JPS5938192B2 - Manufacturing method of corundum single crystal that emits starry colors - Google Patents

Manufacturing method of corundum single crystal that emits starry colors

Info

Publication number
JPS5938192B2
JPS5938192B2 JP7599381A JP7599381A JPS5938192B2 JP S5938192 B2 JPS5938192 B2 JP S5938192B2 JP 7599381 A JP7599381 A JP 7599381A JP 7599381 A JP7599381 A JP 7599381A JP S5938192 B2 JPS5938192 B2 JP S5938192B2
Authority
JP
Japan
Prior art keywords
single crystal
raw material
material rod
atmosphere
corundum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7599381A
Other languages
Japanese (ja)
Other versions
JPS57191299A (en
Inventor
勇 進藤
英典 坂内
俊二 竹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Original Assignee
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO filed Critical KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority to JP7599381A priority Critical patent/JPS5938192B2/en
Publication of JPS57191299A publication Critical patent/JPS57191299A/en
Publication of JPS5938192B2 publication Critical patent/JPS5938192B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 本発明は星影を放つコランダム単結晶の製造法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a starry corundum single crystal.

従来、コランダム単結晶の製造は、酸素と水素とを燃焼
させた高温部分に原料粉末を少しづつ落下させて下方に
丸棒状の結晶を作るベルヌーイ法、もしくは原料をルツ
ボに溶かし、これに種子結晶を挿入してゆっくりと回転
させながら引上げて丸棒状の単結晶を作る引上げ法によ
っている。
Traditionally, corundum single crystals have been manufactured using the Bernoulli method, in which raw material powder is dropped little by little into a high-temperature area where oxygen and hydrogen are burned, forming a round rod-shaped crystal downward, or the raw material is melted in a crucible, and seed crystals are placed in this. This method uses a pulling method in which a round rod-shaped single crystal is created by inserting a crystal and pulling it up while rotating it slowly.

ベルヌーイ法は星影を発生させるために混入する二酸化
チタニウム(TiO2)の結晶内への均一な混入が困難
であり、また生成結晶の中心部に混入させることが困難
であった。
In the Bernoulli method, it is difficult to uniformly mix titanium dioxide (TiO2) mixed into the crystal to generate star shadows, and it is also difficult to mix it into the center of the produced crystal.

また引上げ法は結晶の中心まで均一に二酸化チタニウム
を混入することができる利点はあるが、結晶育成が単純
固化法に従うために、得られた結晶の長さ方向において
濃度が均一にならず、また高価なルツボを使用するため
コストが高くなる欠点がある。
In addition, although the pulling method has the advantage of being able to mix titanium dioxide uniformly to the center of the crystal, since the crystal growth follows the simple solidification method, the concentration is not uniform in the length direction of the obtained crystal. The disadvantage is that the cost is high because an expensive crucible is used.

スタールビー、スターサファイヤ等の星影を放つコラン
ダム単結晶は、母結晶としてのコランダム中に不純物と
して入っているTiO2が離溶によって特定の方向に並
んで析出し、これによって光の回折効果が生じ星影を放
つものである。
Corundum single crystals that emit star shadows, such as star rubies and star sapphires, are produced by TiO2 contained as an impurity in corundum as a mother crystal precipitating in a specific direction due to dissolution, which causes a light diffraction effect and star shadows. It is something that emits.

従って星影を放つコランダム単結晶を製造するためには
、TiO2成分を均質に固溶させたコランダム単結晶を
製造することが先決である。
Therefore, in order to produce a corundum single crystal that emits starry shadows, it is first necessary to produce a corundum single crystal in which the TiO2 component is homogeneously dissolved.

しかるに従来のフローティングゾーン法では雰囲気とし
て空気を使用しているため、TiO2成分のコランダム
中への固溶量は高々0.5モル%以下であり、との固溶
量では十分な星影発現効果がなく、また原料棒中に0.
5モル%より多くの量のTiO2成分を加えておいても
、最大固溶量は0.5モル%以下であり、過剰のTiO
2成分は結晶中に分散して不透明となる欠点があった。
However, since the conventional floating zone method uses air as the atmosphere, the amount of solid solution of the TiO component in corundum is at most 0.5 mol% or less, and the amount of solid solution of TiO2 component in corundum is not enough to produce a star shadow effect. 0.0% in the raw material rod.
Even if more than 5 mol% of TiO2 component is added, the maximum amount of solid solution is 0.5 mol% or less, and the excess TiO
The two components had the disadvantage of being dispersed in the crystal and becoming opaque.

本発明はフローティングゾーン法によってTiO2成分
の固溶量を多くすると共に均質に固溶させ、星影を放つ
コランダム単結晶を製造する方法を提供するにある。
The present invention provides a method for producing corundum single crystals that emit starry shadows by increasing the amount of TiO2 component in solid solution and making it homogeneous in solid solution using the floating zone method.

