JPH1095699A - Growth of zirconium diboride single crystal - Google Patents

Growth of zirconium diboride single crystal

Info

Publication number
JPH1095699A
JPH1095699A JP26557496A JP26557496A JPH1095699A JP H1095699 A JPH1095699 A JP H1095699A JP 26557496 A JP26557496 A JP 26557496A JP 26557496 A JP26557496 A JP 26557496A JP H1095699 A JPH1095699 A JP H1095699A
Authority
JP
Japan
Prior art keywords
single crystal
sintered
growing
bar
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26557496A
Other languages
Japanese (ja)
Inventor
Shigeki Otani
茂樹 大谷
Yoshio Ishizawa
芳夫 石沢
Satoshi Takenouchi
智 竹之内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP26557496A priority Critical patent/JPH1095699A/en
Publication of JPH1095699A publication Critical patent/JPH1095699A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable the growth of ZrB2 single crystal of good quality, free from crystal defect (sub-boundary structure), by growing the crystal in a He gas atmosphere and specifying the melting zone composition and the growing speed, when ZrB2 single crystal is grown through the floating zone technique. SOLUTION: A ZrB2 powder and a B powder are mixed at a specific ratio, the powder is compressed into a bar and the bar is sintered under prescribed conditions to prepare a starting sintered bar 5. The sintered bar 5 is fixed through a holder 3 to the upper shaft 2, and through the holder 30 to the lower shaft 20 thereby fixing the sintered bar 8 for forming the initial melting zone. A sintered boron (B) is inserted between the sintered bar 8 and the starting sintered bar 5 and the sintered boron and its periphery are heated by the work coil with high-frequency current to form the melting band 6 and the melding zone is allowed to move downward between the upper shaft 2 to the lower shaft 20 thereby growing the single crystal 7. This process is carried out in an atmosphere of He gas, preferably at about 3-15 atmospheric pressure and the molecular ratio of B/Zr (atomic ratio) in the melting zone composition is set to about 1.5-2.8 and the growth rate is set to 3-10 cm/hour.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、二ホウ化ジルコ
ニウム単結晶の育成法に関するものである。さらに詳し
くは、この発明は、走査型電子顕微鏡や電子描画装置等
に利用される長寿命である高輝度電子放射材料等として
有用な二ホウ化ジルコニウム単結晶の育成法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing a zirconium diboride single crystal. More specifically, the present invention relates to a method for growing a single crystal of zirconium diboride useful as a long-lived high-brightness electron-emitting material used for a scanning electron microscope, an electron drawing apparatus, and the like.

【0002】[0002]

【従来の技術とその課題】従来より、二ホウ化ジルコニ
ウムは、融点が高く(3220℃)、仕事関数が比較的
低い(約3.6eV)ことから、長寿命である高輝度電
子放射材料として走査型電子顕微鏡や電子描画装置など
にその応用が期待されており、近年では、これら分野へ
の応用については、より純度の高い高品質な単結晶が求
められてもいる。
2. Description of the Related Art Conventionally, zirconium diboride has a high melting point (3220 ° C.) and a relatively low work function (about 3.6 eV), so that it has a long life and is a high-brightness electron emitting material. The application thereof is expected to a scanning electron microscope, an electron drawing apparatus, and the like. In recent years, for applications in these fields, a single crystal of higher purity and higher quality has been demanded.

【0003】従来、より純度の高い二ホウ化ジルコニウ
ム単結晶の育成法としては、育成温度が高く、不純物が
蒸発によって除去されるフローティング・ゾーン法が適
しているとされてきた。しかしながら、この従来のフロ
ーティングゾーン法では、育成速度を高速にすると、結
晶中に内包物が含有され、さらに、育成速度が雰囲気ガ
スの種類に大きく依存する等の問題点があった。
Hitherto, it has been considered that a floating zone method in which a growing temperature is high and impurities are removed by evaporation is suitable as a method of growing a higher purity zirconium diboride single crystal. However, in the conventional floating zone method, when the growth rate is increased, inclusions are included in the crystal, and further, the growth rate greatly depends on the type of the atmospheric gas.

