JPH11116328A - Zirconia-based sintered compact - Google Patents

Zirconia-based sintered compact

Info

Publication number
JPH11116328A
JPH11116328A JP9276046A JP27604697A JPH11116328A JP H11116328 A JPH11116328 A JP H11116328A JP 9276046 A JP9276046 A JP 9276046A JP 27604697 A JP27604697 A JP 27604697A JP H11116328 A JPH11116328 A JP H11116328A
Authority
JP
Japan
Prior art keywords
zirconia
sintered body
zirconia sintered
monoclinic
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9276046A
Other languages
Japanese (ja)
Inventor
Toshifumi Kojima
敏文 小嶋
Atsushi Sugimoto
淳 杉本
Masaaki Hattori
昌晃 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP9276046A priority Critical patent/JPH11116328A/en
Publication of JPH11116328A publication Critical patent/JPH11116328A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a zirconia-based sintered compact slight in phase transition phenomena even in the presence of water and having stable mechanical strength. SOLUTION: This zirconia-based sintered compact contains 4.4-5.4 wt.% (i.e., 2.5-3.0 mol.%) of Y2 O3 , 0.1-0.5 wt.% of Al2 O3 , and 0.03-0.5 wt.% of TiO2 , and contains substantially no SiO2 except inevitable impurities, being constituted of tetragonal as a whole and substantially free from monoclinic system; besides, this sintered compact is >=5.95 in apparent specific gravity and <=0.8 μm in average grain size.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高耐久性を備え、
特に水の存在下において使用する機械部分、耐摩耗部
品、切削材、スポーツ・レジャー用品、装飾品等の構造
材や歯科、整形外科等の医療技術等に応用が期待される
ジルコニア質焼結体に関する。
TECHNICAL FIELD The present invention has high durability,
In particular, zirconia-based sintered products that are expected to be applied to mechanical parts used in the presence of water, wear-resistant parts, cutting materials, sports / leisure goods, decorative materials and other structural materials, and dental and orthopedic medical technologies. About.

【0002】[0002]

【従来の技術】従来より各種の用途に使用されるジルコ
ニアは、その融点が2700℃と高く、化学薬品に対す
る耐食性が良く、高い靱性を持つなど優れた特性を有し
ている。
2. Description of the Related Art Zirconia conventionally used for various applications has excellent characteristics such as a high melting point of 2700 ° C., good corrosion resistance to chemicals, and high toughness.

【0003】しかしながら、純粋のジルコニアは100
0℃前後で可逆的に相転移し、その際に大きな容積変化
を生ずる。ジルコニア焼結体を得る場合、この様な大き
な容積変化は焼結体の破壊につながるので、それを防ぐ
ために、Y23、CaO,MgO等の安定化剤を加える
必要がある。
[0003] However, pure zirconia is 100
It undergoes a reversible phase transition around 0 ° C., causing a large volume change. When a zirconia sintered body is obtained, such a large change in volume leads to the destruction of the sintered body. To prevent this, it is necessary to add a stabilizer such as Y 2 O 3 , CaO, or MgO.

【0004】ところが、この様な安定化されたジルコニ
ア焼結体は、100〜300℃の特定温度域で焼結体表
面層の単斜晶への相転移による強度の経時劣化が大き
く、該温度で使用した場合、焼結体表面に微細なクラッ
クが多数発生して、吸水性を示すことがある。その結
果、強度が低下し、ついには破損することがある。
However, in such a stabilized zirconia sintered body, the strength of the sintered body surface layer is greatly deteriorated with time due to phase transition to monoclinic in a specific temperature range of 100 to 300 ° C. When it is used, a large number of fine cracks may be generated on the surface of the sintered body, and the sintered body may exhibit water absorption. As a result, the strength may be reduced, and eventually it may be broken.

【0005】また、ジルコニア焼結体は、例えば室温か
ら200℃程度の低温域にて水の存在下で長時間使用す
ると、単斜晶への相転移が拡大するものがあり、焼結体
表面から内部への相転移の進行等による劣化も危惧され
ていた。
When a zirconia sintered body is used for a long time in the presence of water in a low temperature range of, for example, room temperature to about 200 ° C., the phase transition to monoclinic crystal is enlarged, and the zirconia sintered body has a large surface area. Deterioration due to the progress of phase transition from the inside to the inside was also feared.