本発明者らは前記目的を達成すべく研究の結果、コラン
ダム中に含まれるTiO2固溶量ば、単結晶育成雰囲気
の酸素分圧によって変化し、酸素分圧が低くなるとTi
O2成分の固溶量が増加すると言う新しい知見を得た。
As a result of research to achieve the above object, the present inventors found that the amount of TiO2 solid solution contained in corundum changes depending on the oxygen partial pressure of the single crystal growth atmosphere, and when the oxygen partial pressure becomes low, TiO2
A new finding was obtained that the amount of solid solution of O2 component increases.

すなわち、空気雰囲気下ではその固溶量が0.5モル%
以下であったが、雰囲気中の酸素分圧が10−1気圧と
なると固溶量が増加し、最大固溶量を3モル%まで増加
し得られること。
In other words, the amount of solid solution in an air atmosphere is 0.5 mol%.
However, when the partial pressure of oxygen in the atmosphere becomes 10 −1 atm, the amount of solid solution increases, and the maximum amount of solid solution can be increased to 3 mol %.

またTiO2成分がコランダム中に固溶する場合は、T
iO2としてではなく、Ti2O3として固溶すること
が分った。
In addition, when the TiO2 component is dissolved in corundum, T
It was found that the solid solution was formed not as iO2 but as Ti2O3.

従って育成の雰囲気を還元性雰囲気下、特に10−1気
圧以下の還元性雰囲気下にするときはTiO2成分を容
易に固溶し得られることが分った。
Therefore, it has been found that when the growth atmosphere is a reducing atmosphere, particularly a reducing atmosphere of 10@-1 atmosphere or less, the TiO2 component can be easily dissolved in solid solution.

しかるに、着色剤として、例えば二三酸化クロム(c
r203冴使用して着色しようとすると、雰囲気が還元
性であると、TiO2よりもさきに酸化クロムが還元さ
れ、この還元された酸化クロム成分は蒸発し易くなり固
相中へ導入することが困難となる。
However, as a coloring agent, for example, chromium ditrioxide (c
When trying to color using r203sae, if the atmosphere is reducing, chromium oxide will be reduced before TiO2, and this reduced chromium oxide component will easily evaporate, making it difficult to introduce it into the solid phase. becomes.

そこで、TiO2成分を予めTi2O3の状態に還元し
ておき、これを中性雰囲気下で固溶させればよく、また
他の還元し難い着色剤で着色する場合においても、Ti
e、、成分を予めTi2qのものを使用すると、還元性
雰囲気下で効果的にTiO2成分を固相中に導入し得ら
れること。
Therefore, it is sufficient to reduce the TiO2 component to the state of Ti2O3 in advance and make it a solid solution in a neutral atmosphere.Also, even when coloring with other colorants that are difficult to reduce, Ti
e. If a Ti2q component is used in advance, the TiO2 component can be effectively introduced into the solid phase under a reducing atmosphere.

このようにTiO□成分及び着色剤を均一に固溶させた
単結晶を育成するにi、固相の析出温度を変えないで、
育成を継続させることが必要であり、そのためにはトラ
ベリングゾーン法が適していること、および得られた単
結晶を酸性雰囲気下で焼鈍することによりTiO2成分
を離溶によって析出させると星影を放つコランダム単結
晶が得られることを究明し得た。
In this way, to grow a single crystal in which the TiO□ component and colorant are uniformly dissolved in solid solution, without changing the precipitation temperature of the solid phase,
It is necessary to continue the growth, and for this purpose, the traveling zone method is suitable, and when the obtained single crystal is annealed in an acidic atmosphere, the TiO2 component is precipitated by dissolution, resulting in corundum that gives off a starry shadow. It was found that a single crystal could be obtained.

その究明事実に基づいて本発明を完成した。The present invention was completed based on the findings.

本発明は原料棒の一端を溶融させ、形成された融帯を移
動させて原料棒の溶解、固相の析出を継続させるフロー
ティングゾーン法による単結晶育成法において、原料棒
として、酸化アルミニウム(A1203)及び酸化チタ
ニウム成分としてTi2qを使用したものからなる原料
棒を使用し、単結晶育成雰囲気として酸素分圧が10−
1気圧以下の還元性雰囲気下に保って単結晶を育成し、
得られた単結晶を酸化性雰囲気下で焼鈍してTiO2成
分を離溶析出させる星影を放つコランダム単結晶の製造
法である。
The present invention uses aluminum oxide (A1203 ) and Ti2q as the titanium oxide component, and an oxygen partial pressure of 10-
Grow a single crystal by keeping it under a reducing atmosphere of 1 atm or less,
This method is for producing a star-like corundum single crystal in which the obtained single crystal is annealed in an oxidizing atmosphere to precipitate the TiO2 component.

