JPH0253397B2 - - Google Patents

Info

Publication number
JPH0253397B2
JPH0253397B2 JP57012968A JP1296882A JPH0253397B2 JP H0253397 B2 JPH0253397 B2 JP H0253397B2 JP 57012968 A JP57012968 A JP 57012968A JP 1296882 A JP1296882 A JP 1296882A JP H0253397 B2 JPH0253397 B2 JP H0253397B2
Authority
JP
Japan
Prior art keywords
crystal
raw material
single crystal
solid solution
seed crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57012968A
Other languages
Japanese (ja)
Other versions
JPS58135200A (en
Inventor
Shigeyuki Kimura
Kenji Kitamura
Kazuyuki Watabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Original Assignee
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO filed Critical KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority to JP57012968A priority Critical patent/JPS58135200A/en
Publication of JPS58135200A publication Critical patent/JPS58135200A/en
Publication of JPH0253397B2 publication Critical patent/JPH0253397B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/28Complex oxides with formula A3Me5O12 wherein A is a rare earth metal and Me is Fe, Ga, Sc, Cr, Co or Al, e.g. garnets

Description

【発明の詳細な説明】 本発明はイツトリウムアルミニウムガーネツト
(Y3Al5O12)またはその固溶体の単結晶の製造法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a single crystal of yttrium aluminum garnet (Y 3 Al 5 O 12 ) or a solid solution thereof.

従来、Y3Al5O12の単結晶の製造は、大別して
次の4種の方法によつている。
Conventionally, single crystals of Y 3 Al 5 O 12 have been produced by the following four methods.

(1) 融液から単結晶を引上げる所謂引上げ法。(1) The so-called pulling method that pulls a single crystal from a melt.

(2) PbO−PbF2系を主とするフラツクスを用い
る方法。
(2) A method using a flux mainly composed of PbO-PbF 2 system.

(3) フローテイングゾーン法。(3) Floating zone method.

(4) 熱交換法。(4) Heat exchange method.

前記(1)の引上げ法は、イリジウムのルツボに原
料を融解させ、種結晶を上から挿入し、その先端
を融液に接触させつつ引上げ、融液が順次固化し
て単結晶を得る方法である。この方法では大きな
単結晶が得られるが、イリジウムルツボが高価で
消耗し易いこと、ルツボの成分を取込み易いこと
および結晶の中央部にコアと呼ばれる好ましくな
い部分が現われることなどの欠点がある。
The pulling method described in (1) above is a method in which the raw material is melted in an iridium crucible, a seed crystal is inserted from above, the tip is brought into contact with the melt, and the melt is gradually solidified to obtain a single crystal. be. Although this method yields large single crystals, it has drawbacks such as the iridium crucible being expensive and easily worn out, the components of the crucible being easily incorporated, and an undesirable part called the core appearing in the center of the crystal.

前記フラツクス法は、融点の低いフラツクスに
Y3Al5O12を溶解させ、徐冷または温度勾配を利
用して単結晶を析出させる方法である。この方法
ではフラツクスを包有物もしくは不純物として結
晶中に取込み、結晶育成に時間がかり、また歩留
が悪いためコスト高となる欠点がある。
The above flux method uses a flux with a low melting point.
This is a method in which Y 3 Al 5 O 12 is dissolved and a single crystal is precipitated using slow cooling or a temperature gradient. This method has the disadvantage that flux is incorporated into the crystal as inclusions or impurities, and that it takes time to grow the crystal, and that the yield is low, resulting in high cost.

前記フローテイングゾーン法は、例えば映画用
映写機を用いて、ランプの光を一点に集め、これ
を加熱源(集光式)とし、またはホローカソード
を加熱源として、フローテイングゾーンを作り、
種結晶上に単結晶を育成する方法である。この方
法は成長直後の温度制御が不十分であるため、良
質で且つ均質なものが得難い欠点がある。なお、
この方法において、アフターヒーターを用いて結
晶の欠陥を抑えた結晶育成法も試みられたが、固
液界面の形状から影響される結晶の不均一を十分
解決し得なかつた。
The floating zone method uses, for example, a movie projector to collect the light from a lamp and use it as a heating source (condensing type) or a hollow cathode as a heating source to create a floating zone.
This is a method of growing a single crystal on a seed crystal. This method has the disadvantage that it is difficult to obtain high-quality and homogeneous products because temperature control immediately after growth is insufficient. In addition,
In this method, a crystal growth method using an after-heater to suppress crystal defects was also attempted, but it was not possible to satisfactorily resolve the crystal non-uniformity affected by the shape of the solid-liquid interface.

前記熱交換法は、大型の高融点金属の容器の中
で溶融した原料を一端から徐冷し、全体を単結晶
とする方法である。この方法では徐冷が技術的に
困難を伴つて、単結晶が均一に成長しにくく、ま
た容器からの汚染がある等の欠点がある。
The heat exchange method is a method in which a raw material melted in a large high-melting point metal container is slowly cooled from one end to form a single crystal as a whole. This method has drawbacks such as slow cooling is technically difficult, it is difficult to grow a single crystal uniformly, and there is contamination from the container.

本発明の目的は、フローテイングゾーン法によ
り高純度、均質なイツトリウムアルミニウムガー
ネツトまたはその固溶体単結晶を製造する方法を
提供するにある。
An object of the present invention is to provide a method for producing a highly pure and homogeneous yttrium aluminum garnet or a solid solution single crystal thereof using a floating zone method.

本発明において言うフローテイングゾーン法と
は、上方より回転させながら、原料棒を融解温度
より少し高い温度に保つている部分(溶融部)へ
送り込み、一方、下方から種結晶を原料棒とは逆
に回転させながら送り込み、両者を溶融部を仲介
して接触させ、原料棒と種結晶以外溶融部への支
持がない状態、すなわちフローテイングゾーンが
形成された状態を得て、しかる後に原料棒と種結
晶を同時に同一の一定速度で下方へ送り、この間
に種結晶上へ単結晶を析出させる方法を言う。
The floating zone method referred to in the present invention refers to a raw material rod being rotated from above and sent into a part (melting zone) that is kept at a temperature slightly higher than the melting temperature, while a seed crystal is introduced from below in the opposite direction to the raw material rod. The raw material rod and the seed crystal are fed in while rotating, and the two are brought into contact with each other through the molten part to obtain a state in which there is no support to the molten part other than the raw material rod and the seed crystal, that is, a floating zone is formed, and then the raw material rod and A method in which seed crystals are simultaneously sent downward at the same constant speed, and a single crystal is deposited on the seed crystal during this time.