【0004】そこで、この発明は、このような従来法の
欠点を解消し、フローティング・ゾーン法を用い、良質
で大型な二ホウ化ジルコニウム単結晶をより短時間で育
成することができる新しい方法を提供することを目的と
している。
Therefore, the present invention solves such a drawback of the conventional method, and provides a new method capable of growing a high-quality and large-sized zirconium diboride single crystal in a shorter time by using a floating zone method. It is intended to provide.

【0005】[0005]

【課題を解決するための手段】この発明は、上記の課題
を解決するものとして、フローティング・ゾーン法によ
る二ホウ化ジルコニウム単結晶(ZrB2 )の育成法で
あって、Heガスを雰囲気として、融帯組成B/Zr
(原子比)を1.5〜2.8程度とし、3〜10cm/
hr程度の育成速度で結晶を育成することを特徴とする
二ホウ化ジルコニウム単結晶の育成法を提供する(請求
項1)。
The present invention solves the above-mentioned problems by providing a method of growing a zirconium diboride single crystal (ZrB 2 ) by a floating zone method, wherein He gas is used as an atmosphere. Melt zone composition B / Zr
(Atomic ratio) of about 1.5 to 2.8 and 3 to 10 cm /
A method for growing a zirconium diboride single crystal, which comprises growing a crystal at a growth rate of about hr (claim 1).

【0006】さらにこの発明は、雰囲気ガスとして約3
〜15気圧のHeガスを用いること(請求項2)等の態
様をも提供する。
[0006] Further, the present invention relates to an atmosphere gas of about 3
An embodiment such as using He gas of up to 15 atm (claim 2) is also provided.

【0007】[0007]

【発明の実施の形態】この発明のフローティング・ゾー
ン法による二ホウ化ジルコニウム単結晶の育成法では、
特有の融帯組成とし、育成速度が2cm/hr程度まで
の従来の方法よりも高速度の3cm/hr以上の育成速
度とすることで、育成される二ホウ化ジルコニウム単結
晶には不純物が含まれず、さらには高速で育成すること
により、亜粒界の少ない良質な結晶が得られる。
BEST MODE FOR CARRYING OUT THE INVENTION In the method of growing a single crystal of zirconium diboride by the floating zone method of the present invention,
The zirconium diboride single crystal to be grown contains impurities by using a specific melting zone composition and a growth rate of 3 cm / hr or more, which is higher than the conventional method in which the growth rate is about 2 cm / hr. However, by growing at a high speed, a high-quality crystal with few sub-grain boundaries can be obtained.

【0008】添付した図面の図1は、この発明の二ホウ
化ジルコニウム単結晶の育成方法のための装置構成を例
示した概略図である。この図1に沿ってフローティング
・ゾーン法による単結晶の育成法について説明すると、
まず二ホウ化ジルコニウム粉末とホウ素粉末を所定比に
混合し、ラバープレス(2000kg/cm2 )により
圧粉棒を作製する。この圧粉棒を真空中または不活性ガ
ス中で千数百℃に加熱し、原料焼結棒(5)を作製す
る。この原料焼結棒(5)をホルダー(3)を介して上
軸(2)にセットし、下軸(20)には種結晶または初
期融帯形成用の焼結棒(8)をホルダー(30)を介し
てセットする。次に、原料焼結棒(5)と種結晶または
初期融帯形成用の焼結棒(8)との間に、初期融帯の組
成を制御するためのホウ素焼結体を挟む。次に、ホウ素
焼結体とその周辺を、ワークコイル(4)に高周波電流
を流し、試料に誘導電流を生じさせることで発生するジ
ュール熱によって加熱することで溶融させる。これによ
って、融帯(6)が形成され、上軸(2)と下軸(2
0)をゆっくりと下方に移動させて単結晶(7)を育成
する。
FIG. 1 of the accompanying drawings is a schematic view illustrating the configuration of an apparatus for growing a zirconium diboride single crystal of the present invention. A method for growing a single crystal by the floating zone method will be described with reference to FIG.
First, a zirconium diboride powder and a boron powder are mixed at a predetermined ratio, and a dust bar is prepared by a rubber press (2000 kg / cm 2 ). This powder bar is heated in vacuum or in an inert gas to a temperature of several hundreds of degrees Celsius to produce a raw material sintered rod (5). The raw material sintering rod (5) is set on the upper shaft (2) via the holder (3), and the lower shaft (20) is provided with a sintering rod (8) for forming a seed crystal or an initial melt zone. Set via 30). Next, a boron sintered body for controlling the composition of the initial molten zone is sandwiched between the raw material sintered rod (5) and the sintered rod (8) for forming the seed crystal or the initial molten zone. Next, the boron sintered body and its surroundings are melted by applying high frequency current to the work coil (4) and heating by Joule heat generated by generating an induced current in the sample. Thereby, a fusion zone (6) is formed, and the upper axis (2) and the lower axis (2) are formed.
0) is slowly moved downward to grow a single crystal (7).

