JP4518782B2 - Method for producing diboride single crystal - Google Patents

Method for producing diboride single crystal Download PDF

Info

Publication number
JP4518782B2
JP4518782B2 JP2003398793A JP2003398793A JP4518782B2 JP 4518782 B2 JP4518782 B2 JP 4518782B2 JP 2003398793 A JP2003398793 A JP 2003398793A JP 2003398793 A JP2003398793 A JP 2003398793A JP 4518782 B2 JP4518782 B2 JP 4518782B2
Authority
JP
Japan
Prior art keywords
single crystal
crystal
melt
growth
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003398793A
Other languages
Japanese (ja)
Other versions
JP2005154233A (en
Inventor
峯男 磯上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003398793A priority Critical patent/JP4518782B2/en
Publication of JP2005154233A publication Critical patent/JP2005154233A/en
Application granted granted Critical
Publication of JP4518782B2 publication Critical patent/JP4518782B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、GaNを含む単結晶(GaN系単結晶)をエピタキシャル成長させるための基板に使用される二ホウ化物単結晶の製造方法に関する。   The present invention relates to a method for producing a diboride single crystal used for a substrate for epitaxial growth of a single crystal containing GaN (GaN-based single crystal).

従来、GaN系半導体のエピタキシャル成長用基板としては種々の基板材料が用いられてきた。これまで一般的に広く使用されてきたエピタキシャル成長用基板の材料はサファイアである。この理由は、サファイアは高価ではあるが、入手し易く、透明性があり発光ダイオード(LED)への応用の場合、発光に有利であること、また、デバイスのプロセス条件下で耐熱性や耐薬品性に優れているためである。   Conventionally, various substrate materials have been used as substrates for epitaxial growth of GaN-based semiconductors. The material of the substrate for epitaxial growth which has been generally used so far is sapphire. The reason for this is that sapphire is expensive but easily available, transparent and advantageous for light emission when applied to light emitting diodes (LEDs), and is resistant to heat and chemicals under device process conditions. It is because it is excellent in property.

ところが、サファイアはGaN単結晶との格子不整合が約14%近くもあり、高効率なLEDや半導体レーザーダイオード(LD)への使用には十分とはいえない。   However, sapphire has a lattice mismatch of about 14% with a GaN single crystal and is not sufficient for use in highly efficient LEDs and semiconductor laser diodes (LDs).

そこで、高品質なGaN単結晶のエピタキシャル膜を成長させるために、格子整合性の高いSiCなどの新材料が開発されつつある。その中でも、最近、ZrBなどの二ホウ化物材料は、格子整合性が極めて優れ、かつ熱伝導率にも優れることから注目を集めている(例えば、特許文献1等を参照。)。
特開2002−348200号公報
Therefore, in order to grow a high-quality GaN single crystal epitaxial film, a new material such as SiC having high lattice matching is being developed. Among them, recently, diboride materials such as ZrB 2 have attracted attention because they are extremely excellent in lattice matching and excellent in thermal conductivity (see, for example, Patent Document 1).
JP 2002-348200 A

二ホウ化物系材料はいずれの組成でも2500℃を超える非常に高い融点を持つため、るつぼの制約上、これらの結晶成長はるつぼを使用する最もポピュラーなチョクラルスキー(CZ)法が適用できない。そのため、これらの結晶成長はるつぼを用いないフローティングゾーン(FZ)法またはベルヌーイ法の適用が考えられ、研究レベルでは高周波加熱方式によるFZ法が用いられている。   Since diboride-based materials have a very high melting point exceeding 2500 ° C. in any composition, the most popular Czochralski (CZ) method using a crucible cannot be applied to the crystal growth due to crucible restrictions. Therefore, the floating zone (FZ) method or the Bernoulli method without using a crucible can be considered for the crystal growth, and the FZ method by the high frequency heating method is used at the research level.

しかしながら、この育成方法では一般的に結晶の大型化に難点がある。例えばFZ法が最も確立されているSi単結晶の場合においても、CZ法では12インチまでの大口径化が進んでいるのに対して、FZ法では6インチ止まりである。さらに、Si単結晶以外の酸化物や非酸化物系単結晶の場合で、結晶径が2インチを超えるような場合は、熱伝導性が一般に小さいため、完全に融帯を形成するには表面加熱温度は融点をはるかに超えてしまい、融帯の保持や組成成分の維持が困難となり、大型化はさらに困難になる。このように、従来のFZ法による二ホウ化物系単結晶の育成は、大型化には限界があった。   However, this growing method generally has difficulty in increasing the size of crystals. For example, even in the case of a Si single crystal in which the FZ method is most established, the diameter is increased to 12 inches in the CZ method, whereas it is only 6 inches in the FZ method. Furthermore, in the case of an oxide other than Si single crystal or a non-oxide single crystal, if the crystal diameter exceeds 2 inches, the thermal conductivity is generally small. The heating temperature far exceeds the melting point, making it difficult to maintain the melt zone and to maintain the composition components, and further increase the size. As described above, the growth of the diboride single crystal by the conventional FZ method has a limit in increasing the size.