本発明者は前記フローテイングゾーン法を用い
てY3Al5O12またはその固溶体単結晶を製造する
際、結晶側の種結晶および成長した結晶部の周囲
に保温装置を設け、温度分布を制御するときは、
高純度、高均質のイツトリウムアルミニウムガー
ネツト単結晶が容易に得られることを知見し、こ
の知見に基づいて本発明を完成したものである。
When producing Y 3 Al 5 O 12 or its solid solution single crystal using the floating zone method, the present inventor installed a heat insulating device around the seed crystal on the crystal side and the grown crystal part to control the temperature distribution. When I do it,
It was discovered that a highly pure and highly homogeneous yttrium aluminum garnet single crystal can be easily obtained, and the present invention was completed based on this knowledge.

本発明の方法において使用する原料棒は、イツ
トリウムアルミニウムガーネツトまたはその固溶
体単結晶を与える成分および成分比を持つ混合
物、即ち、酸化イツトリウム(Y2O5)と酸化ア
ルミニウム(Al2O3)とのモル比が好ましくは3
対5の混合物、あるいは酸化イツトリウム
(Y2O3)を主成分とし、これに希土類元素酸化物
を混合した成分と酸化アルミニウム(Al2O3)成
分とのモル比が好ましくは3対5の混合物を、加
圧成形焼結させた棒状物である。溶融部は前記と
同じ組成のものを飽和した液体で、また種結晶は
それぞれ前記と同じ組成の固溶体結晶である。
The raw material rod used in the method of the present invention is a mixture of components and component ratios that give yttrium aluminum garnet or its solid solution single crystal, that is, yttrium oxide (Y 2 O 5 ) and aluminum oxide (Al 2 O 3 ). The molar ratio is preferably 3
or a mixture of yttrium oxide (Y 2 O 3 ) as a main component and a rare earth element oxide mixed with aluminum oxide (Al 2 O 3 ) in a molar ratio of preferably 3:5. This is a rod-shaped product made by press-molding and sintering the mixture. The melting zone is a liquid saturated with the same composition as above, and the seed crystals are solid solution crystals having the same composition as above.

本発明に用いる酸化イツトリウムとしては、市
販のものをなんらの化学的処理をほどこすことな
くそのまま使用してもよいが、酸化アルミニウム
との反応をすみやかに進行せしめるためには、粒
径は小さいほど好ましく、1mm以下、特に好まし
くは10μm以下である。純度は従来の試薬特級程
度でもよいが、Y3Al5C12を光学材料として用い
る場合は不純物の混入をきらうので、出発物質の
純度は高ければ高いほど好ましい。また、出発物
質として、1000℃、1日間、空気中で仮焼して得
られる試料を用いるならば目的とする化学反応を
進行せしめるは更に好ましい。
As the yttrium oxide used in the present invention, commercially available yttrium oxide may be used as is without any chemical treatment, but in order to allow the reaction with aluminum oxide to proceed quickly, the smaller the particle size, the more It is preferably 1 mm or less, particularly preferably 10 μm or less. The purity may be at the level of a conventional reagent grade, but when Y 3 Al 5 C 12 is used as an optical material, contamination with impurities is discouraged, so the higher the purity of the starting material, the better. Furthermore, if a sample obtained by calcining in air at 1000° C. for one day is used as a starting material, it is more preferable to proceed with the desired chemical reaction.

本発明に用いる酸化アルミニウムとしては、通
常の試薬特級程度でもよいが、純度は高ければ高
いほど好ましい。粒径は酸化イツトリウムとの化
学反応をすみやかに進行せしめるためには、小さ
ければ小さいほど好ましく、1mm以下、特に好ま
しくは10μm以下である。
The aluminum oxide used in the present invention may be of ordinary reagent grade, but the higher the purity, the more preferable it is. The particle size is preferably as small as possible in order to allow the chemical reaction with yttrium oxide to proceed quickly, and is preferably 1 mm or less, particularly preferably 10 μm or less.

本発明の試料の混合にあたつては、できるかぎ
り均一に混合することが好ましく、アルコール
類、アセトン等の有機試薬と共に充分乳バチ中で
混合する方法、ボールミル等の混合機を用いて混
合する方法があり、試料配合後の平均粒径は1mm
以下、好ましくは10μm以下に整える。
When mixing the samples of the present invention, it is preferable to mix them as uniformly as possible, and it is preferable to mix them thoroughly in a milk drum with organic reagents such as alcohols and acetone, or by using a mixer such as a ball mill. There is a method, and the average particle size after sample mixing is 1 mm.
The thickness is preferably adjusted to 10 μm or less.

本発明において、Y3Al5O12の原料となる混合
粉末を作るための酸化イツトリウムと酸化アルミ
ニウムとの配合は、結晶育成中に異相の包有物と
しての混入を避けるために、酸化イツトリウムと
酸化アルミニウムとのモル比を3.5対5.0〜2.5対
5.0の範囲内におさめることが好ましいが、特に
好ましくは3.0対5.0である。
In the present invention, the blending of yttrium oxide and aluminum oxide to make the mixed powder that is the raw material for Y 3 Al 5 O 12 is carried out in order to avoid mixing as inclusions of different phases during crystal growth. Molar ratio of aluminum oxide to 3.5:5.0 to 2.5:
It is preferable to keep the ratio within the range of 5.0, particularly preferably 3.0 to 5.0.

