JPH0848599A - Production of zirconia single crystal body - Google Patents

Production of zirconia single crystal body

Info

Publication number
JPH0848599A
JPH0848599A JP29302894A JP29302894A JPH0848599A JP H0848599 A JPH0848599 A JP H0848599A JP 29302894 A JP29302894 A JP 29302894A JP 29302894 A JP29302894 A JP 29302894A JP H0848599 A JPH0848599 A JP H0848599A
Authority
JP
Japan
Prior art keywords
single crystal
zro2
crystal body
zirconia
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29302894A
Other languages
Japanese (ja)
Inventor
Takanori Nishihara
孝典 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP29302894A priority Critical patent/JPH0848599A/en
Publication of JPH0848599A publication Critical patent/JPH0848599A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a high strength single crystal body by heating and melting ZrO2 contg. Y2O3 or a mixture of Y2O3 and metal Er or a Er compound convertible into Er2O3 as the stabilizer in a specified ratio (s), thereafter cooling the molten stabilized ZrO2 and then reheating it to a prescribed temp. CONSTITUTION:In this production, a raw material 2 obtained by adding 2 to 8mol% Y2O3 or 1.8 to 7.8mol% Y2O3 and 0.2 to 6.2mol% expressed in terms of Er2O3 of metal Er, its ions, its oxide or its salt to ZrO2 as the stabilizer of ZrO2 is changed into a vessel 1, and there, the raw material 2 is subjected to induction heating to a temp. higher than 2,700 deg.C, i.e., the melting point of ZrO2, to melt the material 2 and, thereafter, the molten material 2 is slowly cooled to room temp. through cutting off the power supply to a high-frequency heating coil 3 while allowing to flow cooling water. At this stage, a ZrO2 single crystal body in which thombic, tetragonal and cubic systems coexist is formed. Subsequently, the ZrO2 single crystal body thus formed is taken out from the vessel 1 and the outer skin 2a of this single crystal body is peeled off from the body, and then, the resultant ZrO2 single crystal body is changed into another high-frequency furnace and reheated to 500 to 2,300 deg.C and, thereafter, cooled to produce the objective high strength and high quality ZrO2 single crystal body.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はジルコニア単結晶体の製
造方法に関し、特に溶融方法によって製造するジルコニ
ア単結晶体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a zirconia single crystal, and more particularly to a method for producing a zirconia single crystal produced by a melting method.

【0002】[0002]

【従来の技術】従来、構造用のジルコニア(ZrO2
材料としては、正方晶系のジルコニア多結晶体が主とし
て用いられてきた。正方晶系のジルコニア多結晶体の抗
折強度は、通常1000MPa程度で、ヤング率は20
0GPa程度であるが、磁器ヘッド用のスライダー材料
に用いる場合、さらにボイドのない高強度なジルコニア
材料が要求されている。
2. Description of the Related Art Conventionally, zirconia (ZrO 2 ) for structure
A tetragonal zirconia polycrystal has been mainly used as a material. The transverse strength of the tetragonal zirconia polycrystal is usually about 1000 MPa, and the Young's modulus is 20.
Although it is about 0 GPa, when used as a slider material for a porcelain head, a void-free, high-strength zirconia material is required.