【0006】[0006]

【発明が解決しようとする課題】そこで、前記のクラッ
クの発生等の欠点を解決するために、特公平2−35
701号公報に記載の技術では、Al23やSiO2
粘土を添加し、熱的安定性、熱水安定性を付与してい
る。また、特公平4−63024号公報に記載の技術
では、Y23の添加量、立方晶、正方晶、単斜晶の結晶
相比および結晶粒径を特定の範囲に限定することが提案
されている。
Therefore, in order to solve the above-mentioned drawbacks such as the occurrence of cracks, Japanese Patent Publication No. 2-35
In the technology described in Japanese Patent No. 701, Al 2 O 3 , SiO 2 ,
Clay is added to provide thermal stability and hot water stability. Further, in the technique described in Japanese Patent Publication No. 4-63024, it is proposed to limit the addition amount of Y 2 O 3 , the crystal phase ratio of cubic, tetragonal and monoclinic and the crystal grain size to specific ranges. Have been.

【0007】しかしながら、前記の技術では、Al2
3やSiO2、粘土の添加では、焼結体表面の単斜晶へ
の相転移を抑制、防止するには至っておらず、また、前
記の技術では、水の存在下での単斜晶への相転移の抑
制、防止をするには至っていないのが現状である。
[0007] However, in the above technique, Al 2
The addition of O 3 , SiO 2 , or clay has not been able to suppress or prevent the phase transition to monoclinic on the surface of the sintered body. At present, it has not been possible to suppress or prevent the phase transition to the phase transition.

【0008】一方、ジルコニアにTiO2を添加する系
について、特公平8−18868号公報に記載の技術
では、焼結体の着色化のためにTiO2を0.1〜3重
量%を添加しており、また、特開昭63−98816
号公報に記載の技術では、耐チッピング性向上のために
TiO2を1〜10重量%添加している。
On the other hand, with respect to a system in which TiO 2 is added to zirconia, according to the technique described in Japanese Patent Publication No. Hei 8-18868, 0.1 to 3% by weight of TiO 2 is added for coloring a sintered body. And JP-A-63-98816.
No. In the technology described in Japanese, and the addition of TiO 2 1 to 10 wt% for the chipping resistance improved.

【0009】しかし、これらの公知例,には、水中
下での安定性について実効があったかについては言及さ
れていない。また、水存在下における長期的な相転移防
止策についての記載はない。本発明は、従来のこのよう
なジルコニア質焼結体の欠点を解消し、水の存在する環
境下での相転移が少なく、安定した強度を有するジルコ
ニア質焼結体を提供することを目的とする。
[0009] However, these known examples do not mention whether the stability under water was effective. There is no description of long-term measures to prevent phase transition in the presence of water. An object of the present invention is to provide a zirconia sintered body that solves the above-mentioned drawbacks of the conventional zirconia sintered body, has less phase transition in an environment where water is present, and has stable strength. I do.

【0010】[0010]

【課題を解決するための手段】前記目的を達成するため
の請求項1の発明では、4.4〜5.4重量%のY23
を含むジルコニア質焼結体であって、0.1〜1.5重
量%のAl23及び0.03〜0.5重量%のTiO2
を含むことを特徴とするジルコニア質焼結体を要旨とす
る。
In order to achieve the above object, according to the first aspect of the present invention, 4.4 to 5.4% by weight of Y 2 O 3 is used.
A zirconia-based sintered body containing 0.1 to 1.5% by weight of Al 2 O 3 and 0.03 to 0.5% by weight of TiO 2
A zirconia sintered body characterized by including:

【0011】本発明者らは、4.4〜5.4重量%のY
23を含むジルコニア質焼結体においては、0.1〜
1.5重量%のAl23と0.03〜0.5重量%のT
iO2を含有させることにより、室温以上で水の存在下
における正方晶から単斜晶への相転移を抑制して、強度
劣化の少ない安定した強度を有するジルコニア質焼結体
を得ることを見いだし、本発明を完成した。
We have found that 4.4-5.4% by weight of Y
In a zirconia sintered body containing 2 O 3 ,
1.5% by weight of Al 2 O 3 and 0.03 to 0.5 wt% of T
It has been found that by containing iO 2 , a phase transition from tetragonal to monoclinic in the presence of water at room temperature or higher is suppressed, and a zirconia sintered body having stable strength with little strength deterioration is found. Thus, the present invention has been completed.

【0012】本発明の原理は必ずしも明確ではないが、
実験等に基づく研究では、Al23単独では、水の存在
下でのジルコニアの相転移の抑制がまだ不十分であり、
TiO2が単独では相転移の抑制効果はなく、本発明の
組成により、効果的に正方晶から単斜晶への相転移を抑
制して、強度の劣化を防止できることが分かっている。
Although the principle of the present invention is not always clear,
In studies based on experiments and the like, Al 2 O 3 alone is still insufficient to suppress the phase transition of zirconia in the presence of water,
It has been found that TiO 2 alone has no effect of suppressing phase transition, and that the composition of the present invention can effectively suppress the phase transition from tetragonal to monoclinic to prevent deterioration in strength.