本発明の目的は、二ホウ化物系単結晶の大型化結晶成長技術を提供することにある。また、本発明の他の目的は、GaN系単結晶のエピタキシャル膜を成長させるための二ホウ化物系大型単結晶基板を提供することにある。   An object of the present invention is to provide a technology for growing a large crystal of a diboride single crystal. Another object of the present invention is to provide a diboride large single crystal substrate for growing a GaN single crystal epitaxial film.

上記の目的を達成するために、本発明の二ホウ化物系単結晶の製造方法は、液冷式るつぼ内に設けた化学式XB(但し、XはZr、Hf、Ti、W、Mo、Crの少なくとも1種を含む)からなる原料に、前記原料に含まれるZr、Hf、Ti、W、Mo、Crのいずれかの金属単体を添加する原料準備工程と、前記原料および前記金属単体を高周波加熱により融解して融液とする融液形成工程と、前記液冷式るつぼと接する部分に前記融液が固化した固化部分を形成し、前記固化部分に囲まれた前記融液を冷却することにより単結晶化させる単結晶育成工程と、を有することを特徴とする。 In order to achieve the above object, the method for producing a diboride single crystal according to the present invention has the chemical formula XB 2 (where X is Zr, Hf, Ti, W, Mo, Cr) provided in a liquid-cooled crucible. a raw material consisting of comprising) at least one, Zr contained in the raw material, Hf, Ti, W, Mo , and the raw material preparation step of addition of either single metal Cr, the raw material and the single metal high frequency Forming a melt by heating to form a melt; forming a solidified portion where the melt is solidified in a portion in contact with the liquid-cooled crucible; and cooling the melt surrounded by the solidified portion. And a single crystal growing step for single crystallization by the method.

また、上記融液から直径が2インチ以上の単結晶を育成することを特徴とする。In addition, a single crystal having a diameter of 2 inches or more is grown from the melt.

こで、前記原料は、特にGaN系単結晶の薄膜成長に好適な化学式XB(但し、XはZr,Hf,Ti,W,Mo,Crのうちから選択された1種以上元素を含む)の材料から構成されており、原料が金属単体を含むため、高周波誘導加熱により直接加熱され溶解するとともに、溶解した融体は熱伝導性の良い液冷されたるつぼ内で保持される。そして液冷されたるつぼに接した融体部分は融解せずに残り、固化部分がそれ自身でいわば2重るつぼの役割を果たすことになると同時に、液冷るつぼの高温化を抑制する。従って育成結晶が2500℃以上の超高融点結晶であっても、従来のようなるつぼ中での結晶育成と同様な結晶育成が可能となり、大型結晶の育成が可能となる。 In here, the raw material is particularly preferred formula XB 2 thin film growth of GaN-based single crystal (where, X is comprises Zr, Hf, Ti, W, Mo, one or more elements selected from among Cr Since the raw material contains a single metal, it is directly heated and melted by high-frequency induction heating, and the melted melt is held in a liquid-cooled crucible with good thermal conductivity. The melted portion in contact with the liquid-cooled crucible remains unmelted, and the solidified portion itself functions as a double crucible, and at the same time, suppresses the temperature rise of the liquid-cooled crucible. Therefore, even if the grown crystal is an ultra-high melting point crystal of 2500 ° C. or higher, crystal growth similar to the conventional crystal growth in the crucible becomes possible, and a large crystal can be grown.

本発明の二ホウ化物単結晶の製造方法は、特に液冷式のるつぼ内に設けた原料を高周波加熱により融解して融液とし、この融液を冷却して単結晶化することを特徴とする。このようなるつぼの強制冷却により、融帯の表面温度を低く抑えることができ、表面温度が高くなりすぎることを極力防止できるので、結晶成長プロセスにおいて非常に安定した二ホウ化物系大型単結晶の育成が可能となる。また、ブリッジマン法、引き上げ法、TSSG法なども必要に応じて適用可能であり汎用性の高い大型化結晶成長技術を提供できる。   The method for producing a diboride single crystal of the present invention is characterized in that, in particular, a raw material provided in a liquid-cooled crucible is melted by high-frequency heating to form a melt, and the melt is cooled to form a single crystal. To do. Such forced cooling of the crucible makes it possible to keep the surface temperature of the melt zone low and to prevent the surface temperature from becoming too high, so that a very stable diboride-type large single crystal in the crystal growth process can be obtained. Training is possible. In addition, the Bridgman method, the pulling method, the TSSG method, and the like can be applied as necessary, and a highly versatile large crystal growth technique can be provided.