【0003】一方、光学材料や装飾材料など特定用途向
けには、立方晶のジルコニア単結晶体も製造されてい
る。ジルコニア単結晶体を製造する場合、ジルコニアは
融点が2700℃以上であり、カーボンやタングステン
などから成る溶融ルツボを用いることはできず、従来は
原料棒の溶融箇所を徐々に移動させて単結晶化するフロ
ーティングゾーン法や坩堝の内壁面近傍の材料を溶融せ
ずに中心部の材料のみを溶融固化させるスカルメルティ
ング法で形成していた。また、低温でも正方晶を維持で
きるように、イットリア(Y23 )を10〜20モル
%程度添加していた。このようなジルコニア単結晶は透
明であり、光学材料や装飾材料に用いられる。
On the other hand, cubic zirconia single crystals are also manufactured for specific applications such as optical materials and decorative materials. When producing a zirconia single crystal, the melting point of zirconia is 2700 ° C. or higher, and it is not possible to use a melting crucible made of carbon or tungsten. Conventionally, the melting point of the raw material rod is gradually moved to form a single crystal. The floating zone method or the skull melting method in which only the material in the central portion is melted and solidified without melting the material in the vicinity of the inner wall surface of the crucible. Further, yttria (Y 2 O 3 ) was added in an amount of about 10 to 20 mol% so that the tetragonal crystal could be maintained even at a low temperature. Such a zirconia single crystal is transparent and is used for optical materials and decorative materials.

【0004】[0004]

【発明が解決しようとする課題】ところが、正方晶のジ
ルコニア多結晶体は、その抗折強度が1000MPa程
度であり、さらに高強度材料の出現が望まれている。ま
た、従来のジルコニ多結晶体を磁気ヘッド用スライダー
などに用いる場合、粒界からの剥離やボイドが悪影響を
及ぼす。
However, the tetragonal zirconia polycrystal has a flexural strength of about 1000 MPa, and it is desired to develop a high-strength material. Further, when the conventional zirconia polycrystal is used for a slider for a magnetic head or the like, delamination from grain boundaries and voids have an adverse effect.

【0005】さらに、フローティングゾーン法やスカル
メルティング法では、立方晶のジルコニア単結晶体を容
易に製造できるが、フローティングゾーン法では装置が
大掛かりになって製造コストが高コストになると共に、
立方晶のジルコニア単結晶体は抗折強度が300MPa
程度で、弱いという問題がある。
Further, although the cubic zone zirconia single crystal can be easily manufactured by the floating zone method or the skull melting method, the floating zone method requires a large-scale apparatus and the manufacturing cost becomes high.
The cubic zirconia single crystal has a bending strength of 300 MPa.
There is a problem of weakness.

【0006】本発明は、このような従来技術の問題点に
鑑みてなされたものであり、高強度・高品質のジルコニ
ア単結晶体を安価に製造できるジルコニア単結晶体の製
造方法を提供することを目的とする。
The present invention has been made in view of the above problems of the prior art, and provides a method for producing a zirconia single crystal body capable of inexpensively producing a high strength and high quality zirconia single crystal body. With the goal.

【0007】[0007]

【問題を解決するための手段】上記目的を達成するため
に、本発明に係るジルコニア単結晶体の製造方法では、
安定化剤としてのイットリアを2〜8モル%含むジルコ
ニアを加熱溶融後冷却し、再び500〜2300℃で加
熱してジルコニア単結晶体を製造する。
In order to achieve the above object, in the method for producing a zirconia single crystal according to the present invention,
Zirconia containing 2 to 8 mol% of yttria as a stabilizer is heated and melted, cooled, and then heated again at 500 to 2300 ° C. to produce a zirconia single crystal.

【0008】また、安定化剤としてのイットリアを1.
8〜7.8モル%とエルビアに換算して0.2〜6.2
モル%になるエルビニウム、そのイオン、その酸化物も
しくはその塩を含むジルコニアを加熱溶融後冷却し、再
び500〜2300℃で加熱してジルコニア単結晶体を
製造する。
Further, yttria as a stabilizer is 1.
8 to 7.8 mol% and converted to erbia 0.2 to 6.2
Zirconia containing mol% of erbium, its ion, its oxide or its salt is heated and melted, then cooled and heated again at 500 to 2300 ° C. to produce a zirconia single crystal.