【0013】また、Al23が0.1重量%未満では、
安定な焼結体を得る焼成温度範囲が狭く、高温での焼成
が必要となり、1.5重量%を越えると粒子が異常粒成
長を起こしやすくなる。一方、TiO2が0.5重量%
を越えると粒成長が起き、0.03重量%未満では有効
性がない。
When the content of Al 2 O 3 is less than 0.1% by weight,
The baking temperature range for obtaining a stable sintered body is narrow, and baking at a high temperature is required. If the baking temperature exceeds 1.5% by weight, abnormal grain growth tends to occur. On the other hand, TiO 2 is 0.5% by weight.
When the amount exceeds 0.035%, grain growth occurs.

【0014】請求項2の発明は、実質的にSiO2を含
まないことを特徴とする請求項1に記載のジルコニア質
焼結体を要旨とする。ジルコニア質焼結体中にSiO2
が存在すると、ZrO2と反応して粒界にガラス相が形
成され、若干であるが強度低下が生じる。よって、実質
的にSiO2を含まないことが望ましい。
According to a second aspect of the present invention, there is provided a zirconia sintered body according to the first aspect, wherein the zirconia sintered body is substantially free of SiO 2 . SiO 2 in zirconia sintered body
Is present, a glass phase is formed at the grain boundaries by reacting with ZrO 2, and the strength is slightly reduced. Therefore, it is desirable that SiO 2 is not substantially contained.

【0015】請求項3の発明は、実質的に単斜晶のジル
コニアを含まないことを特徴とする請求項1又は2に記
載のジルコニア質焼結体を要旨とする。ジルコニア質焼
結体中に単斜晶のジルコニアが存在すると、単斜晶自体
強度が低いものであるので、焼結体全体としても強度低
下が生じる。よって、実質的に単斜晶のジルコニアを含
まないことが望ましい。
According to a third aspect of the invention, there is provided a zirconia-based sintered body according to the first or second aspect, wherein the zirconia sintered body is substantially free of monoclinic zirconia. If monoclinic zirconia is present in the zirconia sintered body, the strength of the monoclinic crystal itself is low, so that the strength of the sintered body as a whole also decreases. Therefore, it is desirable that substantially no monoclinic zirconia be contained.

【0016】請求項4の発明は、見かけ比重が5.95
以上であることを特徴とする請求項1〜3のいずれかの
ジルコニア質焼結体を要旨とする。ジルコニア質焼結体
中の見かけ比重が5.95未満であると、焼結体の緻密
さが十分ではないので、その強度が大きく低下する。よ
って、見かけ比重が5.95以上であることが望まし
く、6.00以上であればより好ましい。
The invention according to claim 4 has an apparent specific gravity of 5.95.
The zirconia sintered body according to any one of claims 1 to 3 is characterized by the above. If the apparent specific gravity in the zirconia-based sintered body is less than 5.95, the strength of the sintered body is greatly reduced because the denseness of the sintered body is not sufficient. Therefore, the apparent specific gravity is preferably 5.95 or more, and more preferably 6.00 or more.

【0017】請求項5の発明は、平均粒子径が0.8μ
m以下であることを特徴とする請求項1〜4のいずれか
のジルコニア質焼結体を要旨とする。ジルコニア質焼結
体中の平均粒子径が0.8μmを越えると、相転移の速
度が増加して、単斜晶の生成による微細なクラックが発
生し、相移転の速度が増加して、強度劣化が速まる。よ
って、ジルコニア質焼結体中の平均粒子径が0.8μm
以下であることが望ましい。
According to a fifth aspect of the present invention, the average particle size is 0.8 μm.
The zirconia sintered body according to any one of claims 1 to 4, wherein the zirconia sintered body is not more than m. If the average particle size in the zirconia sintered body exceeds 0.8 μm, the speed of phase transition increases, fine cracks are generated due to the formation of monoclinic crystals, the speed of phase transfer increases, and the strength increases. Deterioration accelerates. Therefore, the average particle diameter in the zirconia sintered body is 0.8 μm
It is desirable that:

【0018】尚、上述した発明では、焼結体中のZrO
2は、ー部HfO2と置き換えても良い。
In the invention described above, ZrO in the sintered body is used.
2 may be replaced by -part HfO 2 .

【0019】[0019]

【発明の実施の形態】次に、本発明のジルコニア質焼結
体を、その製造方法とともに例(実施例)を挙げて説明
する。 a)まず、本実施例のジルコニア質焼結体の構成を説明
する。
Next, the zirconia sintered body of the present invention will be described with reference to examples (examples) together with a method for producing the same. a) First, the configuration of the zirconia sintered body of the present embodiment will be described.