【0009】このとき、下軸(20)の移動速度、すな
わち、結晶育成速度は、育成中、常に一定に保持する。
その範囲は3〜10cm/hr程度とする。なお、この
育成速度については、3cm/hr未満と育成速度が遅
いと育成時間が長くなり、融帯からの蒸発物が多量にワ
ークコイルに付着し、育成時間が長くなる程、育成が困
難になる。このため、単結晶としての品質は所定のもの
にならなくなる。一方、10cm/hrを超える場合、
特に、12cm/hrを越える場合にも、単結晶の品質
が所定のものにならない。
At this time, the moving speed of the lower shaft (20), that is, the crystal growing speed is always kept constant during the growing.
The range is about 3 to 10 cm / hr. As for the growth rate, if the growth rate is lower than 3 cm / hr, the growth time will be longer if the growth rate is slow, and a large amount of evaporate from the fusible zone will adhere to the work coil. Become. For this reason, the quality as a single crystal does not become predetermined. On the other hand, if it exceeds 10 cm / hr,
In particular, even when the speed exceeds 12 cm / hr, the quality of the single crystal does not become the predetermined quality.

【0010】このため、この発明では、その育成速度は
3〜10cm/hr程度とする。実際には、後述のよう
に、融帯組成B/Zr(原子比)や、Heガス圧等によ
っても異なるが、育成速度は、3〜10cm/hr、さ
らには4〜10cm/hr程度とするのが好ましい。そ
して、融帯組成B/Zr(原子比)については、この発
明では、良質な単結晶の高速度での育成を可能とするた
めに、略1.5〜2.8程度とする。
[0010] For this reason, in the present invention, the growth rate is about 3 to 10 cm / hr. Actually, as will be described later, the growth rate is about 3 to 10 cm / hr, and further about 4 to 10 cm / hr, although it differs depending on the melt zone composition B / Zr (atomic ratio), He gas pressure, and the like. Is preferred. In the present invention, the melt zone composition B / Zr (atomic ratio) is set to approximately 1.5 to 2.8 in order to enable high-quality single crystal to be grown at a high speed.

【0011】また、上軸(2)の移動速度、すなわち、
原料焼結棒(5)の融帯(6)への供給速度は、原料焼
結棒(5)の密度が低いため、それを補償して原料焼結
棒(5)とほぼ同じ直径の単結晶が育成されるように設
定する。また、雰囲気ガスとしてはHeガスを用いる
が、これはワークコイル(4)で発生する放電を防止
し、育成時の融帯からの蒸発を抑制するものである。
The moving speed of the upper shaft (2), that is,
The feed rate of the raw material sintering rod (5) to the fusible zone (6) is compensated for by the low density of the raw material sintering rod (5), and the feed rate of the raw material sintering rod (5) is almost the same as the raw material sintering rod (5). It is set so that a crystal is grown. In addition, He gas is used as the atmosphere gas, which prevents discharge generated in the work coil (4) and suppresses evaporation from the molten zone during growth.

【0012】雰囲気ガスの種類と育成速度への影響につ
いて調べるため、定比組成をもつ原料焼結棒(5)によ
り、不活性ガスのうちのHeとAr雰囲気での育成速度
と結晶性の関係をみると、融帯組成(B/Zr原子比)
が1.5で、Heガスの雰囲気では3cm/hrの育成
速度においても、内包物を含まない良質な単結晶が得ら
れたのに対し、Ar雰囲気では2cm/hr以上の育成
速度では結晶内に内包物が観察される。
In order to investigate the effect of the type of the atmosphere gas on the growth rate, the relationship between the growth rate and the crystallinity in an inert gas atmosphere of He and an inert gas was measured using a raw material sintering rod (5) having a stoichiometric composition. Looking at the melt zone composition (B / Zr atomic ratio)
Was 1.5, and a high-quality single crystal containing no inclusions was obtained even at a growth rate of 3 cm / hr in an atmosphere of He gas. Inclusions are observed.