【0009】[0009]

【作用】上記のように、イットリアを2〜8モル%添加
して加熱溶融後冷却して、再び500〜2300℃で加
熱冷却すると、主として正方晶と立方晶から成る高強度
のジルコニア単結晶体となる。
As described above, when yttria is added in an amount of 2 to 8 mol%, heated, melted, cooled, and again heated and cooled at 500 to 2300 ° C., a high-strength zirconia single crystal mainly composed of tetragonal crystals and cubic crystals is obtained. Becomes

【0010】安定化剤としてのイットリアに加えてエル
ビアに換算して0.2〜6モル%になるエルビニウム、
そのイオン、その酸化物もしくはその塩を添加するとジ
ルコニア単結晶体の強度およびヤング率はさらに向上
し、とりわけヤング率は著しく向上する。
In addition to yttria as a stabilizer, erbium, which becomes 0.2 to 6 mol% in terms of erbia,
Addition of the ions, oxides or salts thereof further improves the strength and Young's modulus of the zirconia single crystal, and especially the Young's modulus is remarkably improved.

【0011】また、溶融方法によって単結晶体を製造す
ると、単結晶体内でのボイドや粒界の発生を極力低減す
ることができ、高品質な単結晶体となる。
Further, when the single crystal body is manufactured by the melting method, the generation of voids and grain boundaries in the single crystal body can be reduced as much as possible, resulting in a high quality single crystal body.

【0012】さらに、スカルメルト法などの溶融方法に
よって単結晶体を製造すると、安価に製造できる。
Furthermore, when a single crystal body is manufactured by a melting method such as a skull melt method, it can be manufactured at low cost.

【0013】[0013]

【実施例】本発明のジルコニア単結晶体は、安定化剤と
してイットリア(Y23 )を2〜8モル%含む。な
お、原料のジルコニア(ZrO2 )には、微量の酸化ハ
フニウム(HfO2 )が不純物として混入している。イ
ットリアが2モル%以下においては、クラックが多発
し、良い結晶体が得られない。また、イットリアを8モ
ル%以上添加すると、強度が急激に低下する。したがっ
て、イットリアは2〜8モル%の範囲で添加しなければ
ならない。
EXAMPLE The zirconia single crystal of the present invention contains 2 to 8 mol% of yttria (Y 2 O 3 ) as a stabilizer. A small amount of hafnium oxide (HfO 2 ) is mixed as an impurity in the raw material zirconia (ZrO 2 ). When yttria is 2 mol% or less, cracks frequently occur and a good crystal cannot be obtained. Further, when yttria is added in an amount of 8 mol% or more, the strength sharply decreases. Therefore, yttria must be added in the range of 2 to 8 mol%.

【0014】また、イットリアに加えて、エルビア(E
2 3 )を0.2〜6モル%添加すると、強度および
ヤング率がさらに向上し、とりわけヤング率は著しく向
上する。エルビアを添加する場合、イットリアは1.8
モル%でも所望の強度およびヤング率を得ることができ
る。この場合、エルビアは0.2〜6モル%の範囲で添
加しなければならない。エルビアの添加料が0.2モル
%未満であると、強度およびヤング率が低下する。ま
た、エルビアの添加料が6.2モル%を越えても、強度
およびヤング率は低下する。また、エルビアに代えて、
もしくは混合して、金属エルビニウム、エルビニウムイ
オン、或いはエルビニウムを付帯する硝酸塩、酢酸塩も
しくはアルコキシドでもよい。
In addition to yttria, Elbia (E
When 0.2 to 6 mol% of r 2 O 3 ) is added, the strength and Young's modulus are further improved, and especially Young's modulus is remarkably improved. When adding erbia, yttria is 1.8
The desired strength and Young's modulus can be obtained even in mol%. In this case, erbia should be added in the range of 0.2 to 6 mol%. When the additive amount of erbia is less than 0.2 mol%, the strength and Young's modulus decrease. Further, even if the amount of the erbia additive exceeds 6.2 mol%, the strength and Young's modulus decrease. Also, instead of Elvia,
Alternatively, a metal erbium, an erbium ion, or a nitrate, an acetic acid salt, or an alkoxide accompanied with erbium may be mixed.