また、液冷式のるつぼの底部に二ホウ化物単結晶からなる種子結晶を配設し、この種子結晶上に原料を配設して、この原料を高周波加熱により融解して融液とし、るつぼの強制冷却によりこの融液を冷却して、前記種子結晶上に単結晶を育成することを特徴とするので、上記二ホウ化物系大型単結晶の育成技術を提供できるほか、結晶性のきわめて優れた単結晶を育成でき、これにより、GaN系単結晶の薄膜成長の際に基板のソリや成長膜の歪が小さくなり、より高品質で大口径のGaN系単結晶のエピタキシャル成長用基板を提供できる。   In addition, a seed crystal composed of a diboride single crystal is disposed at the bottom of a liquid-cooled crucible, and a raw material is disposed on the seed crystal, and the raw material is melted by high-frequency heating to form a melt. The melt is cooled by forced cooling to grow a single crystal on the seed crystal, so that it is possible to provide a growth technique for the above-mentioned diboride-type large single crystal as well as extremely excellent crystallinity. This makes it possible to grow a high-quality, large-diameter GaN-based single crystal epitaxial growth substrate by reducing the warpage of the substrate and the distortion of the growth film during the growth of the GaN-based single crystal thin film. .

さらに、前記るつぼ内に、前記原料として金属単体を含んでいることを特徴とするので、特にGaN系単結晶のエピタキシャル成長に好適な単結晶を育成するために、例えば、原料が化学式XB(但し、XはZr,Hf,Ti,W,Mo,Crの少なくとも1種を含む)の材料からなるものとするとよい。さらに、高周波誘導に効果的な同種の金属単体を含んでいるようにする。これにより、前記化学式XBの材料からなる二ホウ化物単結晶は、その格子定数がGaN系単結晶のそれと非常に近いため、格子ミスマッチが従来のサファイア等に比較して著しく小さいため、GaN系単結晶の薄膜成長の際に基板のソリや成長膜の歪が小さくなり、より高品質で大口径のGaN系単結晶のエピタキシャル成長用基板を提供できる。さらに、金属単体を含むことにより、誘導加熱がまずこの金属単体に集中することで金属周辺の原料が溶け、続いて融体に高周波が誘導されて全体が溶けることになるため、融解の効率が向上し、生産性の優れた二ホウ化物単結晶の製造方法を提供することができる。 Further, in the crucible, so characterized that it contains the elemental metal as the raw material, in particular for growing a suitable single crystal for epitaxial growth of GaN-based single crystal, for example, raw material chemical formula XB 2 (where X is preferably made of a material of at least one of Zr, Hf, Ti, W, Mo, and Cr. Furthermore, the same kind of simple metal effective for high frequency induction is included. As a result, the diboride single crystal made of the material of the chemical formula XB 2 has a lattice constant very close to that of the GaN single crystal, so the lattice mismatch is significantly smaller than that of conventional sapphire, etc. When the single crystal thin film is grown, the warp of the substrate and the distortion of the growth film are reduced, and a substrate for epitaxial growth of a GaN-based single crystal with higher quality and larger diameter can be provided. Furthermore, by including a single metal, the induction heating concentrates on this single metal first, so that the raw materials around the metal are melted, and then the high frequency is induced in the melt and the whole melts. It is possible to provide a method for producing a diboride single crystal that is improved and has excellent productivity.

以下に、本発明の二ホウ化物単結晶の製造方法について説明する。本発明による育成炉の断面構造の模式図を図1に示す。   Below, the manufacturing method of the diboride single crystal of this invention is demonstrated. A schematic diagram of a cross-sectional structure of a growth furnace according to the present invention is shown in FIG.

育成炉の構造は高周波誘導加熱方式であり、誘導コイル100の内側に石英管200が設置され、石英管200の内部に強制冷却が可能な冷却効果の高い水冷式るつぼなどの液冷るつぼ300が配置されている。   The structure of the growth furnace is a high-frequency induction heating method, and a quartz tube 200 is installed inside the induction coil 100, and a liquid-cooled crucible 300 such as a water-cooled crucible with high cooling effect capable of forced cooling is provided inside the quartz tube 200. Is arranged.

ここで、液冷るつぼ300はさらに冷却効果を高めるために、熱伝導性の良いかつ加工性に富む金属材料、例えば銅などが使用される。液冷るつぼ300は耐熱絶縁支持台600上に配置される。耐熱絶縁支持台600は、セラミック材料からマグネシアやジルコ二アなど適宜選択できる。加熱により原料が溶解し、融体400が形成されると、液冷るつぼ300に接した部分は融解せずに残り、やがて固化部分500が生成する。この段階で、しばらく融体400を保持した後、一定の冷却速度で融体400を徐冷し、結晶化を行なう。徐冷速度はあまり速いと気泡の混入の原因となる。   Here, in order to further enhance the cooling effect, the liquid-cooled crucible 300 uses a metal material having good thermal conductivity and high workability, such as copper. The liquid-cooled crucible 300 is disposed on the heat-resistant insulating support base 600. The heat-resistant insulating support base 600 can be appropriately selected from ceramic materials such as magnesia and zirconia. When the raw material is melted by heating and the melt 400 is formed, the portion in contact with the liquid-cooled crucible 300 remains without being melted, and the solidified portion 500 is eventually formed. At this stage, after the melt 400 is held for a while, the melt 400 is gradually cooled at a constant cooling rate to perform crystallization. If the slow cooling rate is too high, bubbles may be mixed.