【0020】本実施例のジルコニア質焼結体は、4.4
〜5.4重量%(即ち2.5〜3.0モル%)のY23
を含み、且つ0.1〜0.5重量%のAl23を含み、
且つ0.03〜0.5重量%のTiO2を含んでいる。
また、このジルコニア質焼結体は、不可避不純物は除き
実質的にSiO2を含まず、しかも全体が正方晶のジル
コニアで構成されており、実質的に単斜晶のジルコニア
を含んでいない。
The zirconia sintered body of this embodiment is 4.4
Y 2 O 3 of 5.4 wt% (i.e. 2.5 to 3.0 mol%)
And 0.1 to 0.5% by weight of Al 2 O 3 ,
And 0.03-0.5 contains by weight percent TiO 2.
Further, this zirconia-based sintered body does not substantially contain SiO 2 except for inevitable impurities, and is entirely made of tetragonal zirconia, and does not substantially contain monoclinic zirconia.

【0021】更に、このジルコニア質焼結体は、見かけ
比重が5.95以上であり、しかもその平均粒子径が
0.8μm以下である。 b)次に、本実施例のジルコニア質焼結体の製造方法を
説明する。 まず、オキシ塩化ジルコニウムと塩化イットリウムと
四塩化チタンとを所望の割合、即ち焼成において上述し
た組成となる様な原料割合で混合し、周知の共沈法、加
水分解法、熱分解法、金属アルコキシド法、ゾルーゲル
法、気相法等を用いて、所定量のイットリウム成分とチ
タン成分を含むジルコニア粉末を調整する。尚、別の方
法として、(Zr、Y、Tiの)硝酸塩等を使用するこ
ともできるし、(Zr、Y、Tiの)酸化物粉末を混合
しても良い。
Further, this zirconia sintered body has an apparent specific gravity of 5.95 or more and an average particle diameter of 0.8 μm or less. b) Next, a method for producing the zirconia sintered body of the present embodiment will be described. First, zirconium oxychloride, yttrium chloride, and titanium tetrachloride are mixed in a desired ratio, that is, in a raw material ratio such that the above-mentioned composition is obtained in the firing, and the well-known coprecipitation method, hydrolysis method, thermal decomposition method, and metal alkoxide are used. A zirconia powder containing a predetermined amount of a yttrium component and a titanium component is prepared by using a method, a sol-gel method, a gas phase method or the like. As another method, a nitrate (of Zr, Y, Ti) or the like may be used, or an oxide powder (of Zr, Y, Ti) may be mixed.

【0022】次に、前記ジルコニア粉末を仮焼した
後、ボールミル等を用いて粉砕する。この粉砕に際し
て、本実施例のAl23の含有量(0.1〜1.5重量
%)となる様に、所定量のアルミナ粉末を添加する。
尚、仮焼、粉砕は必要に応じて繰り返し行い、原料粉末
を得る。
Next, after the zirconia powder is calcined, it is pulverized using a ball mill or the like. At the time of this pulverization, a predetermined amount of alumina powder is added so that the Al 2 O 3 content (0.1 to 1.5% by weight) of the present embodiment is obtained.
The calcination and pulverization are repeated as necessary to obtain a raw material powder.

【0023】また、前記,の別の方法として、アル
ミニウム化合物を、前記ジルコニア粉末の形成用の混合
溶液の調製の際に添加しても良い。更に、TiO2に関
しては、前記混合溶液の調製の際にチタニウム化合物を
添加せずに、このアルミナ粉末を添加する段階でTiO
2粉末を混合しても良い。
As another method, an aluminum compound may be added during the preparation of the mixed solution for forming the zirconia powder. Further, with respect to TiO 2 , TiO 2 is added at the stage of adding the alumina powder without adding the titanium compound when preparing the mixed solution.
Two powders may be mixed.

【0024】次に、前記原料粉末を、ラバープレス、
射出成形、金型成形、押し出し成形、流し込み成形等の
周知の成形法を用いて、所望の形状(例えば有底円筒
状)に成形し、成形体を得る。 次に、前記成形体を加熱炉にいれ、約30〜100℃
/時の速度で昇温し、1400〜1550℃で1時間焼
成して、本実施例のジルコニア質焼結体を得る。
Next, the raw material powder is subjected to rubber pressing,
Using a well-known molding method such as injection molding, mold molding, extrusion molding, cast molding, or the like, it is molded into a desired shape (for example, a cylindrical shape with a bottom) to obtain a molded body. Next, the molded body is placed in a heating furnace, and is heated at about 30 to 100 ° C.
The temperature is raised at a rate of / hour and calcined at 1400 to 1550 ° C for 1 hour to obtain a zirconia sintered body of this example.