【0015】本発明では、望ましくはスカルメルティン
グ法で形成される。スカルメルティング法とは、図1に
示すように、水冷した容器1の中に、ジルコニアと金属
ジルコニウムの混合物から成る原料2を入れ、高周波加
熱コイル3で誘導加熱する。原料2の外側部分の外皮2
aは溶融せず、スカル状に焼結固化して坩堝の作用を果
たす。すなわち、原料2の中央部のみが溶融する。原料
2を充分溶融してから高周波パワーを減らし、容器1を
下げて底から冷却して結晶化させる。このようにする
と、上下方向に微細な亀裂(クラック)が入った状態の
柱状の単結晶塊を得られる。なお、冷却水を流す理由
は、原料2の外皮2aが溶解しないようにするためであ
る。
In the present invention, it is preferably formed by the skull melting method. In the skull melting method, as shown in FIG. 1, a raw material 2 made of a mixture of zirconia and metallic zirconium is placed in a water-cooled container 1 and induction heated by a high-frequency heating coil 3. The outer skin 2 of the raw material 2
“A” does not melt but sinters and solidifies in a skull shape to function as a crucible. That is, only the central portion of the raw material 2 is melted. After sufficiently melting the raw material 2, the high frequency power is reduced, and the container 1 is lowered and cooled from the bottom to be crystallized. By doing so, a columnar single crystal ingot having fine cracks in the vertical direction can be obtained. The reason for flowing the cooling water is to prevent the outer skin 2a of the raw material 2 from being dissolved.

【0016】まず、ジルコニアに安定化剤としてのイッ
トリアを少量添加して容器1に投入し、2700℃以上
に誘導加熱して溶融した後、高周波加熱コイル3の電源
を切って、冷却水を流しながら100℃/Hr程度でほ
ぼ室温まで冷却する。この段階で、ジルコニア単結晶体
になるが、単斜晶、正方晶、および立方晶が混在したジ
ルコニア単結晶体である。
First, a small amount of yttria as a stabilizer is added to zirconia, and the mixture is put into the container 1, melted by induction heating to 2700 ° C. or more, then the high frequency heating coil 3 is turned off, and cooling water is made to flow. While cooling to about room temperature at about 100 ° C / Hr. At this stage, it becomes a zirconia single crystal, but it is a zirconia single crystal in which monoclinic crystals, tetragonal crystals, and cubic crystals are mixed.

【0017】次に、ジルコニア単結晶体を容器1から取
り出し、外皮2aを剥がして、他の高周波炉に投入し
て、再び500〜2300℃で加熱して、冷却すること
により主として正方晶と立方晶から成るジルコニア単結
晶体を形成する。すなわち、ジルコニア単結晶体の強度
低下の要因となる単斜晶を消失させる。この熱処理温度
が500℃以下の場合、単斜晶が残り、強度が小さい。
また、熱処理温度が2300℃以上の場合、正方晶が消
失して全てが立方晶となり強度が小さい。なお、ジルコ
ニア単結晶を容器1から取り出して、別の高周波加熱炉
で再加熱する場合に限らず、容器の中でそのまま再加熱
してもよい。
Next, the zirconia single crystal is taken out of the container 1, the outer skin 2a is peeled off, the zirconia single crystal is put into another high-frequency furnace, heated again at 500 to 2300 ° C., and cooled to mainly tetragonal and cubic. A zirconia single crystal composed of crystals is formed. That is, the monoclinic crystal that causes the strength reduction of the zirconia single crystal is eliminated. When the heat treatment temperature is 500 ° C. or lower, monoclinic crystals remain and the strength is low.
Further, when the heat treatment temperature is 2300 ° C. or higher, the tetragonal crystals disappear and all become cubic crystals, and the strength is low. The zirconia single crystal may be taken out of the container 1 and reheated in another high-frequency heating furnace, and may be reheated in the container as it is.