また、原料は化学式XB(但し、XはZr,Hf,Ti,W,Mo,Crの少なくとも1種を含む)の材料からなり、成長結晶と同種の金属単体を含んでも良い。これは金属単体を含むことにより、誘導加熱がまずこの金属単体に集中することで金属周辺の原料が溶け、続いて融体に高周波が誘導されて全体が溶けることになるため、融解の効率が向上するためである。 The raw material is made of a material of the chemical formula XB 2 (where X includes at least one of Zr, Hf, Ti, W, Mo, and Cr), and may contain a single metal of the same type as the grown crystal. This is because the inclusion of a single metal causes the induction heating to first concentrate on this single metal, so that the raw material around the metal melts, and then the high frequency is induced in the melt and the whole melts. It is for improving.

本発明の基板結晶材料として二ホウ化物を挙げたのは、この材料がいずれも高融点,高強度,高硬度を有する非常に安定した材料であり、かつサファイアと比較して熱伝導率が比較的高く、電気伝導性も良好なものが多いからである。このため、基板を電極として使用することが可能で、半導体膜に垂直に電気を流す発光素子や電力制御素子を作製する場合に簡単な構造となり、製造プロセスが簡単になる利点がある。特に熱の放散性に優れた大出力素子の基板として優れた特性が期待できる。さらに加えて、上記化学式XBの材料は、GaNとの格子ミスマッチの比較的小さい物質、具体的にはサファイアの格子ミスマッチの約1/2以下のものを選定した。 Diboride was cited as the substrate crystal material of the present invention, all of which are highly stable materials having a high melting point, high strength, and high hardness, and a thermal conductivity compared with sapphire. This is because many of them have high electrical conductivity and good electrical conductivity. For this reason, it is possible to use the substrate as an electrode, and there is an advantage that the manufacturing process is simplified when a light-emitting element or a power control element that flows electricity perpendicularly to the semiconductor film is manufactured. In particular, excellent characteristics can be expected as a substrate for a high-power element having excellent heat dissipation. In addition, the material of the above formula XB 2 was selected from a material having a relatively small lattice mismatch with GaN, specifically, about 1/2 or less of the lattice mismatch of sapphire.

ちなみにZrBは格子定数で0.6%、熱膨張率で5%の違いで、GaNと良い一致を示す。これにより、欠陥密度の小さい高品質エピタキシャル膜成長が可能となる。 Incidentally, ZrB 2 shows a good agreement with GaN with a difference of 0.6% in lattice constant and 5% in coefficient of thermal expansion. Thereby, high quality epitaxial film growth with a low defect density is possible.

このように本発明における製造方法では高融点,高強度,高硬度な特性を有する二ホウ化物系単結晶の結晶成長が非常に安定した状態で行なえ、かつ大型化が可能となる。   As described above, according to the manufacturing method of the present invention, the diboride single crystal having high melting point, high strength, and high hardness can be grown in a very stable state, and the size can be increased.

また、特にGaN系単結晶のエピタキシャル成長を好適に行わせるために、化学式XB(但し、XはZr,Hf,Ti,W,Mo,Crから選択される1種以上の元素を含む)の材料からなる単結晶を育成するとよい。このような化学式XBの単結晶は、その格子定数がGaN系単結晶のそれと非常に近いため、格子ミスマッチが従来のサファイア等に比較して著しく小さい。これにより、GaN系単結晶の薄膜成長の際に基板のソリや成長膜の歪が小さくなり、より高品質で優れたエピ単結晶育成用基板を提供できる。 Further, in order to particularly made suitable epitaxial growth of GaN-based single crystal material of the formula XB 2 (where, X is comprises Zr, Hf, Ti, W, Mo, one or more elements selected from Cr) A single crystal made of Such a single crystal of the chemical formula XB 2 has a lattice constant that is very close to that of a GaN-based single crystal, so that the lattice mismatch is significantly smaller than that of conventional sapphire and the like. This reduces the warpage of the substrate and the distortion of the growth film during the growth of the GaN-based single crystal thin film, and can provide a higher quality and superior epi single crystal growth substrate.