本発明に用いる希土類元素酸化物としては、市
販のものをなんらの化学的処理をほどこすことな
くそのまま使用してもよいが、酸化アルミニウム
との反応をすみやかに進行せしめるためには、粒
径は小さいほど好ましく、1mm以下、特に好まし
くは10μm以下である。純度は従来の試薬特級程
度でもよいが、R3Al5O12(ただし、Rは希土類元
素を示す。)を光学材料として用いる場合は不純
物の混入をきらうので、出発物質の純度は高けれ
ば高いほど好ましい。また、出発物質として、
1000℃、1日間、空気中で仮焼して得られる試料
を用いるならば目的とする化学反応を進行せしめ
るには更に好ましい。
Commercially available rare earth element oxides used in the present invention may be used as they are without any chemical treatment, but the particle size must be adjusted to allow the reaction with aluminum oxide to proceed quickly. The smaller the diameter, the more preferable it is, 1 mm or less, particularly preferably 10 μm or less. The purity may be at the conventional reagent grade level, but when using R 3 Al 5 O 12 (R represents a rare earth element) as an optical material, contamination with impurities is avoided, so the higher the purity of the starting material, the higher the purity. The more preferable. In addition, as a starting material,
It is more preferable to use a sample obtained by calcining in air at 1000° C. for one day in order to allow the desired chemical reaction to proceed.

該溶融部の原料となる混合粉末を作るための酸
化アルミニウムと希土数元素酸化物との酸合は、
酸化アルミニウムと希土類元素酸化物とモル比が
4対1〜3対2の範囲になければならないが、特
に好ましくは4対2〜3対2である。該溶融部組
成が該範囲外にある場合は、R3Al5O12以外の結
晶相も飽和する可能性があり、異相の混入を招く
ので、適当でなくなる。
The acid combination of aluminum oxide and rare earth element oxide to make the mixed powder that is the raw material for the molten part is as follows:
The molar ratio of aluminum oxide to rare earth element oxide must be in the range 4:1 to 3:2, particularly preferably 4:2 to 3:2. If the composition of the melted zone is outside the range, crystal phases other than R 3 Al 5 O 12 may also become saturated, leading to the contamination of different phases, making it unsuitable.

本発明の方法において原料棒の組成混合粉末の
加圧成形にあつては、金型を用いた一方向もしく
は二方向圧縮による成形法を用いてもよいが、加
熱時の曲りを防ぐために、等方的に加圧が行われ
るラバープレス法を利用することが好ましい。
In the method of the present invention, when pressing the mixed powder of the raw material rod, a molding method using one-way or two-way compression using a mold may be used, but in order to prevent bending during heating, etc. It is preferable to use a rubber press method in which pressure is applied unidirectionally.

ラバープレス法とは、試料粉末をゴム管に入
れ、両端を密封し、密閉油圧式圧力容器中で高い
油圧で加圧する方法であ。油圧は500Kg/cm2以上
ならどんなに高い圧力でもよいが、安価で手転に
得られる1〜2ton/cm2が好ましい。加圧時間は5
秒以上、好ましくは1分間である。加圧が充分で
ない成形物は壊れやすい。
The rubber press method is a method in which sample powder is placed in a rubber tube, both ends are sealed, and the tube is pressurized with high oil pressure in a closed hydraulic pressure vessel. The hydraulic pressure may be as high as 500 kg/cm 2 or higher, but it is preferably 1 to 2 ton/cm 2 because it is inexpensive and can be obtained manually. Pressure time is 5
The duration is at least 1 second, preferably 1 minute. Molded products that are not sufficiently pressurized are likely to break.

本発明における加圧成形物の形状は、フローテ
イングゾーン法に応用するために、細く長いもの
ならなんでもよいが、一定の太さの円柱状が特に
好ましく、例えば、径1mm〜10cm、長1mm〜5
m、好ましくは径3mm〜1cm、長5mm〜30cmであ
る。
The shape of the press-formed product in the present invention may be any thin and long shape in order to be applied to the floating zone method, but a cylindrical shape with a certain thickness is particularly preferable, for example, a diameter of 1 mm to 10 cm and a length of 1 mm to 5
m, preferably a diameter of 3 mm to 1 cm and a length of 5 mm to 30 cm.

本発明における加圧成形物の仮焼にあたつて
は、横型の炉の中で適切なるルツボに保持して仮
焼した加圧成形物中に気泡として取り込まれるこ
とを防止するため、窒素やアルゴン等の不活性気
体の共存は避けることが好ましい。取り込まれた
窒素やアルゴン等の不活性気体の気泡は下記結晶
育成操作に際して溶融部中に取り込まれ、いくつ
か蓄積して大きな気泡となり、ついには破裂して
順調な結晶育成を妨害する。
During the calcination of the pressure-formed product in the present invention, nitrogen and Preferably, the coexistence of an inert gas such as argon is avoided. The bubbles of an inert gas such as nitrogen or argon are taken into the melting zone during the crystal growth operation described below, and some of them accumulate to form large bubbles, which eventually burst and interfere with the smooth growth of the crystal.

本発明における仮焼の初期と終了後は、成形物
の熱破壊を避けるために、毎分30度以下の速度で
徐熱、徐冷することが好ましい。
At the beginning and after the completion of calcination in the present invention, it is preferable to slowly heat and cool slowly at a rate of 30 degrees per minute or less in order to avoid thermal destruction of the molded product.

該加圧成形物の加熱温度は、1300〜1800℃が好
ましく、特に好ましくは1500〜1800℃である。
The heating temperature of the press-molded product is preferably 1300 to 1800°C, particularly preferably 1500 to 1800°C.

該加圧成形物の加熱時間は、仮焼後の加圧成形
物のかさ密度が真の密度の50〜80%になるような
長さにする。該かさ密度が70〜75%になるような
長さにすれば更に好ましい。
The heating time of the press-molded product is set to such a length that the bulk density of the press-molded product after calcination becomes 50 to 80% of the true density. More preferably, the length is such that the bulk density is 70 to 75%.