【0013】この結果から、Heガスを雰囲気ガスとし
て用いると、育成速度を50%以上高速化することが明
らかになる。これは、Heガスが大きな冷却効果を有す
ることから、融帯中の温度分布を不均一化させ、対流を
激しくさせたため融液内が激しく攪拌されたためと推測
される。Heガス雰囲気における融帯組成の結晶育成速
度への影響を調べると、たとえばHeガス雰囲気下で
は、結晶中に内包物が含有される育成条件は図2のよう
に例示される。図中の×は内包物を含む場合であり、○
は内包物を含まない場合である。
From these results, it is apparent that the growth rate is increased by 50% or more when He gas is used as the atmospheric gas. This is presumably because the He gas has a large cooling effect, so that the temperature distribution in the melt zone was made uneven and the convection was increased, so that the melt was vigorously stirred. When examining the influence of the melt zone composition on the crystal growth rate in a He gas atmosphere, for example, in a He gas atmosphere, growth conditions in which inclusions are included in the crystal are illustrated as in FIG. X in the figure indicates the case including inclusions, and ○
Is the case without inclusions.

【0014】この図2に示されるように、融帯組成が定
比組成付近(B/Zr=2)においては、育成速度が1
0cm/hr以上であっても、内包物を含有しない結晶
を育成することができる。しかしながら、10cm/h
rを超えて高速にすると、得られる結晶に亜粒界が含ま
れることがあり、良質結晶育成の再現性が低下する。し
たがって、好ましくは10cm/hr以下である。
As shown in FIG. 2, when the melt zone composition is near the stoichiometric composition (B / Zr = 2), the growth rate is 1
Even at 0 cm / hr or more, it is possible to grow a crystal containing no inclusions. However, 10cm / h
If the speed is higher than r, the obtained crystals may contain sub-grain boundaries, and the reproducibility of growing good quality crystals is reduced. Therefore, it is preferably 10 cm / hr or less.

【0015】また、融帯組成がホウ素過剰側にずれた場
合(すなわち、B/Zr>2)には、ジルコニウム過剰
側にずれた場合(すなわち、B/Zr<2)に比べ、ホ
ウ素過剰側にずれると原子量の小さなホウ素がフラック
ス(溶剤)となることで、成長界面直前の境界層中の拡
散が容易であり、育成速度をそれほど急に下げる必要が
ないこともわかる。
When the melt zone composition shifts toward the excess boron side (ie, B / Zr> 2), the composition shifts toward the zirconium excess side (ie, B / Zr <2). It can also be seen that since boron having a small atomic weight becomes a flux (solvent) when it shifts to, diffusion in the boundary layer immediately before the growth interface is easy, and it is not necessary to reduce the growth rate so rapidly.

【0016】さらに、融帯組成(B/Zr原子比)が
1.5〜2.8の範囲においては、従来の方法による育
成速度(3cm/hr程度まで)よりも高速な育成速度
(3cm/hr以上)が可能である。化合物結晶を育成
する場合、一般には、育成速度が2cm/h以下である
が、ZrB2 結晶の育成においては、10cm/hrの
高速での育成も可能になる。これは、育成温度が320
0℃と高いことから融液中の原子の動きが活発なことも
影響していると考えられる。
Further, when the melt zone composition (B / Zr atomic ratio) is in the range of 1.5 to 2.8, the growth rate (3 cm / hr) is higher than the growth rate by the conventional method (up to about 3 cm / hr). hr or more) is possible. When growing compound crystals, the growth rate is generally 2 cm / h or less, but ZrB 2 crystals can be grown at a high speed of 10 cm / hr. This is because the growth temperature is 320
Since the temperature is as high as 0 ° C., it is considered that the active movement of atoms in the melt also has an effect.