以上により、従来にない高品質かつ大口径の結晶性の優れたGaN系単結晶のエピタキシャル成長用結晶基板を安価に提供できる。すなわち、本発明の二ホウ化物単結晶の製造方法は、液冷式のるつぼ中に設けた原料を高周波加熱により融解して融液とし、るつぼの強制冷却により、この融液を冷却して単結晶化するので、液冷式るつぼの強制冷却により、結晶成長プロセスにおいて非常に安定した二ホウ化物系大型単結晶の育成が可能となる。また、ブリッジマン法、引き上げ法、TSSG法なども必要に応じて適用可能であり汎用性の高い大型結晶成長技術を提供できる。   As described above, an unprecedented crystal substrate for epitaxial growth of a GaN-based single crystal excellent in high quality and large diameter crystallinity can be provided at low cost. That is, in the method for producing a diboride single crystal of the present invention, a raw material provided in a liquid-cooled crucible is melted by high-frequency heating to form a melt, and the melt is cooled to obtain a single crystal by forced cooling of the crucible. Since it crystallizes, forced cooling of the liquid-cooled crucible makes it possible to grow a diboride-type large single crystal that is very stable in the crystal growth process. In addition, the Bridgman method, the pulling method, the TSSG method, and the like can be applied as necessary, and a large crystal growth technique with high versatility can be provided.

また、液冷式のるつぼの底部に二ホウ化物単結晶からなる種子結晶を配設し、この種子結晶上に原料を配設して、この原料を高周波加熱により融解して融液とし、るつぼの強制冷却により、この融液を冷却して前記種子結晶上に単結晶を育成することにより、特に結晶性のきわめて優れた単結晶を育成でき、これにより、GaN系単結晶の薄膜成長の際に基板のソリや成長膜の歪が小さくなり、より高品質で大口径のGaN系単結晶のエピタキシャル成長用基板を提供できる。   In addition, a seed crystal composed of a diboride single crystal is disposed at the bottom of a liquid-cooled crucible, and a raw material is disposed on the seed crystal, and the raw material is melted by high-frequency heating to form a melt. By cooling this melt and forcing a single crystal on the seed crystal, a single crystal having particularly excellent crystallinity can be grown. In addition, the warpage of the substrate and the distortion of the growth film are reduced, and a higher quality and larger diameter GaN-based single crystal epitaxial growth substrate can be provided.

さらに、液冷式のるつぼ内に、原料として金属単体を含ませることにより、例えば、原料が化学式XB(但し、XはZr,Hf,Ti,W,Mo,Crの少なくとも1種を含む)の材料からなり、高周波誘導に効果的な同種の金属単体を含ませる。前記化学式XBの材料からなる二ホウ化物単結晶を育成する場合は、その格子定数がGaN系単結晶のそれと非常に近いため、格子ミスマッチが従来のサファイア等に比較して著しく小さい。また、GaN系単結晶の薄膜成長の際に、基板のソリや成長膜の歪が小さくなり、より高品質で大口径のGaN系単結晶のエピタキシャル成長用基板を提供できる。さらに、原料に金属単体が含まれることにより、誘導加熱がまずこの金属単体に集中することで金属周辺の原料が溶け、続いて融体に高周波が誘導されて全体が溶けることになるため、融解の効率が向上し、生産性の優れた二ホウ化物単結晶の製造方法を提供することができる。 Furthermore, by including a metal simple substance as a raw material in a liquid-cooled crucible, for example, the raw material is a chemical formula XB 2 (where X includes at least one of Zr, Hf, Ti, W, Mo, Cr). The same kind of metal that is effective for high-frequency induction is included. When growing a diboride single crystal made of the material of Formula XB 2, because the lattice constant is the same very close GaN-based single crystal, lattice mismatch is significantly smaller than the conventional sapphire. Further, when a GaN-based single crystal thin film is grown, the warp of the substrate and the distortion of the grown film are reduced, and a substrate for epitaxial growth of a GaN-based single crystal having a higher quality and a larger diameter can be provided. Furthermore, because the raw material contains a simple metal, the induction heating first concentrates on this simple metal, so the raw material around the metal melts, and then the high frequency is induced in the melt, so that the whole melts. Thus, it is possible to provide a method for producing a diboride single crystal with improved productivity.

次に、本発明をより具体化した実施例についてZrBを代表例として説明する。 Next, an embodiment in which the present invention is embodied will be described using ZrB 2 as a representative example.

商用ZrB粉末(純度約98%、平均粒径約2μm)に極少量のZrを添加した原料粉末をラバープレスにて9.8×10Paの圧力で加圧成形した後、真空中で1700℃,30分間加熱して直径90mm高さ90mmの焼結体を作製した。この焼結体の密度は理論値の58%であった。 A raw material powder obtained by adding a very small amount of Zr to commercial ZrB 2 powder (purity of about 98%, average particle size of about 2 μm) was pressed with a rubber press at a pressure of 9.8 × 10 7 Pa, and then vacuumed at 1700 ° C. , And heated for 30 minutes to produce a sintered body having a diameter of 90 mm and a height of 90 mm. The density of this sintered body was 58% of the theoretical value.