【0025】また、前記方法以外に、熱間静水圧成形法
(HIP法)を用いて、焼結体を形成しても良い。この
様にして製造された本実施例のジルコニア質焼結体中に
は、4.4〜5.4重量%のY23が固溶しており、ま
た、いわゆる第3、4成分としてAl23、TiO2
それぞれ0.1〜1.5重量%、0.03〜0.5重量
%含まれている。
In addition to the above method, the sintered body may be formed by using a hot isostatic pressing method (HIP method). In the zirconia sintered body of this example manufactured in this way, 4.4 to 5.4% by weight of Y 2 O 3 is dissolved as a solid solution. Al 2 O 3 and TiO 2 are contained in amounts of 0.1 to 1.5% by weight and 0.03 to 0.5% by weight, respectively.

【0026】そのため、温度が室温付近から200℃程
度の低温域にて、水の存在下で、正方晶ジルコニアから
単斜晶ジルコニアへの相転移量を少なくすることができ
る。そのため、焼結体の強度の経時劣化を抑制すること
ができるので、耐久性に優れている。つまり、本実施例
の構成により、安定な強度を有する高純度の部分安定化
ジルコニア質焼結体を得ることができる。 (実験例)次に、本発明の効果を確認するために行った
実験例について説明する。
Therefore, the amount of phase transition from tetragonal zirconia to monoclinic zirconia can be reduced in the presence of water in a low temperature range of about room temperature to about 200 ° C. Therefore, the deterioration of the strength of the sintered body over time can be suppressed, and the durability is excellent. That is, according to the configuration of the present embodiment, a high-purity partially stabilized zirconia sintered body having stable strength can be obtained. (Experimental Example) Next, an experimental example performed to confirm the effect of the present invention will be described.

【0027】下記表1に示す本発明の範囲内(実施例)
の試料No.1,3,5,6,7、9及び本発明の範囲外
(比較例)の試料No.1〜7の焼結体を製造するため、
表1の組成になるように、共沈法にて原料を調合後、約
1000℃で仮焼し、更に、樹脂ポットにて粉砕し、比
表面積5〜12m2/gの原料粉末を得た。
Within the scope of the present invention shown in Table 1 below (Examples)
In order to produce sintered bodies of Sample Nos. 1, 3, 5, 6, 7, and 9 and Samples Nos. 1 to 7 outside the scope of the present invention (Comparative Example),
After preparing the raw materials by the coprecipitation method so as to have the composition shown in Table 1, the raw materials were calcined at about 1000 ° C. and further pulverized in a resin pot to obtain raw material powder having a specific surface area of 5 to 12 m 2 / g. .

【0028】一方、表1の実施例の試料No.2,4,8
の焼結体は、その製造方法を変えたものであり、TiO
2及びAl23を、酸化物としてZrO2の粉砕時に入
れ、樹脂ポットにて混合し、原料粉末を得た。これらの
各原料粉末を、各々金型成形した後、ラバープレス法に
て成形し、表1に示す各温度で焼成し、焼結体を得た。
調製した粉末の組成及び焼成温度を、表1に示す。
On the other hand, Sample Nos. 2, 4, 8
The sintered body of TiO 2 is obtained by changing its manufacturing method.
2 and Al 2 O 3 were added as oxides during the pulverization of ZrO 2 and mixed in a resin pot to obtain a raw material powder. Each of these raw material powders was molded by a mold, molded by a rubber press method, and fired at each temperature shown in Table 1 to obtain a sintered body.
Table 1 shows the composition and firing temperature of the prepared powder.

【0029】そして、これらの焼成体の特性、即ち
(A)見かけ比重、(B)平均粒子径、(C)曲げ強
度、(D)正方晶量、(E)劣化試験後の表面の単斜晶
量を、下記の様にして測定した。その結果を下記表2に
示す。更に、実施例の試料No.1,4,6,7及び比較
例の試料No.2,3,4の焼結体においては、37℃で
40000時間、純水に浸漬し、表面の単斜晶量を測定
した。この結果を下記表3に示す。尚、生理食塩水に漬
けた実験も行ったが、結果は、水の場合と同じであっ
た。
The properties of these fired bodies, that is, (A) apparent specific gravity, (B) average particle size, (C) bending strength, (D) tetragonal amount, and (E) monoclinic of the surface after the deterioration test The crystallization amount was measured as follows. The results are shown in Table 2 below. Further, the sintered bodies of Sample Nos. 1, 4, 6, and 7 of the Example and Samples Nos. 2, 3, and 4 of the Comparative Example were immersed in pure water at 37 ° C. for 40,000 hours to obtain a monoclinic surface. The crystal weight was measured. The results are shown in Table 3 below. In addition, although the experiment immersed in physiological saline was also performed, the result was the same as the case of water.

【0030】諸特性の測定は以下の通り行った。尚、測
定は、全て室温にて行った。 (A)見かけ比重 JIS C 2141に従い測定した。同一条件で製造
した5試料の平均値を求めた。
The measurement of various characteristics was performed as follows. The measurements were all performed at room temperature. (A) Apparent specific gravity Measured according to JIS C 2141. The average value of five samples manufactured under the same conditions was determined.