【0017】なお、Heガスの圧力については、厳密で
はないが、通常は15気圧以下、さらには3〜15気圧
程度が考慮される。雰囲気ガスには、融帯からの蒸発を
抑制する作用があり、雰囲気圧が低いと蒸発が充分に抑
制できず、ワークコイルに多量の蒸発物が付着し、長時
間の育成が困難になる。Heガスの場合には、3気圧未
満のもとでは30分間の融帯保持も難しく、実際の結晶
育成には適していない。また、15気圧を超えて雰囲気
圧を高くすることには、結晶育成上の意味はなく、効果
において変わらない。
Although the pressure of the He gas is not strict, it is usually considered that the pressure is not more than 15 atm, more preferably about 3 to 15 atm. Atmospheric gas has a function of suppressing evaporation from the melt zone. If the atmospheric pressure is low, evaporation cannot be sufficiently suppressed, and a large amount of evaporant adheres to the work coil, making it difficult to grow for a long time. In the case of He gas, it is difficult to maintain the melt zone for 30 minutes under less than 3 atm, and it is not suitable for actual crystal growth. In addition, increasing the atmospheric pressure beyond 15 atm has no meaning in crystal growth, and does not change the effect.

【0018】なお、Heガスに代えて、Ar、Ne、X
e等の他の不活性ガスの使用も考えられるが、Arの場
合には、前述したように、育成速度が遅くなり、雰囲気
ガスとして最適でない。また他のガスでは、その効果は
充分でなく、また、その入手、コストを考えても実現的
ではない。
In place of He gas, Ar, Ne, X
The use of another inert gas such as e may be considered, but in the case of Ar, the growth rate is slow, as described above, and is not optimal as an atmosphere gas. In addition, the effect of other gases is not sufficient, and it is not feasible considering the availability and cost.

【0019】以下、実施例を示してさらに詳しくこの発
明の二ホウ化ジルコニウムの単結晶の育成法について説
明する。
Hereinafter, the method for growing a single crystal of zirconium diboride of the present invention will be described in more detail with reference to examples.

【0020】[0020]

【実施例】図1に示した育成装置を用い、二ホウ化ジル
コニウム単結晶を以下の通り育成した。二ホウ化ジルコ
ニウム粉末にホウ素粉末をB/Zr=2.1になるよう
に添加混合した後、直径10mmのゴム袋詰めて円柱状
に成形した。これを2000kg/cm2 のラバープレ
スを行い圧粉体を得た。この圧粉体を真空中で1700
℃で加熱し、直径9mm、長さ150mm程度の原料焼
結体(5)を得た。この原料焼結体(5)の密度は約6
0%であった。
EXAMPLE A zirconium diboride single crystal was grown as follows using the growing apparatus shown in FIG. After adding and mixing boron powder to zirconium diboride powder so that B / Zr = 2.1, it was packed in a rubber bag having a diameter of 10 mm and formed into a cylindrical shape. This was subjected to a rubber press of 2000 kg / cm 2 to obtain a green compact. This green compact is vacuumed to 1700
C. to obtain a raw material sintered body (5) having a diameter of 9 mm and a length of about 150 mm. The density of the raw material sintered body (5) is about 6
It was 0%.

【0021】この原料焼結棒(5)を図1に示すように
育成炉の上軸(2)にホルダー(3)を介して固定し、
下軸(20)にはホルダー(3)を介して二ホウ化ジル
コニウム焼結体を固定した。育成炉に6気圧のHeガス
を充填した後、ワークコイル(4)(内径16mm、3
巻2段)によりホウ素焼結体とその周辺部を溶融し初期
融帯を形成し、9cm/hの速度で下方に移動させ、全
長6cm、直径0.9cmの単結晶を育成した。結晶組
成B/Zr=2.0であった。その際、融帯組成は、B
/Zr=2.0であった。
As shown in FIG. 1, the raw material sintering rod (5) is fixed to the upper shaft (2) of the growing furnace via a holder (3).
A zirconium diboride sintered body was fixed to the lower shaft (20) via a holder (3). After filling the growth furnace with 6 atm of He gas, the work coil (4) (inner diameter 16 mm, 3
The boron sintered body and its peripheral portion were melted by a two-step winding to form an initial melt zone, and were moved downward at a speed of 9 cm / h to grow a single crystal having a total length of 6 cm and a diameter of 0.9 cm. The crystal composition B / Zr was 2.0. At that time, the melt zone composition is B
/Zr=2.0.