この焼結体を内径100mm高さ100mm銅製液冷るつぼ内に充填し、アルゴン(Ar)雰囲気下(0.8MPa)、徐冷法にて結晶の育成を行なった。徐冷速度は50℃/hrで降温した。得られた結晶はZrBの燒結体に覆われ、サイズがおよそ径60mm×高さ50mmの塊状を呈していた。 This sintered body was filled in a copper-cooled crucible made of copper having a diameter of 100 mm and a height of 100 mm, and crystals were grown by a slow cooling method in an argon (Ar) atmosphere (0.8 MPa). The slow cooling rate was 50 ° C./hr. The resulting crystals are covered with sintered bodies of ZrB 2, size had exhibited approximately diameter 60 mm × height 50mm massive.

この育成結晶をX線で方位測定し、ワイヤーソーにてC面に並行に厚み約1mmに切断した。その後、GC砥粒#600を用いてラップ研磨を行ない、ダイヤ砥石でラップ研削を行ない、そして最後は、コロイダルシリカを用いてポリシングを行ない、ZrBの(0001)面を主面とする厚さ500μmの2インチウエハを作製した。 The orientation of the grown crystal was measured with X-rays and cut into a thickness of about 1 mm in parallel with the C-plane with a wire saw. Then, lapping is performed using GC abrasive grains # 600, lapping is performed using a diamond grinding wheel, and finally polishing is performed using colloidal silica, and the thickness is such that the (0001) plane of ZrB 2 is the main surface. A 500 μm 2-inch wafer was prepared.

このウエハのX線トポグラフ法およびX線ロッキングカーブによる結晶評価を行なったところ、小傾角粒界などの結晶粒界はほとんど見られず、FWHMの値は80arcsecでほぼ均質な分布を示していた。   When this wafer was crystallized by the X-ray topography method and the X-ray rocking curve, crystal grain boundaries such as low-angle grain boundaries were hardly seen, and the FWHM value showed an almost homogeneous distribution at 80 arcsec.

比較のために同条件で直径10mm長さ140mmの燒結棒を作製して、高周波FZ法を用いて育成した場合、育成は可能であったが結晶全体に結晶粒界が存在し、FWHMの値も良い部分で380arcsec程度で、またばらつきが大きいものであった。   For comparison, when a sintered rod having a diameter of 10 mm and a length of 140 mm was prepared under the same conditions and grown using the high frequency FZ method, the growth was possible, but there was a grain boundary in the entire crystal, and the value of FWHM The good part was about 380 arcsec and the variation was large.

粉末原料として純度約99.0%、平均粒径1.5μmの商用ZrBを用い、プレス圧力を2.0×10Pa、真空中の焼結温度を2000℃、30分間加熱して直径100mm高さ100mmの燒結体を作製した。この燒結体の密度は理論値の80%であった。 Purity of about 99.0% as a powder raw material, the average particle commercial ZrB 2 using a diameter 1.5 [mu] m, the press pressure 2.0 × 10 8 Pa, 2000 ℃ sintering temperature in vacuum, diameter 100mm height 100mm and heated for 30 minutes A sintered body was prepared. The density of this sintered body was 80% of the theoretical value.

この燒結体を内径120mm高さ120mm銅製るつぼ内に充填し、他の条件は実施例1と同条件で、結晶成長を行なった。得られた結晶は実施例1と同様にZrBの燒結体で被覆され、サイズはおよそ径80mm×高さ70mmの塊状であった。 The sintered body was filled in a copper crucible having an inner diameter of 120 mm and a height of 120 mm, and crystal growth was carried out under the same conditions as in Example 1. The obtained crystals were covered with a sintered body of ZrB 2 in the same manner as in Example 1, and the size was a lump of about 80 mm diameter x 70 mm height.

この育成結晶を実施例1と同様なウエハ加工を行ない、ZrBの(0001)面を主面とする厚さ350μmの3インチウエハを作製した。 The grown crystal was subjected to wafer processing similar to that in Example 1 to produce a 3-inch wafer having a thickness of 350 μm with the (0001) plane of ZrB 2 as the main surface.

また、同ウエハを実施例1と同様な結晶評価を行なったところ、ウエハには結晶粒界などの方位ずれは観察されず、FWHMの値は60arcsecとさらに結晶性の向上が見られた。   Further, when the same crystal evaluation as in Example 1 was performed on the wafer, no misorientation such as a crystal grain boundary was observed on the wafer, and the FWHM value was 60 arcsec, indicating further improvement in crystallinity.

比較のために、同条件で直径30mm長さ140mmの燒結棒を作製し、高周波FZ法にて育成した場合、40kwの出力では育成できなかった。   For comparison, when a sintered rod having a diameter of 30 mm and a length of 140 mm was produced under the same conditions and grown by the high-frequency FZ method, it could not be grown with an output of 40 kw.