【0018】−実験例1− ジルコニアに対するイットリアのモル比を表1のように
変化させて、2700℃で加熱溶融後、冷却してジルコ
ニア単結晶体を得、さらに1000℃で再加熱して冷却
後、それぞれの単結晶体の結晶系、抗折強度(Kg/c
2 )、ヤング率(GPa)、硬度(HV )および密度
(g/cm3 )の各特性を測定した。
-Experimental Example 1-The molar ratio of yttria to zirconia was changed as shown in Table 1, after heating and melting at 2700 ° C., cooling was performed to obtain a zirconia single crystal, and further reheating at 1000 ° C. and cooling. After that, the crystal system of each single crystal, bending strength (Kg / c
m 2 ), Young's modulus (GPa), hardness (H V ) and density (g / cm 3 ) were measured.

【0019】[0019]

【表1】 [Table 1]

【0020】なお、各特性の評価は次の通りである。す
なわち、結晶は、粉末X線回折で同定した。抗折強度
は、JISに基づき3点曲げで測定した。硬度は、マイ
クロビッカース(500gf)で測定した。密度は、ア
ルキメデス法で測定した。ヤング率は、歪ゲージの4点
曲げ法で測定した。
The evaluation of each characteristic is as follows. That is, the crystals were identified by powder X-ray diffraction. The bending strength was measured by 3-point bending based on JIS. The hardness was measured by Micro Vickers (500 gf). The density was measured by the Archimedes method. Young's modulus was measured by a 4-point bending method using a strain gauge.

【0021】その結果を表2に示す。なお、表1および
表2において、試料番号1、2および6のものは本発明
の範囲外のものである。
The results are shown in Table 2. In Tables 1 and 2, Sample Nos. 1, 2 and 6 are out of the scope of the present invention.

【0022】[0022]

【表2】 [Table 2]

【0023】イットリアが2モル%以下の場合、単結晶
体にクラックが多発し、良好な結晶が得られなかった。
イットリアが2.2モル%の場合、抗折強度は200K
g/cm2 であり、多結晶体の100Kg/cm2 に比
べて2倍程度の強度が得られた。その後はイットリア量
の増加にともない強度が低下し、イットリアを9%添加
すると30Kg/cm2 となり、アルミナなみの抗折強
度に急激に低下した。これは結晶系に左右されているこ
とがわかる。すなわち、粉末X線回折分析で正方晶が見
られる系においては、多結晶よりも抗折強度は大きい
が、立方晶のみになると抗折強度が著しく低下してい
る。抗折強度を向上させるためには、正方晶が必要であ
ることがわかる。
When yttria was 2 mol% or less, cracks frequently occurred in the single crystal body, and good crystals could not be obtained.
If yttria is 2.2 mol%, bending strength is 200K
The strength was g / cm 2 , which was about twice as high as that of the polycrystalline body of 100 kg / cm 2 . After that, the strength decreased with an increase in the amount of yttria, and when 9% of yttria was added, the strength became 30 Kg / cm 2 , which was a sharp decrease in the bending strength similar to that of alumina. It can be seen that this depends on the crystal system. That is, in a system in which a tetragonal crystal is observed by powder X-ray diffraction analysis, the bending strength is higher than that of the polycrystal, but the bending strength is remarkably lowered when only the cubic crystal is used. It can be seen that a tetragonal crystal is necessary to improve the bending strength.

【0024】なお、試料番号3〜5のものにおいても、
単斜晶のピークが出ているが、これは4〜8モル程度の
レベルであり、おそらく粉末に粉砕した際に、正方晶か
ら単斜晶へ変態したものと思われる。
Incidentally, even in the case of the sample numbers 3 to 5,
A monoclinic crystal peak appears, but this is at a level of about 4 to 8 mol, and it is presumed that the tetragonal crystal was transformed to the monoclinic crystal when pulverized into powder.