本発明に利用するフロティングゾーン法とは、例えば、
原料棒を上に種結晶を下にセットし、両者の間に溶媒の
溶融帯を形成せしめ、これを表面張力で保持する。
The floating zone method used in the present invention is, for example,
The raw material rod is set at the top and the seed crystal is set at the bottom, and a molten zone of solvent is formed between the two, which is held by surface tension.

次に浴融帯をゆっくりと上側に移動させると、溶融帯の
上側では原料棒の溶は込みが生じ、下側では結晶の析出
が生ずる。
Next, when the bath melting zone is slowly moved upward, melting of the raw material rod occurs above the melting zone, and crystal precipitation occurs below the melting zone.

この時原料棒、種結晶にそれぞれ互に逆方向に適当な速
度で回転を与え、溶融帯に攪拌効果を与える。
At this time, the raw material rod and the seed crystal are rotated in opposite directions at appropriate speeds to give a stirring effect to the molten zone.

このようにして溶融帯を仲介として結合せしめ、原料棒
と種結晶以外溶融帯への支持がない状態で、溶融帯をゆ
っくりと移動させて単結晶を育成する方法である。
In this way, the molten zone is used as an intermediary to connect the materials, and the molten zone is slowly moved with no support other than the raw material rod and the seed crystal to grow a single crystal.

原料棒としては、酸化アルミニウム(A4o3)、及び
二三酸化チタニウム(Ti203)の成分割合がモル比
でほぼ1:0.0005〜1:0.05であることが好
ましい。
As for the raw material rod, it is preferable that the molar ratio of aluminum oxide (A4o3) and titanium ditrioxide (Ti203) is approximately 1:0.0005 to 1:0.05.

二三酸化チタニウムが前記割合より少ないと星影がうす
くなり、前記割合より多くなると全体がくもり美しくな
らない。
If the proportion of titanium dioxide is less than the above-mentioned proportion, the star shadow will become faint, and if it is greater than the above-mentioned proportion, the whole will become cloudy and not beautiful.

溶媒は酸化アツベニウム(A4()、)及び二三酸化チ
タニウム(Ti203)の成分割合が、モル比でほぼ1
:O,OO1〜1:0.1で、その融点が原料棒の融点
より低いものを使用する。
The solvent has a molar ratio of atubenium oxide (A4(), ) and titanium ditrioxide (Ti203) of approximately 1.
:O,OO1 to 1:0.1, and the melting point is lower than the melting point of the raw material rod.

Ti2O3成分が多くなるとその融点が低下するので、
原料棒の組成に応じて溶媒中のTi2O3量を調整すれ
ばよい。
As the Ti2O3 component increases, its melting point decreases, so
The amount of Ti2O3 in the solvent may be adjusted depending on the composition of the raw material rod.

溶媒は使用しなくとも単結晶を析出し得られるが、これ
を使用しないと、最初に生成してくる結晶の組成が目的
としたものよりずれてくるので、歩走りが悪くなる。
Although it is possible to precipitate a single crystal without using a solvent, if it is not used, the composition of the initially formed crystal will deviate from the intended one, resulting in poor walking performance.

また種結晶がないと、始め多結晶体が生成するので、そ
れだけ無駄になる欠点が生ずる。
Moreover, if there is no seed crystal, polycrystals will initially be produced, which has the disadvantage of being wasted.

原料棒及び溶媒の原料の酸化アルミニウム、及び二三酸
化チタニウムは、いずれも通常の試薬特級程度のものを
そのまま使用してもよいが、相互の化学反応をすみやか
に進行せしめるためには、粒径が小さい程好ましく、1
間以下、特に10μm以下のものが好ましい。
Aluminum oxide and titanium ditrioxide, which are the raw materials for the raw material rod and the solvent, can be used as they are at ordinary reagent grade, but in order for the mutual chemical reaction to proceed quickly, the particle size must be adjusted. The smaller the value, the better;
The thickness is preferably 10 μm or less, particularly 10 μm or less.

これら原料の混合はできるたけ均一に混合することが必
要である。
It is necessary to mix these raw materials as uniformly as possible.

そのためにはアルコール類、アセトン等の有機試薬と共
に十分乳鉢中で混合するか、あるいはボールミル等を使
用して混合すればよい。
For this purpose, it may be sufficiently mixed with an organic reagent such as an alcohol or acetone in a mortar, or by using a ball mill or the like.

この場合、必要に応じて、Fe、 Mg、 Ca、 B
a。
In this case, if necessary, Fe, Mg, Ca, B
a.

V、Cr、Mn、Co、Ni、Cu、Zn、Geまたは
希土類元素の微量成分を配合することによって、着色性
、加工性等を変えることができる。
Colorability, processability, etc. can be changed by blending trace components of V, Cr, Mn, Co, Ni, Cu, Zn, Ge, or rare earth elements.