本発明に利用するフローテイングゾーン法結晶
育成装置の融解温度より少し高い温度を保つてい
る部分、すなわち溶融部分は、素材棒である該
Y3Al5O12原料成形物焼結体の径によるが、上下
3〜15mmにわたつて該Y3Al5O12原料の融解温度
である2000℃以上に保たれなければならない。
2000℃以上の部分は、上下に長すぎても短かすぎ
ても好ましくない。該高温部分近傍の上下以外の
温度分布については制約はない。
The part of the floating zone method crystal growth apparatus used in the present invention that maintains a temperature slightly higher than the melting temperature, that is, the melting part, is the material rod.
Depending on the diameter of the Y 3 Al 5 O 12 raw material molded sintered body, it must be maintained at 2000° C. or higher, which is the melting temperature of the Y 3 Al 5 O 12 raw material, over 3 to 15 mm above and below.
It is not preferable for the part above 2000°C to be too long or too short vertically. There are no restrictions on the temperature distribution other than above and below near the high temperature portion.

本発明に用いる該結晶育成法用装置は、結晶育
成部分が外気とし断され、雰囲気を目的に応じて
変化させ得る装備を有していなければならない。
The apparatus for the crystal growth method used in the present invention must have equipment that allows the crystal growth section to be disconnected from the outside air and to change the atmosphere depending on the purpose.

本発明における保温装置は、例えば成長結晶の
外径より大きな内径を持つ筒であり、種結晶およ
び成長した結晶部の溶融部に近い部分の周囲を覆
うように設けるが、最も手軽な例はアルミナセラ
ミツクの円筒である。
The heat retaining device in the present invention is, for example, a cylinder having an inner diameter larger than the outer diameter of the growing crystal, and is provided so as to cover the seed crystal and the part of the grown crystal close to the melting part.The simplest example is a cylinder made of alumina. It is a ceramic cylinder.

本発明における該保温筒は、成長した結晶中の
温度勾配をゆるやかにするために、熱伝導の大き
な材質であることが好ましい。同じ理由で、該保
温筒は厚みが小さく、熱容量も小さいものが好ま
しい。しかし、これに限らない。
The heat retaining cylinder in the present invention is preferably made of a material with high thermal conductivity in order to make the temperature gradient in the grown crystal gentle. For the same reason, it is preferable that the heat insulating cylinder has a small thickness and a small heat capacity. However, it is not limited to this.

該保温装置は該成長結晶中の温度分布を制御す
るためのものである。これらにより該結晶中の溶
融部近傍の熱流の径路が変えられ、ひるがえつ
て、結晶成長界面の形状が変えられる。本発明に
おいては該保温装置の微妙な制御により結晶成長
界面を良質結晶の成長に適した形状に保つことを
可能にしている。
The heat retaining device is for controlling the temperature distribution in the growing crystal. These change the path of the heat flow near the molten part in the crystal, which in turn changes the shape of the crystal growth interface. In the present invention, it is possible to maintain the crystal growth interface in a shape suitable for the growth of high quality crystals by delicately controlling the heat retaining device.

本発明において、該フローテイングゾーン法を
利用して、該R3Al5O12原料成形物焼結体、該溶
融部及び該種結晶を用いた結晶育成速度は、原科
棒と種結晶の下方への送り速度に等しく、本発明
は該送り速度を少なくとも毎時0.1mmに保ち、
R3Al5O12単結晶を育成することを特徴とする。
該送り速度は、大きいことが好ましいが、得られ
る結晶の特性が損なわれることを防ぐため、毎時
10cm以下、通常8mm以下が好ましく、特に好まし
くは毎時1〜4mmである。遅すぎる送り速度は
R3Al5O12単結晶製造の効率を低め、コストの上
昇を招く。
In the present invention, by utilizing the floating zone method, the crystal growth rate using the R 3 Al 5 O 12 raw material molded sintered body, the molten zone, and the seed crystal is determined by using the raw material rod and the seed crystal. equal to the downward feed rate, the invention maintains the feed rate at least 0.1 mm per hour;
It is characterized by growing R 3 Al 5 O 12 single crystal.
The feeding speed is preferably high, but in order to prevent the properties of the obtained crystals from being impaired, the feeding speed should be increased every hour.
It is preferably 10 cm or less, usually 8 mm or less, particularly preferably 1 to 4 mm/hour. Too slow feed rate
It reduces the efficiency of R 3 Al 5 O 12 single crystal production and increases costs.

本発明のR3Al5O12またその固溶体単結晶の製
造法において、焼結した原料棒の代替として、一
度単結晶化したものを原料として適用するなら
ば、溶融部への原料の溶け込みが均一になり、従
つて種結晶上への晶出も安定し、高品質の単結晶
を得ることができる。
In the method for producing R 3 Al 5 O 12 or its solid solution single crystal of the present invention, if a single crystallized material is used as a raw material instead of a sintered raw material rod, the melting of the raw material into the molten zone will be reduced. The crystallization becomes uniform and therefore crystallization on the seed crystal becomes stable, making it possible to obtain a high-quality single crystal.

本発明の方法によれば、従来法により製造され
たY3Al5O12単結晶に比較し、純度および均質性
が高く、格段に安価なY3Al5O12またはその固溶
体単結晶を製造し得る効果がある。
According to the method of the present invention, compared to Y 3 Al 5 O 12 single crystals produced by conventional methods, Y 3 Al 5 O 12 or its solid solution single crystals are produced which have higher purity and homogeneity and are much cheaper. There is a potential effect.

本発明の方法によつて得られるY3Al5O12また
はその固溶体単結晶は従来法によつて得られる
Y3Al5O12単結晶の安価且つ良質な代替品として
レーザー材料、あるいはマイクロ波用磁性材料の
基板として用いられるであろう。
Y 3 Al 5 O 12 or its solid solution single crystal obtained by the method of the present invention can be obtained by conventional methods.
It will be used as a substrate for laser materials or microwave magnetic materials as an inexpensive and high-quality alternative to Y 3 Al 5 O 12 single crystals.