【0025】ヤング率は、206〜230GPaあり、
多結晶体の200GPa前後よりも大きいことがわかっ
た。これらの特性は磁気ヘッド用スライダーの材料とし
て有効である。
Young's modulus is 206 to 230 GPa,
It was found to be larger than around 200 GPa of the polycrystalline body. These characteristics are effective as a material for a slider for a magnetic head.

【0026】ビッカース硬度は、1342〜1400H
V で、正方晶のジルコニア多結晶体とほぼ同様である。
Vickers hardness is 1342 to 1400H
At V , it is almost the same as the tetragonal zirconia polycrystal.

【0027】密度は、6.04〜6.12g/cm
3 で、正方晶のジルコニア多結晶体とほぼ同様である。
上記製法によって製造したジルコニア単結晶体はボイド
はないが、密度の低い立方晶を含んでいるために、密度
は正方晶のジルコニア多結晶体と結果的にはあまり変わ
っていない。
The density is 6.04 to 6.12 g / cm.
3 is almost the same as the tetragonal zirconia polycrystal.
The zirconia single crystal produced by the above-mentioned manufacturing method has no voids, but since it contains a cubic crystal with a low density, the density is not much different from that of a tetragonal zirconia polycrystal.

【0028】上記のように、イットリアを2〜8モル%
添加してジルコニア単結晶体を製造すると、ジルコニア
単結晶体は白濁することから、光学用材料としては用い
ることはできないが、構造用材料としては充分用いるこ
とができる。
As described above, yttria is contained in an amount of 2 to 8 mol%.
When added to produce a zirconia single crystal, the zirconia single crystal becomes cloudy, so it cannot be used as an optical material, but it can be sufficiently used as a structural material.

【0029】なお、上記方法で製造するジルコニア単結
晶体に、コバルト(Co)やクロム(Cr)などの着色
透明金属や着色希土類を例えば500ppm程度添加す
れば、透光性と着色効果の両方が得られ、さらに装飾用
材料としても用いることができる。
If a colored transparent metal such as cobalt (Co) or chromium (Cr) or a colored rare earth is added to the zirconia single crystal produced by the above method in an amount of, for example, about 500 ppm, both the translucency and the coloring effect can be obtained. It can be obtained and further used as a decorative material.

【0030】−実験例2− ジルコニアに対するイットリアのモル比とエルビアのモ
ル比を表3のように変化させて、2700℃で加熱溶融
後、冷却してジルコニア単結晶体を得、さらに1000
℃で再加熱して冷却後、それぞれの単結晶体の抗折強度
(Kg/cm2)とヤング率(GPa)を測定した。な
お、ジルコニア(ZrO2 )中には、不純物として微量
の酸化ハフニウム(HfO2 )を含む。
-Experimental Example 2- The molar ratio of yttria to zirconia and the molar ratio of erbia were changed as shown in Table 3, heated and melted at 2700 ° C., and then cooled to obtain a zirconia single crystal, and further 1000
After reheating at 0 ° C. and cooling, the bending strength (Kg / cm 2 ) and Young's modulus (GPa) of each single crystal were measured. Note that zirconia (ZrO 2 ) contains a small amount of hafnium oxide (HfO 2 ) as an impurity.

【0031】抗折強度はJISに基づく3点曲げで測定
した。また、ヤング率は歪ゲージの4点曲げ法で測定し
た。その結果を表3に示す。なお、表3において、試料
番号7、14および20のものは本発明の範囲外のもの
である。
The bending strength was measured by three-point bending based on JIS. The Young's modulus was measured by a strain gauge 4-point bending method. Table 3 shows the results. In Table 3, samples Nos. 7, 14 and 20 are outside the scope of the present invention.