【0031】(B)平均粒子径 ASTM E−112に規定されているインターセプト
法に従い測定した。 (C)曲げ強度 JIS R 1601に従い、4点曲げ強度測定を行っ
た。同一条件で製造した5試料の平均値を求めた。
(B) Average particle diameter Measured according to the intercept method specified in ASTM E-112. (C) Bending strength Four-point bending strength was measured according to JIS R 1601. The average value of five samples manufactured under the same conditions was determined.

【0032】(D)正万晶量 試料の表面を鏡面研磨した後、昇温100℃/時間、1
200℃1時間保持後、降温200℃/時間の後、X線
回折を行い、次式により算出した。 正万晶量(%)=100×(T111)/[(T111)+(M11
1)+(M11-1)] (T111) :正方晶ジルコニアの(111)面回折強度 (M111) :単斜晶ジルコニアの(111)面回折強度 (M11-1):単斜晶ジルコニアの(11-1)面回折強度 尚、(T111)回折ピークは、立方晶の(111)を含む
が、全て正方晶として計算した。
(D) Amount of genuine crystals After the surface of the sample was mirror-polished, the temperature was raised to 100 ° C./hour.
After holding at 200 ° C. for 1 hour, the temperature was lowered at 200 ° C./hour, X-ray diffraction was performed, and calculated by the following equation. Amount of eutectic crystals (%) = 100 × (T111) / [(T111) + (M11
1) + (M11-1)] (T111): (111) plane diffraction intensity of tetragonal zirconia (M111): (111) plane diffraction intensity of monoclinic zirconia (M11-1): ( 11-1) Plane diffraction intensity The (T111) diffraction peak includes cubic (111), but all were calculated as tetragonal.

【0033】(E)劣化試験後の表面の単斜晶量 試料の表面を鏡面研磨した後、水の入った密閉容器に入
れ、劣化試験A(121℃10時間)、劣化試験B(1
50℃5時間)後、X線回折を行い、次式により単斜晶
量を算出した。尚、表3に示す37℃40000時間浸
潰したものも同様に測定した。
(E) Amount of Monoclinic Crystal on Surface after Degradation Test The surface of the sample was mirror-polished, and then placed in a closed container containing water. Deterioration test A (121 ° C. for 10 hours), degradation test B (1
After 50 hours at 50 ° C.), X-ray diffraction was performed, and the amount of monoclinic crystal was calculated by the following equation. In addition, what was immersed at 37 ° C. for 40,000 hours shown in Table 3 was measured in the same manner.

【0034】単斜晶量(%)=100×[(M111)+(M11
-1)]/[(T111)+(M111)+(M11-1)] (T111) :正方晶ジルコニアの(111)面回折強度 (M111) :単斜晶ジルコニアの(111)面回折強度 (M11-1):単斜晶ジルコニアの(111)面回折強度 尚、(T111)回折ピークは、立方晶の(111)を含む
が、全て正方晶として計算した。
The amount of monoclinic crystal (%) = 100 × [(M111) + (M11
-1)] / [(T111) + (M111) + (M11-1)] (T111): (111) plane diffraction intensity of tetragonal zirconia (M111): (111) plane diffraction intensity of monoclinic zirconia ( M11-1): (111) plane diffraction intensity of monoclinic zirconia The (T111) diffraction peak includes cubic (111), but all were calculated as tetragonal.

【0035】以上の(D)正方晶量及び(E)単斜晶量
の測定におけるX線回折の条件は、使用X線源;CuK
α、40kV、100mA、スキャンスピード;5゜/
minで行なった。
The conditions of the X-ray diffraction in the measurement of the amount of tetragonal crystals and the amount of monoclinic crystals of (E) are as follows.
α, 40 kV, 100 mA, scan speed;
min.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】[0038]

【表3】 [Table 3]

【0039】この表1〜表3から明かな様に、本実施例
の試料No.1〜9の焼結体は、正方晶から単斜晶への相
転移量が少なく、よって、強度劣化が進まず、耐久性に
優れて好適であることが分かる。それに対して、比較例
の試料No.1〜7の焼結体は、正方晶から単斜晶への相
転移量が多く、よって、強度劣化が速く、好ましくな
い。
As is clear from Tables 1 to 3, the sintered bodies of Samples Nos. 1 to 9 of this example have a small amount of phase transition from tetragonal to monoclinic, and thus have a low strength deterioration. It does not progress, and it turns out that it is excellent in durability and suitable. On the other hand, the sintered bodies of Samples Nos. 1 to 7 of the comparative example have a large amount of phase transition from tetragonal to monoclinic, and therefore have a rapid deterioration in strength, which is not preferable.