このため、出力を120kwまでアップさせて育成を試みたところ育成は可能であったが、育成された結晶は融体表面温度の上昇でB元素の蒸発による組成ずれが大きくなり、結晶全体の品質は大きく低下し、無数の粒界の存在とFWHMの値も最小値が980arcsecであった。   For this reason, growth was possible when the output was increased to 120 kw, but the growth was possible. However, the grown crystal had a large compositional deviation due to the evaporation of the B element due to an increase in the melt surface temperature. The number of grain boundaries and the minimum value of FWHM were 980 arcsec.

粉末原料として純度99.5%、平均粒径約1.0μmの商用のZrBを用い、プレス圧力2.0×10Pa、真空中の加熱温度が1900℃、30分加熱し実施例2と同サイズの燒結体と、るつぼ底部にはサイズ2インチ径で厚み1mmの主面が(0001)ZrB種結晶を用意し、育成条件は育成雰囲気をヘリウム(He)ガス(0.9MPa)とし、冷却速度は25℃/hrそれ以外は実施例2と同じ条件で結晶成長を行なった。 Using a commercial ZrB 2 having a purity of 99.5% and an average particle size of about 1.0 μm as a powder raw material, press pressure 2.0 × 10 8 Pa, heating temperature in vacuum at 1900 ° C. for 30 minutes, sintering of the same size as in Example 2 The body and the bottom of the crucible were prepared with a (0001) ZrB 2 seed crystal having a size of 2 inches in diameter and a thickness of 1 mm. The growth conditions were a growth atmosphere of helium (He) gas (0.9 MPa), and a cooling rate of 25 The crystal growth was carried out under the same conditions as in Example 2 except for the temperature of ° C./hr.

得られた結晶は実施例2と同様ZrB2燒結体で被覆されていたが、(0001)面を主面とするファセット成長形を示しており、サイズはおよそ径85mm×高さ75mmであった。   The obtained crystal was covered with a ZrB2 sintered body in the same manner as in Example 2, but it showed a facet growth type with the (0001) plane as the main surface, and the size was approximately 85 mm in diameter × 75 mm in height.

この育成結晶から実施例2と同様な3ウエハを作製し、同様に結晶評価を行なった。その結果、結晶全体に渡り、結晶粒界がほとんどフリーで、FWHMの値は30arcsecと極めて良好な結晶性を示した。   Three wafers similar to those of Example 2 were produced from the grown crystals, and crystal evaluation was performed in the same manner. As a result, the crystal grain boundary was almost free over the entire crystal, and the FWHM value was 30 arcsec, indicating a very good crystallinity.

比較のために、実施例3と同条件で直径が2インチサイズの燒結棒を作製し、高周波FZ法にて結晶成長を行なったが、出力120kwの電源でも育成はできなかった。   For comparison, a sintered rod having a diameter of 2 inches was produced under the same conditions as in Example 3 and crystal growth was performed by the high-frequency FZ method. However, it could not be grown even with a power supply with an output of 120 kW.

なお、これらの実施例ではZrBを取り上げて説明したが、他のホウ化物、例えば、融点が3380℃で格子ミスマッチが1,6%のHfB,融点が2790℃で格子ミスマッチが5.2%のTiB等についても、ZrBと同様な結晶製造方法とウエハプロセスが適用可能であることが判明した。 In these examples, ZrB 2 was described as an example, but other borides such as HfB 2 having a melting point of 3380 ° C. and a lattice mismatch of 1,6%, a melting point of 2790 ° C. and a lattice mismatch of 5.2% It became clear that the same crystal manufacturing method and wafer process as ZrB 2 can be applied to TiB 2 and the like.

本発明に係る単結晶育成炉を模式的に示す断面図である。It is sectional drawing which shows typically the single crystal growth furnace which concerns on this invention.

符号の説明Explanation of symbols

100:誘導コイル
200:石英管
300:液冷るつぼ
400:融体
500:固化部分
600:耐熱絶縁支持台
100: induction coil
200: Quartz tube
300: Liquid-cooled crucible
400: Melt
500: Solidified part
600: Heat-resistant insulation support base

Claims (2)

液冷式るつぼ内に設けた化学式XB(但し、XはZr、Hf、Ti、W、Mo、Crの少なくとも1種を含む)からなる原料に、前記原料に含まれるZr、Hf、Ti、W、Mo、Crのいずれかの金属単体を添加する原料準備工程と、
前記原料および前記金属単体を高周波加熱により融解して融液とする融液形成工程と、
前記液冷式るつぼと接する部分に前記融液が固化した固化部分を形成し、前記固化部分に囲まれた前記融液を冷却することにより単結晶化させる単結晶育成工程と、を有する二ホウ化物単結晶の製造方法。
In the raw material consisting of chemical formula XB 2 (wherein X includes at least one of Zr, Hf, Ti, W, Mo, Cr) provided in the liquid-cooled crucible, Zr, Hf, Ti, A raw material preparation step of adding a single metal of W, Mo, or Cr ;
A melt forming step of melting the raw material and the metal simple substance by high-frequency heating to form a melt;
Forming a solidified portion where the melt is solidified in a portion in contact with the liquid-cooled crucible, and a single crystal growing step of cooling the melt surrounded by the solidified portion to form a single crystal. A method for producing a compound single crystal.
前記融液から直径が2インチ以上の単結晶を育成する請求項1に記載の二ホウ化物単結晶の製造方法。 The method for producing a diboride single crystal according to claim 1, wherein a single crystal having a diameter of 2 inches or more is grown from the melt.
JP2003398793A 2003-11-28 2003-11-28 Method for producing diboride single crystal Expired - Fee Related JP4518782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003398793A JP4518782B2 (en) 2003-11-28 2003-11-28 Method for producing diboride single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003398793A JP4518782B2 (en) 2003-11-28 2003-11-28 Method for producing diboride single crystal