実施例 1 純度99.9%以上の酸化イツトリウム(Y2O3
粉末と純度99.9%以上の酸化アルミニウム
(Al2O3)粉末とを、3.0対5.0のモル比に秤量し、
乳バチ中でアセトンを加えて充分に混合し、平均
粒径1μmの微粉末の混合物を得た。
Example 1 Yttrium oxide (Y 2 O 3 ) with a purity of 99.9% or more
Weighing the powder and aluminum oxide (Al 2 O 3 ) powder with a purity of 99.9% or more to a molar ratio of 3.0 to 5.0,
Acetone was added and thoroughly mixed in a milk drum to obtain a fine powder mixture with an average particle size of 1 μm.

該混合物約12gを内径11mmの肉薄のゴム管中に
投入し、両端を密封して内径11.5mmの金わくに挿
入し、油圧式静水圧発生装置中にて1ton/cm2の圧
力で約1分間加圧、成形した。
Approximately 12 g of the mixture was put into a thin rubber tube with an inner diameter of 11 mm, both ends were sealed, the mixture was inserted into a metal ring with an inner diameter of 11.5 mm, and the mixture was heated at a pressure of 1 ton/cm 2 in a hydraulic hydrostatic pressure generator at a pressure of about 1 ton/cm 2 . It was pressed and molded for a minute.

上記操作により得られた外径約8mm、長さ約80
mmの丸棒状試料を、1700℃に保持し1気圧の酸素
ガスを流した堅形の電気炉へ挿入し仮焼した。炉
への挿入、炉からの引出しはそれぞれ1時間費
し、急熱急冷による試料の破壊を防いだ。
Outer diameter approximately 8mm and length approximately 80mm obtained by the above operation
A round rod-shaped sample with a diameter of 2 mm was inserted into a rigid electric furnace maintained at 1700°C and fed with 1 atm of oxygen gas, and calcined. Inserting the sample into the furnace and removing it from the furnace took 1 hour each to prevent destruction of the sample due to rapid heating and cooling.

上記操作によつて得られた外径約6.5mm、長さ
約60mmのY3Al5O12原料棒をキセノンア−クラン
プを加熱源とした集光加熱式フローテイングゾー
ン法単結晶製造装置の上側試料回転軸に固定し、
同様にして別に準備した外径約7mmのY3Al5O12
単結晶を長さ約30mmに切り、これを種結晶とし、
該装置の下側種結晶回転軸に固定した。該装置に
はあらかじめ、種結晶と下側シヤフト全体を覆う
ように内径22mmのアルミナ管を固定し、その先端
は結晶と溶融部との境界になると想定される位置
とした。溶融石英管で外気で融離された結晶成長
室へ1気圧の窒素ガスを雰囲気として導入し、充
分空気と置換してから加熱を開始した。雰囲気は
フローテイングゾーン部近傍で毎秒2.0cmで供給
した。該単結晶製造装置中で最も温度が高くなる
部分にY3Al5O12種結晶の先端がくるように調節
し、該先端が加熱により融解すると同時に加熱を
一定にして温度を固定し、上側よりY3Al3O12
料棒を下方に移動させて溶融部を仲介として種結
晶と結合させ、両者を互いに逆の方向に毎分30回
転の速度で回転させた。回転は結晶育成終了まで
続けた。該溶融部が大きすぎもせず小さすぎもし
なない状態を、温度及び原料棒と種結晶の間の間
隔を微細に調節して得た後、原料棒と種結晶を同
一速度で下方へ毎時1.0mmの速度で移動させ、種
結晶上にY3Al5O12の結晶を析出させた。析出結
晶は種結晶と同じ方位を持つ単結晶であつた。
The Y 3 Al 5 O 12 raw material rod with an outer diameter of about 6.5 mm and a length of about 60 mm obtained by the above operation was placed on the upper side of a concentrating heating type floating zone method single crystal production device using a xenon arc lamp as a heating source. Fixed to the sample rotation axis,
Y 3 Al 5 O 12 with an outer diameter of about 7 mm prepared separately in the same way
Cut a single crystal to a length of about 30 mm, use this as a seed crystal,
It was fixed to the lower seed crystal rotating shaft of the device. An alumina tube with an inner diameter of 22 mm was fixed in advance to the device so as to cover the entire seed crystal and lower shaft, and its tip was placed at a position expected to be the boundary between the crystal and the molten zone. Nitrogen gas at 1 atm was introduced as an atmosphere into the crystal growth chamber, which was fused with outside air using a fused silica tube, and heating was started after the atmosphere was sufficiently replaced with air. The atmosphere was supplied near the floating zone at a rate of 2.0 cm/sec. The tip of the Y 3 Al 5 O 12 seed crystal is adjusted to be at the highest temperature point in the single crystal production equipment, and as soon as the tip is melted by heating, the temperature is fixed by constant heating, and the upper The Y 3 Al 3 O 12 raw material rod was moved downward to combine with the seed crystal through the molten zone, and both were rotated in opposite directions at a speed of 30 revolutions per minute. Rotation was continued until the end of crystal growth. After finely adjusting the temperature and the distance between the raw material rod and the seed crystal so that the melted zone is neither too large nor too small, the raw material rod and the seed crystal are moved downward at the same speed at 1.0 per hour. It was moved at a speed of mm to deposit Y 3 Al 5 O 12 crystals on the seed crystal. The precipitated crystal was a single crystal with the same orientation as the seed crystal.

Y3Al5O12原料棒がほゞ消費しつくされた時、
成長した単結晶と該原料棒とを切離し、冷却の後
径6mm、長さ50mmの丸棒状のY3Al5O12単結晶を
得た。
Y 3 Al 5 O 12 When the raw material rods are almost completely consumed,
The grown single crystal and the raw material rod were separated, and after cooling, a Y 3 Al 5 O 12 single crystal in the shape of a round rod with a diameter of 6 mm and a length of 50 mm was obtained.

得られた単結晶は粉末X線法によりY3Al5O12
であることを確認した。又、光学顕微鏡により、
光散乱源の少ない良質結晶であることが明らかと
なつた。
The obtained single crystal was determined by powder X-ray method as Y 3 Al 5 O 12
It was confirmed that Also, using an optical microscope,
It became clear that this was a high quality crystal with few light scattering sources.

実施例 2 高品質Y3Al5O12単結晶の育成を行つた。Example 2 A high quality Y 3 Al 5 O 12 single crystal was grown.

実施例1の方法により得られた単結晶と原料と
して、実施例1の方法と同様の操作により再結晶
化せしめ、径6mm、長さ40mmの高品質Y3Al5O12
単結晶を得た。
The single crystal obtained by the method of Example 1 and the raw material were recrystallized in the same manner as in Example 1 to obtain high quality Y 3 Al 5 O 12 with a diameter of 6 mm and a length of 40 mm.
A single crystal was obtained.

得られた単結晶の一部を切り出し、両端を鏡面
に磨いた円柱状とし、偏光顕微鏡により調べ、屈
折率の変動の大きさが10-5以下であることを確認
した。
A part of the obtained single crystal was cut out into a cylindrical shape with both ends mirror-polished, and examined using a polarizing microscope, and it was confirmed that the magnitude of the fluctuation in the refractive index was 10 -5 or less.

実施例 3 Y2.97Nd0.03Al5O12なる組成について単結晶育成
を行つた。
Example 3 A single crystal was grown with a composition of Y 2.97 Nd 0.03 Al 5 O 12 .

純度99.9%以上の酸化イツトリウム(Y2O3
粉末と純度99.9%以上の酸化ネオジム(Nd2O3
粉末と純度99.9%以上の酸化アアルミニウム
(Al2O3)粉末とを、Y2.97Nd0.03Al5O12原料に対
しては2.97対0.03対5.0、溶融部原料に対しては
2.85対0.15対5.0モル比に秤量し、乳バチ中でアセ
トンを加えて充分に混合し、平均粒径1μmの微
粉末の二種類の混合物を得た。
Yttrium oxide (Y 2 O 3 ) with purity of 99.9% or more
Neodymium oxide (Nd 2 O 3 ) with powder and purity over 99.9%
powder and aluminium oxide ( Al 2 O 3 ) powder with a purity of 99.9 % or more .
They were weighed to a molar ratio of 2.85:0.15:5.0, and acetone was added in a mortar and thoroughly mixed to obtain a mixture of two types of fine powder with an average particle size of 1 μm.

二種の該混合物約12gをそれぞれ内容11mmの肉
薄のゴム管中に投入し、両端を密封して内径11.5
mmの金わくに挿入し、油圧式静水圧発生装置中に
て1ton/cm2の圧力で約1分間加圧、成形した。
Approximately 12 g of the two kinds of mixtures were put into a thin-walled rubber tube with a content of 11 mm, and both ends were sealed, and the inner diameter was 11.5.
It was inserted into a metal frame of 1.0 mm in diameter, and pressed and molded in a hydraulic hydrostatic pressure generator for about 1 minute at a pressure of 1 ton/cm 2 .

上記操作により得られた外径約8mm、長さ約80
mmの丸棒状試料を、Y2.97Nd0.03Al5O12原料の場合
は1700℃に、溶媒原料の場合には1600℃にそれぞ
れ保持した竪形の電気炉へ挿入し仮焼した。炉へ
の挿入、炉からの引出しはそれぞれ1時間費し、
急熱急冷による試料の破壊を防いだ。
Outer diameter approximately 8mm and length approximately 80mm obtained by the above operation
A round rod-shaped sample of 2.97 mm in diameter was inserted into a vertical electric furnace maintained at 1700°C for the Y 2.97 Nd 0.03 Al 5 O 12 raw material, and 1600°C for the solvent raw material, and calcined. Inserting into the furnace and pulling out from the furnace each took one hour.
Prevented sample destruction due to rapid heating and cooling.

上記操作により得られた外径約6.5mm、長さ約
60mmのY2.97Nd0.03Al5O12原料棒を赤外線集中加熱
方式を採用したフローテイングゾーン法単結晶製
造装置の上側試料回転軸に固定し、同様にして得
られた外径約7mmの溶融部原料棒を長さ約20mmに
切り、該装置の下側種結晶回転軸に固定し、溶融
石英管で外気と隔離された結晶成長室へ1気圧の
窒素ガスを雰囲気として導入し、充分空気と置換
してから加熱を開始した。雰囲気はフローテイン
グゾーン部近傍で線速度毎秒0.6cmで供給した。
該単結晶製造装置中で最も温度が高くなる部分に
溶融部原料棒の先端がくるように調節し、該先端
が加熱により融解すると同時に加熱を一定にして
温度を固定し、上側よりY0.97Nd0.03Al5O12原料棒
を下方に移動させて融解した部分を仲介として溶
融部と原料棒とに結合させた。次に適量の溶融部
原料がY2.97Nd0.03Al5O12原料棒の下端に残るよう
にして溶融部原料棒を切り離し、加熱を中断して
これを装置から取り去つた。しかる後に、別に調
製した径6.5mm、長さ20mmのY2.97Nd0.03Al5O12
結棒を種結晶として溶融部原料棒の代りに下シヤ
フトに取付け、装置に装着した。該装置にはあら
かじめ、種結晶と下側シヤフトを覆うように内径
22mmのアルミナ管を固定し、その先端は結晶と溶
融部との境界になると想定される位置とした。再
び加熱を行つてY2.97Nd0.03Al5O12原料棒の下端に
付着した溶融部原料を融解せしめ、該種結晶を適
切に調節して該溶融部に接触せしめ、溶融部を仲
介として該原料棒と結合させ、両者を互いに逆の
方向に毎分30回転の速度で回転させた。回転は、
結晶育成終了まで続けた。該溶融部が大きすぎも
せず、小さすぎもしない状態を温度および原料棒
と種結晶との間隔を微細に調整して得た後、両者
を同一速度で下方へ毎時1.0mmの速度で移動させ、
種結晶上にY2.97Nd0.03Al5O12の結晶を析出させ
た。析出結晶は初め多結晶であつたが、3〜5mm
成長した後は単結晶の断面を持つにいたつた。
Approximately 6.5 mm in outer diameter and approximately 6.5 mm in length obtained by the above operation
A 60 mm Y 2.97 Nd 0.03 Al 5 O 12 raw material rod was fixed to the upper sample rotating shaft of a floating zone method single crystal production device that adopted an infrared concentrated heating method, and a molten part with an outer diameter of approximately 7 mm was obtained in the same manner. The raw material rod was cut to a length of approximately 20 mm, fixed to the lower seed crystal rotation shaft of the device, and 1 atm nitrogen gas was introduced as an atmosphere into the crystal growth chamber, which was isolated from the outside air with a fused quartz tube, to ensure sufficient air. After the replacement, heating was started. The atmosphere was supplied near the floating zone at a linear velocity of 0.6 cm/sec.
Adjust the tip of the raw material rod in the melting zone to be at the highest temperature point in the single crystal production equipment, and as soon as the tip melts due to heating, the heating is kept constant to fix the temperature, and Y 0.97 Nd is heated from above. The 0.03 Al 5 O 12 raw material rod was moved downward, and the molten part and the raw material rod were combined using the molten portion as an intermediary. Next, the melting zone raw material rod was separated so that an appropriate amount of the Y 2.97 Nd 0.03 Al 5 O 12 raw material rod remained at the lower end, heating was interrupted, and it was removed from the apparatus. Thereafter, a separately prepared Y 2.97 Nd 0.03 Al 5 O 12 sintered rod having a diameter of 6.5 mm and a length of 20 mm was attached as a seed crystal to the lower shaft in place of the molten zone raw material rod, and was installed in the apparatus. The device is pre-installed with an inner diameter that covers the seed crystal and the lower shaft.
A 22 mm alumina tube was fixed, and its tip was placed at a position that was assumed to be the boundary between the crystal and the molten zone. Heating is performed again to melt the molten zone raw material attached to the lower end of the Y 2.97 Nd 0.03 Al 5 O 12 raw material rod, and the seed crystal is adjusted appropriately to contact the molten zone, and the raw material is transferred through the molten zone as an intermediary. It was connected to a rod and both were rotated in opposite directions at a speed of 30 revolutions per minute. The rotation is
This continued until the end of crystal growth. After finely adjusting the temperature and the distance between the raw material rod and the seed crystal to obtain a state in which the molten zone is neither too large nor too small, both were moved downward at the same speed at a rate of 1.0 mm per hour. ,
Crystals of Y 2.97 Nd 0.03 Al 5 O 12 were deposited on the seed crystal. The precipitated crystals were initially polycrystalline, but the size of the crystals was 3 to 5 mm.
After growth, it had a single crystal cross section.

Y2.97Nd0.03Al5O12原料棒がほぼ消費しつくされ
た時、成長した単結晶と該原料棒とを切離し、冷
却の後径6mm、長さ50mmの丸棒状のY2.97Nd0.03
Al5O12単結晶を得た。
Y 2.97 Nd 0.03 When the Al 5 O 12 raw material rod is almost completely consumed, the grown single crystal is separated from the raw material rod, and after cooling, Y 2.97 Nd 0.03 is made into a round rod with a diameter of 6 mm and a length of 50 mm.
An Al 5 O 12 single crystal was obtained.

得られた円柱状の単結晶を育成方向に平行に切
断し、鏡面研磨して顕微鏡で観察した結果、不均
一性を示すものは何も存在しないことがわかつ
た。
The resulting cylindrical single crystal was cut parallel to the growth direction, polished to a mirror surface, and observed under a microscope. As a result, it was found that there was no sign of non-uniformity.

実施例 4 Y2YbAl5O12なる組成について単結晶育成を行
つた。
Example 4 A single crystal was grown with a composition of Y 2 YbAl 5 O 12 .

純度99.9%以上の酸化イツトリウム(Y2O3
粉末と純度99.9%以上の酸化イツテルビウム
(Yb2O3)粉末と純度99.9%以上の酸化アルミニ
ウム(Al2O3)粉末とを、Y2YbAl5O12原料に対
しては2.0対1.0対5.0、溶融部原料に対しては2.5
対0.5対5.0モル比に秤量し、乳バチ中でアセトン
を加えて充分に混合し、平均粒径1μmの微粉末
の二種類の混合物を得た。
Yttrium oxide (Y 2 O 3 ) with purity of 99.9% or more
Powder, ytterbium oxide (Yb 2 O 3 ) powder with a purity of 99.9% or more, and aluminum oxide (Al 2 O 3 ) powder with a purity of 99.9% or more in a ratio of 2.0 to 1.0 for the Y 2 YbAl 5 O 12 raw material. 5.0, 2.5 for melt material
0.5 to 5.0 molar ratio, acetone was added in a milk drum, and the mixture was thoroughly mixed to obtain a mixture of two types of fine powder with an average particle size of 1 μm.

二種類の該混合物を実施例1の方法と同様の操
作により、同様の経過を経て径6mm、長さ40mmの
丸棒状のY2YbAl5O12単結晶を得た。
The two types of mixtures were subjected to the same procedure as in Example 1 to obtain a Y 2 YbAl 5 O 12 single crystal in the form of a round rod with a diameter of 6 mm and a length of 40 mm.

得られた円柱状の単結晶を育成方向に平行に切
断し、鏡面研摩して顕微鏡で観察した結果、不均
一性を示すものは何も存在しないことがわかつ
た。
The resulting cylindrical single crystal was cut parallel to the growth direction, mirror-polished, and observed under a microscope. As a result, it was found that there was no sign of non-uniformity.

実施例 5 高品質Y2.97Nd0.03Al5O12単結晶育成を行つた。Example 5 High quality Y 2.97 Nd 0.03 Al 5 O 12 single crystal was grown.

実施例1の方法により得られた単結晶を原料と
して、実施例1の方法と同様の操作により再結晶
化せしめ、径6mm、長さ40mmの高品質Y2.97Nd0.03
Al5O12単結晶を得た。
Using the single crystal obtained by the method of Example 1 as a raw material, recrystallization was performed in the same manner as in Example 1 to obtain a high quality Y 2.97 Nd 0.03 with a diameter of 6 mm and a length of 40 mm.
An Al 5 O 12 single crystal was obtained.

得られた単結晶の一部を切り出し、両端を鏡面
に磨いた円柱状とし、偏光顕微鏡により調べ、屈
折率の変動の大きさが10-5以下であることを確認
した。
A part of the obtained single crystal was cut out into a cylindrical shape with both ends mirror-polished, and examined using a polarizing microscope, and it was confirmed that the magnitude of the fluctuation in the refractive index was 10 -5 or less.

Claims (1)

【特許請求の範囲】 1 原料棒の下に加熱溶融部を設け、該溶融部の
下に種結晶を設け、該溶融部に原料が溶け込み、
種結晶上に結晶成分が析出して単結晶を成長させ
る、フローテイングゾーン法による単結晶製造法
において、該原料棒は、該溶融部への溶解および
それよりの析出によりイツトリウムアルミニウム
ガーネツト、またはその固溶体結晶を与えるよう
な成分および成分比を持つ混合物であり、該溶融
部は同組成固溶体成分で飽和した高温の液体であ
り、該種結晶はイツトリウムアルミニウムガーネ
ツトまたはその固溶体結晶であり、単結晶を成長
せしめるに際して、種結晶および成長した結晶部
の溶融部に近い部分の周囲を保温することによ
り、種結晶および成長した結晶部の溶融部に近い
部分の温度分布を、結晶成長界面が種結晶から溶
融部に向つて凸になるように調節することを特徴
とする、イツトリウムアルミニウムガーネツトま
たはその固溶体単結晶の製造法。 2 原料棒がイツトリウムアルミニウムガーネツ
トまたはその固溶体単結晶棒であり、これを再結
晶化させる特許請求の範囲第1項記載の方法。
[Claims] 1. A heating melting section is provided below the raw material rod, a seed crystal is provided below the melting section, and the raw material melts into the melting section,
In a single crystal manufacturing method using a floating zone method in which a crystal component is precipitated on a seed crystal to grow a single crystal, the raw material rod is melted into the molten zone and precipitated from it to produce yttrium aluminum garnet, or a mixture having components and component ratios that give a solid solution crystal thereof, the molten part is a high temperature liquid saturated with solid solution components of the same composition, and the seed crystal is yttrium aluminum garnet or a solid solution crystal thereof. When growing a single crystal, by insulating the area around the seed crystal and the part of the grown crystal close to the melting part, the temperature distribution of the seed crystal and the part of the grown crystal close to the melting part is adjusted to the crystal growth interface. 1. A method for producing a single crystal of yttrium aluminum garnet or a solid solution thereof, characterized in that the yttrium aluminum garnet or its solid solution single crystal is adjusted to be convex from a seed crystal toward a molten zone. 2. The method according to claim 1, wherein the raw material rod is a single crystal rod of yttrium aluminum garnet or a solid solution thereof, and the raw material rod is recrystallized.
JP57012968A 1982-01-29 1982-01-29 Preparation of single crystal from yttrium aluminum garnet (y3al5o12) or solid solution thereof Granted JPS58135200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57012968A JPS58135200A (en) 1982-01-29 1982-01-29 Preparation of single crystal from yttrium aluminum garnet (y3al5o12) or solid solution thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57012968A JPS58135200A (en) 1982-01-29 1982-01-29 Preparation of single crystal from yttrium aluminum garnet (y3al5o12) or solid solution thereof

Publications (2)

Publication Number Publication Date
JPS58135200A JPS58135200A (en) 1983-08-11
JPH0253397B2 true JPH0253397B2 (en) 1990-11-16

Family

ID=11820033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57012968A Granted JPS58135200A (en) 1982-01-29 1982-01-29 Preparation of single crystal from yttrium aluminum garnet (y3al5o12) or solid solution thereof

Country Status (1)

Country Link
JP (1) JPS58135200A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10229247A (en) * 1996-11-27 1998-08-25 Lucent Technol Inc Optical device
JP5919961B2 (en) * 2012-03-30 2016-05-18 宇部興産株式会社 Manufacturing method of ceramic composite
CN103553112B (en) * 2013-11-01 2016-01-20 东北大学 Stearate scorification prepares the method for YAG nano powder

Also Published As

Publication number Publication date
JPS58135200A (en) 1983-08-11

Similar Documents

Publication Publication Date Title
US5492079A (en) Process for producing rods or blocks of semiconductor material and an apparatus for carrying out the process
US4828595A (en) Process for the production of glass
EP0000720B1 (en) Process for producing single crystal of yttrium-iron garnet solid solution
JP5068753B2 (en) Dense block purification and production method
JPH107491A (en) High-purity single crystal copper and its production and production unit therefor
JPH0253397B2 (en)
CN105951171A (en) Preparation method of electron compound C12A7:e<-> single crystal
US3272591A (en) Production of single crystals from incongruently melting material
JP2636929B2 (en) Method for producing bismuth germanate single crystal
JP2734485B2 (en) Single crystal growth equipment
JPH1095699A (en) Growth of zirconium diboride single crystal
JPS5938192B2 (en) Manufacturing method of corundum single crystal that emits starry colors
JPH04219398A (en) Production of single crystalline silicon
JP2997761B2 (en) Method for producing rhenium diboride single crystal
JPS5938193B2 (en) Manufacturing method of corundum single crystal that emits starry colors
KR950006635B1 (en) METHOD OF PREPARATION LiTaO3 POWDER FOR GROWING SINGLE CRYSTAL
JPS60161388A (en) Growing method of single crystal
JPH06345583A (en) Method and device for producing single crystal
JPH0451498B2 (en)
JP2580523B2 (en) Growth method of titanium diboride single crystal
JPH04338191A (en) Production of single crystal
JP2997760B2 (en) Method for producing hafnium diboride single crystal
KR950011093B1 (en) Process and apparatus for producing refractory electric pole by inductive-heating
JP2997762B2 (en) Growth method of calcium hexaboride crystals
JPH11106283A (en) Susceptor for crucible