【0040】なお、本発明は前記実施例になんら限定さ
れるものではなく、本発明の要旨を逸脱しない範囲にお
いて種々の態様で実施しうることはいうまでもない。
It is needless to say that the present invention is not limited to the above-described embodiment, and can be implemented in various modes without departing from the gist of the present invention.

【0041】[0041]

【発明の効果】以上詳述した様に、請求項1の発明で
は、所定量のAl23及びTiO2をジルコニア質焼結
体に存在させることにより、機械的強度及び耐久性等の
良好な特性を得ることができる。特に、温度が室温付近
からの水の存在下で、正方晶から単斜晶への相転移量の
少ないので、安定した強度を有する高純度の部分安定化
ジルコニア焼結体を得ることができる。
As described above in detail, according to the first aspect of the present invention, by providing a predetermined amount of Al 2 O 3 and TiO 2 in the zirconia sintered body, good mechanical strength and durability can be obtained. Characteristics can be obtained. In particular, since there is little phase transition from tetragonal to monoclinic in the presence of water at around room temperature, a highly pure partially stabilized zirconia sintered body having stable strength can be obtained.

【0042】請求項2の発明では、実質的にSiO2
含まないので、強度低下が生じにくく好適である。請求
項3の発明では、実質的に単斜晶のジルコニアを含まな
いので、強度低下が生じにくく好適である。
According to the second aspect of the present invention, since it does not substantially contain SiO 2 , it is preferable that the strength is hardly reduced. According to the third aspect of the present invention, since substantially no monoclinic zirconia is contained, the strength is hardly reduced, which is preferable.

【0043】請求項4の発明では、見かけ比重が5.9
5以上であるので、強度が大きく低下することなく、好
適である。請求項5の発明では、平均粒子径が0.8μ
m以下であるので、相転移の速度が低く、強度劣化の速
度が低減するので、好適である。
According to the fourth aspect of the present invention, the apparent specific gravity is 5.9.
Since it is 5 or more, the strength is not significantly reduced, and is preferable. In the invention of claim 5, the average particle diameter is 0.8 μm.
m or less, which is preferable because the speed of phase transition is low and the speed of strength deterioration is reduced.

【0044】従って、本発明のジルコニア質焼結体は、
水の存在下での安定性を増したことにより、水の存在す
る環境下の用途への使用が期待される。例えば、フォー
クやスプーンなどの食器類や釣り糸の糸ガイド、シーナ
イフ等のスポーツ、レジャー用品から装飾品等の構成材
料として好適である。また、粉砕用ボール、ベアリング
ボール、メカニカルシール、糸道ガイド等の産業用機械
器具の部品の構成材料や摺動部材としても好適である。
また、手術用機器の構成材料や、歯根、歯冠、人工骨や
人工関節部材などの体液に長時間おかれる医療用材料と
しても好適である。
Therefore, the zirconia sintered body of the present invention
The increased stability in the presence of water is expected to be used in applications where water is present. For example, it is suitable as a constituent material of tableware such as forks and spoons, fishing line guides, sports and leisure goods such as sea knives, and decorative articles. It is also suitable as a constituent material or a sliding member for parts of industrial machinery such as crushing balls, bearing balls, mechanical seals, thread guides, and the like.
Further, it is also suitable as a constituent material of a surgical instrument or a medical material which is placed in a body fluid such as a tooth root, a crown, an artificial bone or an artificial joint member for a long time.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 4.4〜5.4重量%のY23を含むジ
ルコニア質焼結体であって、 0.1〜1.5重量%のAl23及び0.03〜0.5
重量%のTiO2を含むことを特徴とするジルコニア質
焼結体。
1. A zirconia sintered body containing 4.4 to 5.4% by weight of Y 2 O 3 , wherein 0.1 to 1.5% by weight of Al 2 O 3 and 0.03 to 0%. .5
A zirconia sintered body characterized by containing TiO 2 by weight.
【請求項2】 実質的にSiO2を含まないことを特徴
とする前記請求項1に記載のジルコニア質焼結体。
2. The zirconia sintered body according to claim 1, wherein the zirconia sintered body does not substantially contain SiO 2 .
【請求項3】 実質的に単斜晶のジルコニアを含まない
ことを特徴とする前記請求項1又は2に記載のジルコニ
ア質焼結体。
3. The zirconia sintered body according to claim 1, wherein the zirconia sintered body is substantially free of monoclinic zirconia.
【請求項4】 見かけ比重が5.95以上であることを
特徴とする前記請求項1〜3のいずれかのジルコニア質
焼結体。
4. The zirconia sintered body according to claim 1, wherein an apparent specific gravity is 5.95 or more.
【請求項5】 平均粒子径が0.8μm以下であること
を特徴とする前記請求項1〜4のいずれかのジルコニア
質焼結体。
5. The zirconia sintered body according to claim 1, wherein the average particle diameter is 0.8 μm or less.
JP9276046A 1997-10-08 1997-10-08 Zirconia-based sintered compact Pending JPH11116328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9276046A JPH11116328A (en) 1997-10-08 1997-10-08 Zirconia-based sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9276046A JPH11116328A (en) 1997-10-08 1997-10-08 Zirconia-based sintered compact