Publications (2)

Publication Number Publication Date
JP2005154233A JP2005154233A (en) 2005-06-16
JP4518782B2 true JP4518782B2 (en) 2010-08-04

Family

ID=34723543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003398793A Expired - Fee Related JP4518782B2 (en) 2003-11-28 2003-11-28 Method for producing diboride single crystal

Country Status (1)

Country Link
JP (1) JP4518782B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551797A (en) * 1978-10-05 1980-04-15 Agency Of Ind Science & Technol Production of vanadium diboride and tantalum diboride single crystal from aluminum bath
JPH0848599A (en) * 1994-05-30 1996-02-20 Kyocera Corp Production of zirconia single crystal body
JPH1095699A (en) * 1996-09-13 1998-04-14 Natl Inst For Res In Inorg Mater Growth of zirconium diboride single crystal
JP2002043223A (en) * 2000-07-28 2002-02-08 National Institute For Materials Science Semiconductor substrate and semiconductor device wherein it is used

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551797A (en) * 1978-10-05 1980-04-15 Agency Of Ind Science & Technol Production of vanadium diboride and tantalum diboride single crystal from aluminum bath
JPH0848599A (en) * 1994-05-30 1996-02-20 Kyocera Corp Production of zirconia single crystal body
JPH1095699A (en) * 1996-09-13 1998-04-14 Natl Inst For Res In Inorg Mater Growth of zirconium diboride single crystal
JP2002043223A (en) * 2000-07-28 2002-02-08 National Institute For Materials Science Semiconductor substrate and semiconductor device wherein it is used

Also Published As

Publication number Publication date
JP2005154233A (en) 2005-06-16

Similar Documents

Publication Publication Date Title
US7524376B2 (en) Method and apparatus for aluminum nitride monocrystal boule growth
JP5068423B2 (en) Silicon carbide single crystal ingot, silicon carbide single crystal wafer, and manufacturing method thereof
JP4926556B2 (en) Method for manufacturing silicon carbide single crystal ingot and silicon carbide single crystal substrate
US8088220B2 (en) Deep-eutectic melt growth of nitride crystals
US20050244997A1 (en) Bulk GaN and AIGaN single crystals
JP6489891B2 (en) Method for producing SiC raw material used in sublimation recrystallization method
JP2009091222A (en) PRODUCTION METHOD FOR SiC SINGLE CRYSTAL, SiC SINGLE CRYSTAL WAFER AND SiC SEMICONDUCTOR DEVICE
WO2006110512A1 (en) Seeded growth process for preparing aluminum nitride single crystals
WO2011001905A1 (en) Method for producing sapphire single crystal, and sapphire single crystal obtained by the method
US20100101387A1 (en) Crystal growing system and method thereof
JP2006225232A (en) Method for producing silicon carbide single crystal, silicon carbide single crystal ingot, silicon carbide single crystal substrate, silicon carbide epitaxial wafer and thin film epitaxial wafer
JP2004099340A (en) Seed crystal for silicon carbide single crystal growth, silicon carbide single crystal ingot and method of manufacturing the same
JP2015224169A (en) Production method of silicon carbide ingot
KR20090021144A (en) Single-crystal sic, process for producing the same, and apparatus for producing single-crystal sic
JP2004189549A (en) Method of manufacturing aluminum nitride single crystal
JP2009280436A (en) Method for producing silicon carbide single crystal thin film
JP4480298B2 (en) Boride crystal, substrate for forming semiconductor layer using the same, and method for producing the same
JP4518782B2 (en) Method for producing diboride single crystal
JP2005104742A (en) Substrate for growing single crystal and semiconductor device
JP2003137694A (en) Seed crystal for growing silicon carbide single crystal, silicon carbide single crystal ingot and method of producing the same
RU2369669C2 (en) Substrate for growing of epitaxial layers of gallium nitride
JP2004099390A (en) Method of manufacturing compound semiconductor single crystal and compound semiconductor single crystal
JP4817099B2 (en) Carbide single crystal and manufacturing method thereof
JP2007091492A (en) Method for growing diboride single crystal
JP7476890B2 (en) Method for manufacturing SiC single crystal ingot

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100518

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees