保温材、4は高周波加熱コイル、5は熱電対  6はる
つぼ支持物、7は種子結晶、8はP bT i O3単
結晶、9は出発原料、10は白金るつぼである。
In this figure, 1 is a water cooling shaft, 2 is a platinum shaft, 3 is a heat insulator, 4 is a high frequency heating coil, 5 is a thermocouple, 6 is a crucible support, 7 is a seed crystal, 8 is a P bT i O3 single crystal, 9 is the starting material, and 10 is the platinum crucible.

次に製造方法について説明する。Next, the manufacturing method will be explained.

出発原料9は、−例としてPbOを85モル%、TiO
2を15モル%の組成に混合し、第2図に示す口径55
mm、高さ40mmの発熱体を兼ねた白金るつぼ10に
400g入れ、高周波加熱コイル4による誘電加熱方式
により〜900℃まで加熱して融解させた後、種子結晶
7を融液表面に接触させる。融液を徐々に降温させると
、融液中で最も温度の低い種子結晶7と接触している融
液の界面にPbTiO3の微結晶が少しずつ析出してき
て種子結晶7上に結晶化する。このようにして成長した
P b T i 03単結晶8を融液から徐々に引き上
げる。すなわち、融液を降温しながら育成されたPbT
iO3単結晶8の引き上げを同時に行っていくのである
。このときの製造条件としては、P b T i O3
!#拮晶8の引き上げ速度は0 、 2〜1 m m 
/ h 、融液降温速度1〜bh5結晶回転数30〜5
0rpm、雰囲気は空気中である。また、PbTiO3
単結晶8の育成を完了するまでに要する時間は、14X
14X6mmの大きさで約7gの単結晶を得るのに11
時間要しただけであった。結晶は黄褐色をしており、四
角い品位の表われたものが得られた。有毒なpboの蒸
発は約12gであった。
Starting material 9 contains - for example 85 mol% PbO, TiO
2 to a composition of 15 mol%, and the diameter 55 shown in FIG.
400 g is placed in a platinum crucible 10 having a height of 40 mm and serving as a heating element, and is heated to ~900° C. by a dielectric heating method using a high frequency heating coil 4 to melt it, and then a seed crystal 7 is brought into contact with the surface of the melt. When the temperature of the melt is gradually lowered, microcrystals of PbTiO3 gradually precipitate at the interface of the melt that is in contact with the seed crystal 7, which has the lowest temperature in the melt, and are crystallized on the seed crystal 7. The P b T i 03 single crystal 8 grown in this way is gradually pulled out of the melt. In other words, PbT grown while cooling the melt
The iO3 single crystal 8 is pulled at the same time. The manufacturing conditions at this time are P b T i O3
! #The pulling speed of the crystal 8 is 0, 2~1 mm
/ h, melt cooling rate 1~bh5 crystal rotation number 30~5
0 rpm, the atmosphere is air. Also, PbTiO3
The time required to complete the growth of single crystal 8 is 14X
11 to obtain a single crystal of about 7 g with a size of 14 x 6 mm.
It just took time. The crystals were yellowish-brown in color and square in shape, showing good quality. Evaporation of toxic pbo was approximately 12 g.

なお、第1図ではpboが88モル%、TiO2が12
モル%の組成ではPbOが析出し、PbTiO3が析出
しないことが示されているが、同組成で上記と同じ条件
、操作によりPbT i O3単結晶8を育成すること
ができた。また、pboが80モル%、TiO2が20
モル%までの組成については同じ条件、操作によりpb
Tie、単結晶8を育成できることを確かめた。
In addition, in Figure 1, pbo is 88 mol% and TiO2 is 12 mol%.
Although it has been shown that PbO precipitates and PbTiO3 does not precipitate with a composition of mol %, PbT i O3 single crystal 8 was able to be grown with the same composition and under the same conditions and operations as above. In addition, pbo is 80 mol%, TiO2 is 20
Regarding the composition up to mol%, pb
Tie confirmed that single crystal 8 can be grown.

pboが88モル%以下、TiO□が12モル%以上と
第1図において、TiO2の組成比が増える組成の融液
はど結晶育成温度が上昇し、pb。
In Fig. 1, when pbo is 88 mol% or less and TiO□ is 12 mol% or more, the crystal growth temperature of the melt increases as the composition ratio of TiO2 increases, and pb.

の蒸発が激しくなり、結晶育成が困難になってくると思
われる。
It is thought that evaporation of the crystals will become more intense and crystal growth will become difficult.

〔発明の効果〕〔Effect of the invention〕

以上説明したようにこの発明は、酸化鉛を88.0〜7
5.0モル%、酸化チタンを12.0〜25.0モル%
の範囲の組成に混合した原料を1150〜838℃にお
いて加熱融解した後に、その融液を降温させることによ
りチタン酸鉛単結晶を析出させ、種子結晶に育成させて
ひきあげるようにしたので、従来のフラックス法で育成
された単結晶が5mm角程度の大きさであるのと比較す
ると、14X14X6mmの大きさの単結晶が種子結晶
により良質で望みの方向に成長したものが固化した融剤
の除去操作なしに得られるという利点を有する。
As explained above, this invention uses lead oxide of 88.0 to 7
5.0 mol%, titanium oxide 12.0-25.0 mol%
After heating and melting a raw material mixed with a composition in the range of 1150 to 838 degrees Celsius, the temperature of the melt is lowered to precipitate a lead titanate single crystal, grow it into a seed crystal, and pull it up. Compared to the size of a single crystal grown by the flux method, which is about 5 mm square, a single crystal with a size of 14 x 14 x 6 mm grows in good quality and in the desired direction using seed crystals.The flux removal operation solidifies the single crystal. It has the advantage that it can be obtained without