【0022】単結晶のインクリュージョンについて、結
晶終端部から(1120)面を切り出し、鏡面研磨の
後、エッチング(硝酸:フッ酸:水=1:1:2の液で
数分程度)して顕微鏡観察を行った。上記の結晶は、厚
さ1mmの多結晶の皮で覆われるが、中心部にはインク
リュージョンは全く含まれず、さらに亜粒界を含まない
良質結晶であることを確認した。
With respect to the single crystal inclusion, the (1120) plane is cut out from the crystal end portion, mirror-polished, and then etched (for about several minutes with a liquid of nitric acid: hydrofluoric acid: water = 1: 1: 2). Microscopic observation was performed. The above crystal was covered with a 1 mm-thick polycrystalline skin, but it was confirmed that the crystal was a good quality crystal without any inclusion at the center and no subgrain boundaries.

【0023】[0023]

【発明の効果】この発明により、以上詳しく説明したと
おり、結晶欠陥(亜粒界)を含まない良質な二ホウ化ジ
ルコニウム単結晶を高速育成して得られる。これによ
り、二ホウ化ジルコニウム単結晶を長寿命な高輝度電子
放射材料として利用することが可能となる。
According to the present invention, as described in detail above, a high-quality zirconium diboride single crystal containing no crystal defects (sub-grain boundaries) can be grown at a high speed. This makes it possible to use the zirconium diboride single crystal as a long-lived high-brightness electron-emitting material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の二ホウ化ジルコニウム単結晶の育成
のための装置を例示した概略図である。
FIG. 1 is a schematic view illustrating an apparatus for growing a zirconium diboride single crystal of the present invention.

【図2】Heガス雰囲気における結晶中に内包物が含有
する育成条件を示した図である。×は内包物を含む場合
であり、○は内包物を含まない場合である。
FIG. 2 is a view showing growth conditions in which inclusions are contained in crystals in a He gas atmosphere. X indicates a case including inclusions, and o indicates a case not including inclusions.

【符号の説明】[Explanation of symbols]

1 上軸駆動部 10 下軸駆動部 2 上軸 20 下軸 3 ホルダー 30 ホルダー 4 ワークコイル 5 原料焼結棒 6 融帯 7 単結晶 8 種結晶または初期融帯形成用の焼結棒 DESCRIPTION OF SYMBOLS 1 Upper shaft drive part 10 Lower shaft drive part 2 Upper shaft 20 Lower shaft 3 Holder 30 Holder 4 Work coil 5 Raw material sintering rod 6 Fusion zone 7 Single crystal 8 Seed crystal or sintering rod for initial fusion zone formation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 フローティング・ゾーン法による二ホウ
化ジルコニウム単結晶(ZrB2 )の育成法であって、
Heガスを雰囲気として、融帯組成B/Zr(原子比)
を1.5〜2.8程度とし、3〜10cm/hr程度の
育成速度で結晶を育成することを特徴とする二ホウ化ジ
ルコニウム単結晶の育成法。
1. A method for growing a single crystal of zirconium diboride (ZrB 2 ) by a floating zone method,
Melt zone composition B / Zr (atomic ratio) with He gas as atmosphere
And growing the crystal at a growth rate of about 3 to 10 cm / hr. 2. A method for growing a zirconium diboride single crystal, comprising:
【請求項2】 約3〜15気圧のHeガスを雰囲気とし
て用いる請求項1の二ホウ化ジルコニウム単結晶の育成
法。
2. The method of growing a zirconium diboride single crystal according to claim 1, wherein a He gas at about 3 to 15 atm is used as an atmosphere.
JP26557496A 1996-09-13 1996-09-13 Growth of zirconium diboride single crystal Pending JPH1095699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26557496A JPH1095699A (en) 1996-09-13 1996-09-13 Growth of zirconium diboride single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26557496A JPH1095699A (en) 1996-09-13 1996-09-13 Growth of zirconium diboride single crystal

Publications (1)