【0032】[0032]

【表3】 [Table 3]

【0033】表3から明らかなように、エルビアを0.
2モル%以上含有する場合は、イットリアが1.8モル
%でも抗折強度およびヤング率は、イットリアを単独で
2.0モル%含有する場合と同等もしくはそれ以上ある
ことがわかる(試料番号8および9)。とりわけ、イッ
トリアを1.8モル%以上含有し、エルビアを0.5モ
ル%含有する場合(試料番号9)は、抗折強度が234
Kg/cm2 で、ヤング率は330MPaと最も良好な
結果が得られた。
As is apparent from Table 3, the erbias are 0.
When it is contained in an amount of 2 mol% or more, it can be seen that the bending strength and Young's modulus are equal to or higher than those of yttria alone of 2.0 mol% even if yttria is 1.8 mol% (Sample No. 8). And 9). Particularly, when yttria is contained in an amount of 1.8 mol% or more and Erbia is contained in an amount of 0.5 mol% (Sample No. 9), the flexural strength is 234.
The best result was obtained with a Young's modulus of 330 MPa at Kg / cm 2 .

【0034】[0034]

【発明の効果】以上のように、本発明に係るジルコニ単
結晶の製造方法によれば、安定化剤としてのイットリア
を2〜8モル%含むジルコニアを溶融後冷却し、再び5
00〜2300℃で加熱することから、主として正方晶
と立方晶から成るジルコニア単結晶を製造でき、高強度
で高品質なジルコニア単結晶体を安価に製造できる。
As described above, according to the method for producing a zirconi single crystal of the present invention, zirconia containing 2 to 8 mol% of yttria as a stabilizer is melted, cooled, and then cooled again.
Since heating is performed at 00 to 2300 ° C., a zirconia single crystal mainly composed of tetragonal crystals and cubic crystals can be manufactured, and a high-strength and high-quality zirconia single crystal can be manufactured at low cost.

【0035】また、イットリア1.8〜7.8モル%に
加えて、エルビアを0.2〜6.2モル%添加した場合
は、より高強度で高品質なジルコニア単結晶体となる。
Further, when 0.2 to 6.2 mol% of erbia is added in addition to 1.8 to 7.8 mol% of yttria, a zirconia single crystal having higher strength and higher quality is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】スカルメルティング法の概略を示す図である。FIG. 1 is a diagram showing an outline of a skull melting method.

【符号の簡単な説明】 1・・・容器、2・・・原料、3・・・高周波加熱コイ
[Brief description of symbols] 1 ... container, 2 ... raw material, 3 ... high-frequency heating coil

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 安定化剤としてのイットリアを2〜8モ
ル%含むジルコニアを加熱溶融後冷却し、再び500〜
2300℃で加熱するジルコニア単結晶体の製造方法。
1. A zirconia containing 2 to 8 mol% of yttria as a stabilizer is heated and melted and then cooled, and then 500 to 500 times again.
A method for producing a zirconia single crystal body, which comprises heating at 2300 ° C.
【請求項2】 安定化剤としてのイットリアを1.8〜
7.8モル%とエルビアに換算して0.2〜6.2モル
%になるエルビニウム、そのイオン、その酸化物もしく
はその塩を含むジルコニアを加熱溶融後冷却し、再び5
00〜2300℃で加熱するジルコニア単結晶体の製造
方法。
2. Yttria as a stabilizer is 1.8-
7.8 mol%, which is 0.2 to 6.2 mol% when converted to erbia, erbium, its ions, zirconia containing its oxide or its salt are melted by heating, then cooled, and again 5
The manufacturing method of a zirconia single crystal body which heats at 00-2300 degreeC.
JP29302894A 1994-05-30 1994-11-28 Production of zirconia single crystal body Pending JPH0848599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29302894A JPH0848599A (en) 1994-05-30 1994-11-28 Production of zirconia single crystal body

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-116998 1994-05-30
JP11699894 1994-05-30
JP29302894A JPH0848599A (en) 1994-05-30 1994-11-28 Production of zirconia single crystal body