これらの混合原料粉末は加圧成形する。These mixed raw material powders are press-molded.

加圧成形は金型を用いた一方向もしくは二方向圧縮によ
る成形法を用いてもよいが、加熱時の曲がりを防り&め
に、等方的に加圧が行われるラバープレス法を利用する
ことが好ましい。
For pressure molding, a molding method using one-way or two-way compression using a mold may be used, but in order to prevent bending during heating, a rubber press method in which pressure is applied isotropically is used. It is preferable to do so.

ラバープレス法とは、原料粉末をゴム管に入れ、両端を
密封し、密閉液圧式圧力容器中で高い液圧で加圧する方
法である。
The rubber press method is a method in which raw material powder is placed in a rubber tube, both ends of which are sealed, and the tube is pressurized with high hydraulic pressure in a closed hydraulic pressure vessel.

液圧は500 kg/ff1以上ならどんなに尚い圧力
でもよいが、安価で手軽に得られる1〜2t0rL/c
ytF、が好ましい。
The liquid pressure can be any pressure as long as it is 500 kg/ff1 or higher, but 1 to 2 t0rL/c is cheap and easy to obtain.
ytF is preferred.

加圧時間は5秒以上、好ましくは1分間である。The pressurization time is 5 seconds or more, preferably 1 minute.

加圧が充分でない成形物は壊れやすい。Molded products that are not sufficiently pressurized are likely to break.

加圧成形物の形状は細く長いものであればよいが、円柱
状のものが好ましい。
The shape of the pressure-molded product may be long and thin, but a cylindrical shape is preferred.

その大きさは例えば、径1朋〜10cTL、長さ1朋〜
50儂好ましくは径37/lr/L〜3c1rL1長さ
5mm〜30crnである。
Its size is, for example, 1 to 10 cTL in diameter and 1 to 1 in length.
Preferably, the diameter is 37/lr/L to 3c1rL1 and the length is 5mm to 30crn.

加圧成形物は仮焼する。The press-molded product is calcined.

この仮焼は横型の炉の中でルツボに保持して加熱して覗
よいが、不純物の混入と仮焼時の曲がりを防ぐために、
竪型の炉中で吊り下げた状態で加熱することが好ましい
This calcining can be done by heating it in a crucible in a horizontal furnace, but to prevent contamination of impurities and bending during calcining,
It is preferable to heat the product in a suspended state in a vertical furnace.

加圧成形物の加熱は非酸化性雰囲気例えば窒素またはア
ルゴン等の不活性ガス、もしくは窒素と水素のモル比で
10=1の混合ガスの下で、原料棒の場合は、1400
〜1850℃、溶媒の場合は1300〜1700°Cが
好ましい。
The press-formed product is heated under a non-oxidizing atmosphere, such as an inert gas such as nitrogen or argon, or a mixed gas with a molar ratio of nitrogen and hydrogen of 10=1.
~1850°C, preferably 1300~1700°C in the case of a solvent.

その加熱時間は長い程よい、特に原料棒の場合は、焼結
後のかさ密度が真の密度の80%以上になるよう十分に
長時間加熱することが好ましい。
The longer the heating time, the better. Particularly in the case of a raw material rod, it is preferable to heat it for a sufficiently long time so that the bulk density after sintering becomes 80% or more of the true density.

溶媒は原料棒の下もしくは種結晶の上に融着させておく
のがよい。
The solvent is preferably fused under the raw material rod or on top of the seed crystal.

溶媒の量は原料棒と同じ直径を持つ半球が最も好ましい
The amount of solvent is most preferably a hemisphere having the same diameter as the raw material rod.

種結晶としては、高温に耐え溶媒と化学反応を起こさな
い固形物であればよいが、原料棒と同じもの、特にコラ
ンダム単結晶を用いることが好ましい。
The seed crystal may be any solid material that can withstand high temperatures and does not cause a chemical reaction with the solvent, but it is preferable to use the same material as the raw material rod, especially corundum single crystal.

フローティングゾーン法による溶媒の融解は、例えば高
温の光源からの光を鏡又はレンズを用いて集光させた集
光加熱方式により、上下3〜30龍に亘って融解温度以
上に加熱する。
To melt the solvent by the floating zone method, for example, a condensing heating method in which light from a high-temperature light source is condensed using a mirror or lens is used to heat the solvent over a range of 3 to 30 degrees above and below to a temperature above the melting temperature.

結晶の育成速度は原料棒と種結晶の下方への送り速度に
等しく、その送り速度は少なくとも毎時0.1關に保つ
ことが好ましい。
The crystal growth rate is equal to the downward feeding rate of the raw material rod and the seed crystal, and the feeding rate is preferably maintained at at least 0.1 per hour.

特に好ましい速度は毎時1〜10mmである。A particularly preferred speed is 1 to 10 mm per hour.