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の詳細な説明するためのpbO−Ti
02系の平衡図、第2図はこの発明を実施するためのP
 b T i Os単結晶の製造装置の構成図である。 図中、1は水冷シャフト、2は白金シャフト、3は保温
材、4は高周波加熱コイル、5は熱電対、6はるつぼ支
持物、7は種子結晶、8はpbTiOa−l結晶、9は
出発原料、10は白金るつぼである。 □BβB8888呉委奈β□案 第 図 ト フに冷シャフト 10二 白金すつは−
Figure 1 shows pbO-Ti for detailed explanation of this invention.
The equilibrium diagram of the 02 system, Figure 2 is the P for implementing this invention.
b It is a block diagram of the manufacturing apparatus of a TiOs single crystal. In the figure, 1 is a water cooling shaft, 2 is a platinum shaft, 3 is a heat insulator, 4 is a high frequency heating coil, 5 is a thermocouple, 6 is a crucible support, 7 is a seed crystal, 8 is a pbTiOa-l crystal, and 9 is a starting point. The raw material 10 is a platinum crucible. □BβB8888 Kure Konnaβ □Draft diagram Toph and cold shaft 10 two platinum Tsuha-

Claims (1)

【特許請求の範囲】[Claims] 酸化鉛を88.0〜75.0モル%、酸化チタンを12
.0〜25.0モル%の範囲の組成に混合した原料を1
150〜838℃において加熱融解した後に、その融液
を降温させることによりチタン酸鉛単結晶を析出させ、
種子結晶に育成させて引き上げることを特徴とするチタ
ン酸鉛単結晶の製造方法。
88.0 to 75.0 mol% lead oxide, 12% titanium oxide
.. 1 raw material mixed with a composition in the range of 0 to 25.0 mol%
After heating and melting at 150 to 838°C, lead titanate single crystal is precipitated by cooling the melt,
A method for producing a lead titanate single crystal, which is characterized by growing a seed crystal and pulling it.
JP32178288A 1988-12-20 1988-12-20 Production of single crystal of lead titanate Granted JPH02167893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32178288A JPH02167893A (en) 1988-12-20 1988-12-20 Production of single crystal of lead titanate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32178288A JPH02167893A (en) 1988-12-20 1988-12-20 Production of single crystal of lead titanate

Publications (2)

Publication Number Publication Date
JPH02167893A true JPH02167893A (en) 1990-06-28
JPH0478595B2 JPH0478595B2 (en) 1992-12-11

Family

ID=18136364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32178288A Granted JPH02167893A (en) 1988-12-20 1988-12-20 Production of single crystal of lead titanate

Country Status (1)

Country Link
JP (1) JPH02167893A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6479923B1 (en) * 1998-05-29 2002-11-12 Murata Manufacturing Co., Ltd. Piezoelectric ceramic, method for producing piezoelectric ceramic, and piezoelectric oscillator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6479923B1 (en) * 1998-05-29 2002-11-12 Murata Manufacturing Co., Ltd. Piezoelectric ceramic, method for producing piezoelectric ceramic, and piezoelectric oscillator

Also Published As

Publication number Publication date
JPH0478595B2 (en) 1992-12-11

Similar Documents

Publication Publication Date Title
JPH02167893A (en) Production of single crystal of lead titanate
JPH04300296A (en) Production of barium titanate single crystal
JP2507910B2 (en) Method for producing oxide single crystal
JPH05155696A (en) Production of single crystal of barium titanate
US3939252A (en) Dilithium heptamolybdotetragadolinate
JP3128173B2 (en) Method and apparatus for producing bismuth germanate single crystal
JPH0243717B2 (en) BAPBO3KEISANKABUTSUCHODENDOTAITANKETSUSHONOYOEKIHIKIAGEHONYORUSEIZOHOHO
JPH07108837B2 (en) Beta barium borate single crystal growth method
JP3548910B2 (en) Method for producing ZnO single crystal
JPH02167894A (en) Production of single crystal of lead titanate
JP2640615B2 (en) Method for manufacturing piezoelectric crystal
JP3870258B2 (en) Manufacturing method of oxide semiconductor single crystal
JP2647052B2 (en) Method for producing rare earth vanadate single crystal
JP2000335999A (en) Production of barium titanate single crystal
JP2672597B2 (en) Method for producing barium titanate single crystal
JPS63195198A (en) Production of lithium niobate single crystal thin film
JPS593091A (en) Production of oxide single crystal
JPS6156200B2 (en)
JPH0471876B2 (en)
JPS6270296A (en) Production of bi24si2o40 single crystal
JP2739546B2 (en) Method for producing lithium borate single crystal
JPS63274695A (en) Production of cupric acid-lanthanum single crystal
KR970007336B1 (en) Process for the preparation of single crystal for radioelectronics and piezotechnology
JPH08295507A (en) Optical crystal and its production
JPH06199600A (en) Method for growing beta-barium borate single crystal

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term