Publications (1)

Publication Number Publication Date
JPH0848599A true JPH0848599A (en) 1996-02-20

Family

ID=26455203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29302894A Pending JPH0848599A (en) 1994-05-30 1994-11-28 Production of zirconia single crystal body

Country Status (1)

Country Link
JP (1) JPH0848599A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100449633B1 (en) * 2002-04-03 2004-09-22 주식회사 휘닉스피디이 A process for producing colored cubic zirconia by a skull melting method of high frequency induction heating
JP2005154233A (en) * 2003-11-28 2005-06-16 Kyocera Corp Manufacturing method of diboride single crystal
KR100509346B1 (en) * 2003-04-25 2005-08-22 주식회사 휘닉스피디이 A process for producing single crystals of green colored cubic zirconia
KR100768688B1 (en) * 2006-04-05 2007-10-19 한국과학기술연구원 Synthesis of tourmaline red colored cubic zirconia single crystals
JP2013091601A (en) * 2013-02-05 2013-05-16 Oxide Corp Crystal of terbium oxide for magneto-optical element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100449633B1 (en) * 2002-04-03 2004-09-22 주식회사 휘닉스피디이 A process for producing colored cubic zirconia by a skull melting method of high frequency induction heating
KR100509346B1 (en) * 2003-04-25 2005-08-22 주식회사 휘닉스피디이 A process for producing single crystals of green colored cubic zirconia
JP2005154233A (en) * 2003-11-28 2005-06-16 Kyocera Corp Manufacturing method of diboride single crystal
JP4518782B2 (en) * 2003-11-28 2010-08-04 京セラ株式会社 Method for producing diboride single crystal
KR100768688B1 (en) * 2006-04-05 2007-10-19 한국과학기술연구원 Synthesis of tourmaline red colored cubic zirconia single crystals
JP2013091601A (en) * 2013-02-05 2013-05-16 Oxide Corp Crystal of terbium oxide for magneto-optical element

Similar Documents

Publication Publication Date Title
US5902763A (en) Fused ceramic composite
TWI579420B (en) Magnetic optical materials, Faraday rotors, and optical isolators
EP2492378A1 (en) Oxide and magneto-optical device
Osiko et al. Synthesis of refractory materials by skull melting technique
JPH0545554B2 (en)
JPH05200529A (en) Directional coagulation casting of aluminum titanium
JP3743462B2 (en) Ceramic composite material
JP3222134B2 (en) Sintered compact and its use
KR101115040B1 (en) Zirconia single crystal growing method
JPH0848599A (en) Production of zirconia single crystal body
JP3412378B2 (en) Ceramic composite materials
JPH11116328A (en) Zirconia-based sintered compact
JPH03218963A (en) Production of transparent yttrium-aluminumgarvent-ceramics
CN111777333B (en) Zirconium titanate/sapphirine complex phase microcrystalline glass material and preparation method thereof
US6893993B1 (en) Polycrystalline material, process for producing thereof, and articles manufactured therefrom
Courtright et al. Controlling microstructures in ZrO2 (Y2O3)‐Al2O3 eutectic fibers
JPS63260857A (en) Method of rendering age resistance to zirconia-yttria product
WO1982003876A1 (en) Single-crystal partially stabilized zirconia and hafnia ceramic materials
JP4368033B2 (en) Ceramic composite material
JPH09314278A (en) Mold material for casting titanium and titanium alloy
Rice et al. Development and Extension of Partially‐Stabilized Zirconia Single Crystal Technology
JPH026367A (en) Highly tough aluminum oxide sintered form and production thereof
KR20110040104A (en) Alpha-case controlled mold material for titanium cast alloys and manufacturing method of the same
Lukin et al. A strong ceramic based on aluminum oxide and zirconium dioxide
JP4470392B2 (en) High frequency dielectric ceramic materials and high frequency dielectric ceramic materials