この結晶育成における雰囲気は、三酸化クロム等の易還
元性のものを含む場合は、窒素またはアルゴン等の不活
性ガス雰囲気であること。
The atmosphere for this crystal growth should be an inert gas atmosphere such as nitrogen or argon if it contains easily reducible substances such as chromium trioxide.

また易還元性の着色剤が含まない場合は還元性雰囲気下
で行うことが好ましい。
Further, when an easily reducible colorant is not included, it is preferable to carry out under a reducing atmosphere.

還元性雰囲気としては、例えば、CO2,水素を1:5
.窒素、水素を10:1の割合で混合した混合ガスがあ
げられる。
As a reducing atmosphere, for example, CO2 and hydrogen are mixed in a ratio of 1:5.
.. A mixed gas containing nitrogen and hydrogen at a ratio of 10:1 is exemplified.

得られた単結晶を0.1気圧以上の酸素分圧を有する酸
化性雰囲気下で焼鈍するとTiO2成分が離溶によって
析出し星影を放つようになる。
When the obtained single crystal is annealed in an oxidizing atmosphere having an oxygen partial pressure of 0.1 atm or more, the TiO2 component precipitates by dissolution and starts to emit star shadows.

また、原料棒として、前記した焼結原料棒、・コ代え、
一度単結晶化したものを使用すると、溶媒への原料の溶
は込みが均一になり、従って種結晶上への晶出も安定し
、高品位のものが得られる。
In addition, as a raw material rod, the above-mentioned sintered raw material rod,
Once a monocrystalline product is used, the dissolution of the raw material into the solvent becomes uniform, and therefore the crystallization on the seed crystal becomes stable, and a high-quality product can be obtained.

以上のように、本発明の方法によると、酸化チタン原料
としてTi20jlを使用し、また単結晶育成雰囲気を
酸素分圧が10−1気圧以下の還元性雰囲気にすること
によって、酸化チタニウム成分をコランダム中に均質に
多量に固溶させたものが容易に得られ、フローティング
ゾーン法によるので純度が高く、大型のものが得られし
かも、得られた単結晶を酸化性雰囲気の下で焼鈍するこ
とにより、美しい星影を放つコランダム単結晶が得られ
る優れた効果を有する。
As described above, according to the method of the present invention, the titanium oxide component is converted to corundum by using Ti20jl as the titanium oxide raw material and by making the single crystal growth atmosphere a reducing atmosphere with an oxygen partial pressure of 10-1 atm or less. By using the floating zone method, high purity and large-sized crystals can be easily obtained, and by annealing the obtained single crystal in an oxidizing atmosphere. , it has an excellent effect of producing corundum single crystals that emit beautiful star shadows.

実施例 1 純度99.9%以上の酸化アルミニウム(A72Q、)
粉末と純度99.9%以上の二三酸化チタニウム(Ti
203)粉末とを、コランダム原料については100:
0.15、溶媒原料については100:0.3に秤量し
、各原料について着色剤として市販特級試薬の酸化コバ
ルト(CoO)及び三酸化クロム(Cr203)をそれ
ぞれモル比で2%及び0.2%添加し、乳鉢中ごエチル
アルコールを加えて充分に混合し、平均粒径1μmの微
粉末の二種の混合物を得た。
Example 1 Aluminum oxide (A72Q,) with a purity of 99.9% or more
Powder and tri-titanium oxide (Ti) with a purity of 99.9% or more
203) Powder and 100 for corundum raw material:
0.15, solvent raw materials were weighed at a ratio of 100:0.3, and for each raw material, commercially available special grade reagents cobalt oxide (CoO) and chromium trioxide (Cr203) were weighed at a molar ratio of 2% and 0.2, respectively. %, ethyl alcohol was added in a mortar and thoroughly mixed to obtain a mixture of two types of fine powder with an average particle size of 1 μm.

二種の該混合物約12gをそれぞれ内径11mmの肉薄
のゴム管中に投入し、両端を密封して内径11.5mm
の金わくに挿入し、油圧式静水圧発生装置中にて1 t
tyn、/(2711の圧力で約1分間加圧、成形した
Approximately 12 g of the two mixtures were each put into a thin-walled rubber tube with an inner diameter of 11 mm, and both ends were sealed and the inner diameter was 11.5 mm.
1 t in a hydraulic hydrostatic pressure generator.
It was pressed and molded at a pressure of tyn,/(2711) for about 1 minute.

上記操作により得られた外径約9mm、長さ約80m−
丸棒状試料を、コライダム原料の場合は1600°Cに
、溶媒原料の場合には1500°Cにそれぞれ保持した
竪形の電気炉へ挿入し仮焼した。
The outer diameter obtained by the above operation is about 9 mm, and the length is about 80 m.
A round rod-shaped sample was inserted into a vertical electric furnace maintained at 1600°C in the case of the colloidal raw material, and 1500°C in the case of the solvent raw material, and calcined.

炉への挿入、炉からの引出しはそれぞれ1時間費し、急
熱及び急冷による試料の破壊を防いだ。
Inserting the sample into the furnace and removing it from the furnace took 1 hour each to prevent destruction of the sample due to rapid heating and cooling.

雰囲気はチタンと水素のモル比で10:1の混合ガスと
した。
The atmosphere was a mixed gas of titanium and hydrogen at a molar ratio of 10:1.

上記操作により得られた外径約7.5 mm、長さ約7
0龍のコランダム原料棒を赤外線集中加熱方式を採用し
たフローティングゾーン法単結晶製造装置の上側詳料回
転軸に固定し、同様にして得られた外径約8vurtの
溶媒原料棒を長さ約20朋に切り、上記装置の下側種結
晶回転軸に固定し、溶融石英管で外気と隔離された結晶
成長室へチッソと水素をモル比で10:1に混合した混
合ガスを雰囲気として導入し、加熱を開始した。
The outer diameter obtained by the above operation is about 7.5 mm, and the length is about 7.
A 0-long corundum raw material rod was fixed to the upper rotating shaft of a floating zone method single crystal manufacturing device that adopted an infrared concentrated heating method, and a solvent raw material rod with an outer diameter of about 8 volts obtained in the same manner was used with a length of about 20 mm. The seed crystal was cut into pieces, fixed to the lower seed crystal rotating shaft of the above device, and a mixed gas of nitrogen and hydrogen mixed at a molar ratio of 10:1 was introduced as an atmosphere into the crystal growth chamber, which was isolated from the outside air with a fused quartz tube. , started heating.

雰囲気はフローティングゾーン部近傍で線速度毎秒0.
6儂で供給した。
The atmosphere is at a linear velocity of 0.0 per second near the floating zone.
Supplied in 6 mins.

上記単結晶製造装置中で最も温度が高くなる部分に溶媒
原料棒の先端がぐるように調節し、この先端が加熱によ
り融解すると同時に加熱を一定にして温度を固定し、上
側よりコランダム原料棒を下方に移動させて溶融部を仲
介とし−(溶媒原料棒と結合させ、両原料棒を互いに逆
の方向に毎分50回転の速度で回転させた。
Adjust the tip of the solvent raw material rod so that it goes around the part where the temperature is highest in the above single crystal production equipment, and at the same time as this tip melts by heating, keep the heating constant to fix the temperature, and insert the corundum raw material rod from above. It was moved downward and connected to the solvent raw material rod using the melting section as an intermediary, and both raw material rods were rotated in opposite directions at a speed of 50 revolutions per minute.

同転は、結晶育成終了まで続けた。The rotation continued until the end of crystal growth.

上記溶融部が大きすぎもせず、小さすぎもしない状態を
温度及び両原料棒相互間の間隔を微細に調節して得た後
、両原料棒を同一速度で下方へ毎時2.0 mmの速度
で移動させ、溶媒原料棒上ヘコランダムの結晶を析出さ
せた。
After finely adjusting the temperature and the distance between the two raw material rods to obtain a state in which the molten zone is neither too large nor too small, both raw material rods are moved downward at the same speed at a speed of 2.0 mm/hour. to precipitate hecorundum crystals on the solvent raw material rod.

析出結晶は初め多結晶であったが、10〜30朋成長し
た後は単結晶の断面を持つにいたった。
The precipitated crystals were polycrystalline at first, but after 10 to 30 crystals had grown, they had a single crystal cross section.

コランダム原料棒がほぼ消費しつくされた時、成長した
単結晶と該原料棒とを切離し、冷却の径径6.5 my
rt、長さ45mtttの丸棒状のコランダム単結晶を
得た。
When the corundum raw material rod was almost completely consumed, the grown single crystal was separated from the raw material rod, and the cooling diameter was 6.5 my.
A corundum single crystal in the shape of a round rod with a length of 45 mttt was obtained.

この単結晶を1350℃に保持した竪形の電気炉に挿入
し、1気圧の酸素雰囲気中で48時間焼鈍した。
This single crystal was inserted into a vertical electric furnace maintained at 1350° C. and annealed in an oxygen atmosphere of 1 atm for 48 hours.

炉への挿入、炉からの引出しはそれぞれ1時間費し、急
熱急冷による結晶の品質の悪化及び試料の破壊を防いだ
Insertion into the furnace and withdrawal from the furnace took one hour each to prevent deterioration of crystal quality and destruction of the sample due to rapid heating and cooling.

上記操作を施した単結晶を切断後、研摩してカボツショ
ンタイプの採石を得た。
After cutting the single crystal subjected to the above operation, it was polished to obtain a cabochon type quarried stone.

該採石は単一光の下で明瞭な星影を示した。The quarry showed clear star shadow under single light.

生成結晶中のTiO2固溶量は原料中のTi2O3成分
量と同じ<1.5モル%であった。
The amount of TiO2 solid solution in the produced crystals was <1.5 mol%, which was the same as the amount of Ti2O3 component in the raw material.

T 120 aを多くするとT t 02成分のコラン
ダム中への固溶量を3モル%までにすることができる。
When T 120 a is increased, the amount of solid solution of T t 02 component in corundum can be made up to 3 mol %.

比較例 1 実施例1における雰囲気ガスを通常用いられている空気
とし、他は同一条件で行ったところ、’ri2Q、原料
が均質に結晶中に固溶せず、白濁した結晶しか得られな
かった。
Comparative Example 1 When the atmosphere gas in Example 1 was used as air, and other conditions were the same, 'ri2Q, the raw material was not homogeneously dissolved in the crystals, and only cloudy crystals were obtained. .

白濁部分に過剰のTi2O3成分がTiO2に変化して
存在していた。
Excess Ti2O3 component was present in the cloudy part as it was converted to TiO2.

TiO2の最大固溶量は0.5モル%以下であった。The maximum solid solution amount of TiO2 was 0.5 mol% or less.

比較例 2 雰囲気ガスとして空気を使用し、酸化チタンとしてTi
O2ケ用い、前記と同様にして結晶育成した場合におけ
るTiO2成分のコランダム中への固溶量は0.5モル
%以下であった。
Comparative Example 2 Air was used as the atmospheric gas, and Ti was used as the titanium oxide.
When crystals were grown using O2 in the same manner as described above, the amount of TiO2 component dissolved in corundum as a solid solution was 0.5 mol% or less.

実施例 2 実施例1の結晶育成法により得られた単結晶を原料とし
、゛・実施例1の結晶育成法と同様の操作により再結晶
化させて、径6.5 mm、長さ45mmの高品質コラ
ンダム単結晶を得た。
Example 2 Using the single crystal obtained by the crystal growth method of Example 1 as a raw material, it was recrystallized by the same operation as the crystal growth method of Example 1 to obtain a crystal with a diameter of 6.5 mm and a length of 45 mm. High quality corundum single crystals were obtained.

この単結晶を実施例1の焼鈍法と同様の操作により焼鈍
した後、切断し、切断片を研摩してカボッションタイプ
の採石を得た。
This single crystal was annealed in the same manner as in Example 1, then cut, and the cut pieces were polished to obtain a cabochon type quarry.

該採石は単一光の下で明瞭な星影を示した。The quarry showed clear star shadow under single light.

又、上記切断面を硫酸水素カリウム(KHSO3)によ
り670°Cで1分間処理し、顕微鏡によって異相と食
菌の存在状況を観察した。
Further, the cut surface was treated with potassium hydrogen sulfate (KHSO3) at 670°C for 1 minute, and the presence of foreign phases and phagocytic bacteria was observed using a microscope.

この結果、この単結晶には異相の存在がみられず、又、
転位に起因すると考えられる食菌の存在密度も1d当り
1000個以下であることが確かめられた。
As a result, the presence of different phases was not observed in this single crystal, and
It was confirmed that the density of phagocytic bacteria, which is thought to be caused by rearrangement, was less than 1000 per 1 d.

Claims (1)