Publication Number Publication Date
JPH1095699A true JPH1095699A (en) 1998-04-14

Family

ID=17419014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26557496A Pending JPH1095699A (en) 1996-09-13 1996-09-13 Growth of zirconium diboride single crystal

Country Status (1)

Country Link
JP (1) JPH1095699A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003104800A (en) * 2001-09-28 2003-04-09 National Institute For Materials Science Boride single crystal, substrate for forming semiconductor, and its manufacturing method
JP2005154233A (en) * 2003-11-28 2005-06-16 Kyocera Corp Manufacturing method of diboride single crystal
EP1749905A1 (en) 2005-07-26 2007-02-07 Kyocera Corporation Method for manufacturing boride single crystal and substrate
JP2009173512A (en) * 2007-12-27 2009-08-06 National Institute For Materials Science ZIRCONIUM DIBORIDE (ZrB2) SINGLE CRYSTAL, METHOD FOR GROWING THE SAME, AND SUBSTRATE FOR FORMING SEMICONDUCTOR
JP4515674B2 (en) * 2001-09-11 2010-08-04 独立行政法人物質・材料研究機構 Boride single crystal and substrate for semiconductor formation

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4515674B2 (en) * 2001-09-11 2010-08-04 独立行政法人物質・材料研究機構 Boride single crystal and substrate for semiconductor formation
JP2003104800A (en) * 2001-09-28 2003-04-09 National Institute For Materials Science Boride single crystal, substrate for forming semiconductor, and its manufacturing method
JP4538619B2 (en) * 2001-09-28 2010-09-08 独立行政法人物質・材料研究機構 Boride single crystal, semiconductor forming substrate and method for manufacturing the same
JP2005154233A (en) * 2003-11-28 2005-06-16 Kyocera Corp Manufacturing method of diboride single crystal
JP4518782B2 (en) * 2003-11-28 2010-08-04 京セラ株式会社 Method for producing diboride single crystal
EP1749905A1 (en) 2005-07-26 2007-02-07 Kyocera Corporation Method for manufacturing boride single crystal and substrate
JP2009173512A (en) * 2007-12-27 2009-08-06 National Institute For Materials Science ZIRCONIUM DIBORIDE (ZrB2) SINGLE CRYSTAL, METHOD FOR GROWING THE SAME, AND SUBSTRATE FOR FORMING SEMICONDUCTOR

Similar Documents

Publication Publication Date Title
US8231727B2 (en) Crystal growth apparatus and method
JP2004262684A (en) METHOD FOR GROWING BETA-Ga2O3 SINGLE CRYSTAL
US9732436B2 (en) SiC single-crystal ingot, SiC single crystal, and production method for same
JP4252300B2 (en) Method for producing compound semiconductor single crystal and crystal growth apparatus
JPH1095699A (en) Growth of zirconium diboride single crystal
JPH0244798B2 (en)
JP3755021B2 (en) Growth method of rare earth hexaboride single crystals
WO2011043777A1 (en) Crystal growth apparatus and method
JP2949212B2 (en) Growth method of lanthanum hexaboride single crystal
JP2997760B2 (en) Method for producing hafnium diboride single crystal
JP2730674B2 (en) Growth method of rare earth hexaboride single crystals
JP2580523B2 (en) Growth method of titanium diboride single crystal
JP3152322B2 (en) Twinless (Nd, La) GaO3 single crystal and method for producing the same
JP2019104661A (en) METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL
JP2997762B2 (en) Growth method of calcium hexaboride crystals
JP2642882B2 (en) Growth method of tungsten diboride single crystal
JPH0524992A (en) Method for growing lanthanum hexaboride single crystal
JP2929007B1 (en) Method for growing single crystal of group Va diboride
JP4515674B2 (en) Boride single crystal and substrate for semiconductor formation
JPH05319991A (en) Method for growing lanthanum hexaboride single crystal
JP5218960B2 (en) Zirconium diboride (ZrB2) single crystal growth method and semiconductor forming substrate
JPH0253397B2 (en)
JPH0867593A (en) Method for growing single crystal
JP4766375B2 (en) Boride single crystal, method for producing the same, and substrate for semiconductor growth using the same
JP2997761B2 (en) Method for producing rhenium diboride single crystal