【特許請求の範囲】 1 原料棒の一端を溶融させ、形成された融帯を移動さ
せて、原料棒の溶解、固相の析出を継続させるフローテ
ィングゾーン法による単結晶育成法において、原料棒と
して、酸化アルミニウム(A1203)と二三酸化チタ
ニウム(T 1203 )とからなる組成のものを使用
し、単結晶育成雰囲気を酸素分圧が10−1気圧以下の
還元性雰囲気下に保って単結晶を育成し、得られた単結
晶を酸化性雰囲気下で焼鈍してTiO2成分を離溶析出
させることを特徴とする星影を放つコランダム単結晶の
製造法。 2 フローティングゾーン法が、原料棒の下に溶媒を、
さらに溶媒の下に種結晶を設け、この溶媒部分を加熱す
ると共に融帯を移動させる方法である特許請求の範囲第
1項記載の方法。 3 原料棒が酸化アルミニウムおよび二三酸化チタニウ
ムの成分の割合が、モル比で1:0.0005〜1:0
.1の割合からなるものである特許請求の範囲第1項記
載の方法。 4 原料棒の一端を溶融させ、形成された融帯を移動さ
せて、原料棒の溶融、固相の析出を継続させるフローテ
ィングゾーン法による単結晶育成法において、原料棒と
して酸化アルミニウム(A403)及び二三酸化チタニ
ウム(Ti20s)の成分からなる原料棒を使用し単結
晶育成雰囲気を酸素分圧が10−1気圧以下の還元性雰
囲気下に保って単結晶を育成し、得られた単結晶を原料
棒として再ひ同様な単結晶の育成を繰返し、得られた単
結晶を酸化性雰囲気下で焼鈍してTiO2成分を離溶析
出させることを特徴とする星影を放つコランダム単結晶
の製造法。
[Claims] 1. In a single crystal growth method using a floating zone method in which one end of a raw material rod is melted and the formed melt zone is moved to continue melting of the raw material rod and precipitation of a solid phase, , a composition consisting of aluminum oxide (A1203) and titanium ditrioxide (T1203) is used, and the single crystal growth atmosphere is maintained in a reducing atmosphere with an oxygen partial pressure of 10-1 atm or less to grow the single crystal. A method for producing a corundum single crystal that gives off a starry shadow, which is characterized by growing and annealing the obtained single crystal in an oxidizing atmosphere to exsolute and precipitate the TiO2 component. 2 The floating zone method places the solvent under the raw material rod,
The method according to claim 1, wherein a seed crystal is further provided under the solvent, and the solvent portion is heated and the melting zone is moved. 3. The raw material rod has a molar ratio of aluminum oxide and titanium dioxide from 1:0.0005 to 1:0.
.. 2. The method according to claim 1, wherein the method comprises a proportion of 1. 4 In a single crystal growth method using a floating zone method in which one end of the raw material rod is melted and the formed melt zone is moved to continue melting of the raw material rod and precipitation of the solid phase, aluminum oxide (A403) and Using a raw material rod consisting of titanium ditrioxide (Ti20s), a single crystal is grown by maintaining the single crystal growth atmosphere in a reducing atmosphere with an oxygen partial pressure of 10-1 atm or less, and the resulting single crystal is A method for producing a corundum single crystal that gives off a starry shadow, characterized by repeatedly growing a similar single crystal as a raw material rod, annealing the obtained single crystal in an oxidizing atmosphere, and precipitating the TiO2 component.
JP7599381A 1981-05-20 1981-05-20 Manufacturing method of corundum single crystal that emits starry colors Expired JPS5938192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7599381A JPS5938192B2 (en) 1981-05-20 1981-05-20 Manufacturing method of corundum single crystal that emits starry colors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7599381A JPS5938192B2 (en) 1981-05-20 1981-05-20 Manufacturing method of corundum single crystal that emits starry colors

Publications (2)

Publication Number Publication Date
JPS57191299A JPS57191299A (en) 1982-11-25
JPS5938192B2 true JPS5938192B2 (en) 1984-09-14

Family

ID=13592306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7599381A Expired JPS5938192B2 (en) 1981-05-20 1981-05-20 Manufacturing method of corundum single crystal that emits starry colors

Country Status (1)

Country Link
JP (1) JPS5938192B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60226498A (en) * 1984-04-19 1985-11-11 Seiko Epson Corp Preparation of starting material for single crystal
JPS60226499A (en) * 1984-04-24 1985-11-11 Seiko Epson Corp Synthesis of ruby single crystal
WO2024095040A1 (en) * 2022-11-02 2024-05-10 Levchenko Vladimir Viktorovich Method for improving colour characteristics and/or transparency of at least one natural corundum and in particular a ruby

Also Published As

Publication number Publication date
JPS57191299A (en) 1982-11-25

Similar Documents

Publication Publication Date Title
EP0000720B1 (en) Process for producing single crystal of yttrium-iron garnet solid solution
JPS5938192B2 (en) Manufacturing method of corundum single crystal that emits starry colors
JPS5938193B2 (en) Manufacturing method of corundum single crystal that emits starry colors
US4218282A (en) Method of preparation of chrysoberyl and beryl single crystals
RU2394767C1 (en) Method of preparing mixture of oxide compounds of bismuth and germanium
US3933990A (en) Synthesization method of ternary chalcogenides
JPS5938195B2 (en) Production method of brilliant chrysoberine single crystal
JPS5938194B2 (en) Production method of brilliant chrysoberine single crystal
JP2684432B2 (en) Superconducting oxide single crystal and method for producing the same
US4634492A (en) Chrysoberyl single crystal and method of producing the same
JPS5938198B2 (en) Manufacturing method of semiconductor strontium titanate single crystal
JPH0253397B2 (en)
CN1062318C (en) Method and device for growing diamond of aureoviridae family
US2760874A (en) Monocrystalline rutile and a method for preparing the same
JP3548910B2 (en) Method for producing ZnO single crystal
JP2672597B2 (en) Method for producing barium titanate single crystal
JP3870258B2 (en) Manufacturing method of oxide semiconductor single crystal
JPH0254318B2 (en)
KR0130403B1 (en) Method for production of mono crystal by travelling zon method
JPS6128638B2 (en)
JPH0471877B2 (en)
Carter et al. Growing single crystals
JPH027919B2 (en)
JP2003137691A (en) Method of producing single crystal
JPH025720B2 (en)