Publications (1)

Publication Number Publication Date
JPH11116328A true JPH11116328A (en) 1999-04-27

Family

ID=17564042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9276046A Pending JPH11116328A (en) 1997-10-08 1997-10-08 Zirconia-based sintered compact

Country Status (1)

Country Link
JP (1) JPH11116328A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001012132A1 (en) * 1999-08-16 2001-02-22 3M Espe Ag Blank comprised of a zirconium oxide ceramic with an oxidic additive and the use thereof
JP2001080962A (en) * 1999-07-09 2001-03-27 Tosoh Corp Zirconia sintered compact and its production
JP2002362972A (en) * 2001-06-05 2002-12-18 Kyocera Corp Zirconia ceramics for living organism and method of manufacturing for the same
JP2005306664A (en) * 2004-04-21 2005-11-04 Nitsukatoo:Kk Hollow body shaped zirconia sintered compact and method of manufacturing the same
WO2008013099A1 (en) * 2006-07-25 2008-01-31 Tosoh Corporation Sintered zirconia having high light transmission and high strength, use of the same and process for production thereof
JP2010137998A (en) * 2008-12-09 2010-06-24 Denso Corp Partially stabilized zirconia ceramic and producing method of the same
JP4926287B1 (en) * 2011-07-15 2012-05-09 菊水化学工業株式会社 Implant fixture and manufacturing method thereof
JP2013180180A (en) * 2012-03-05 2013-09-12 Kikusui Chemical Industries Co Ltd Implant fixture
JP2014218389A (en) * 2013-05-02 2014-11-20 クラレノリタケデンタル株式会社 Zirconia sintered body, zirconia composition, zirconia calcined body, and dental prosthetic appliance
JP2014218418A (en) * 2013-05-10 2014-11-20 クラレノリタケデンタル株式会社 Zirconia sintered body, zirconia composition, zirconia calcined body, and prosthesis for dentistry
WO2015098453A1 (en) 2013-12-27 2015-07-02 株式会社 村田製作所 Separator for solid electrolyte fuel cells, and solid electrolyte fuel cell
US9758435B2 (en) 2011-03-17 2017-09-12 3M Innovative Properties Company Dental ceramic article, process of production and use thereof
JP2023109721A (en) * 2022-01-27 2023-08-08 東ソー株式会社 Powder and manufacturing method thereof
US11927561B2 (en) 2017-11-03 2024-03-12 Denso Corporation Solid electrolyte for gas sensor and gas sensor

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001080962A (en) * 1999-07-09 2001-03-27 Tosoh Corp Zirconia sintered compact and its production
AU762841B2 (en) * 1999-08-16 2003-07-03 3M Espe Ag Blank comprised of a zirconium oxide ceramic with an oxidic additive and the use thereof
US6713421B1 (en) 1999-08-16 2004-03-30 3M Espe Ag Blank comprised of a zirconium oxide ceramic with an oxide additive and the use thereof
AU762841C (en) * 1999-08-16 2004-05-27 3M Espe Ag Blank comprised of a zirconium oxide ceramic with an oxidic additive and the use thereof
WO2001012132A1 (en) * 1999-08-16 2001-02-22 3M Espe Ag Blank comprised of a zirconium oxide ceramic with an oxidic additive and the use thereof
JP2002362972A (en) * 2001-06-05 2002-12-18 Kyocera Corp Zirconia ceramics for living organism and method of manufacturing for the same
JP2005306664A (en) * 2004-04-21 2005-11-04 Nitsukatoo:Kk Hollow body shaped zirconia sintered compact and method of manufacturing the same
US8785008B2 (en) 2006-07-25 2014-07-22 Tosoh Corporation Zirconia sintered bodies with high total light transmission and high strength, uses of the same, and process for producing the same
WO2008013099A1 (en) * 2006-07-25 2008-01-31 Tosoh Corporation Sintered zirconia having high light transmission and high strength, use of the same and process for production thereof
EP2610232A3 (en) * 2006-07-25 2016-04-13 Tosoh Corporation Zirconia sintered bodies with high total light transmission and high strength, uses of the same, and process for production thereof
JP2010137998A (en) * 2008-12-09 2010-06-24 Denso Corp Partially stabilized zirconia ceramic and producing method of the same
US9758435B2 (en) 2011-03-17 2017-09-12 3M Innovative Properties Company Dental ceramic article, process of production and use thereof
JP4926287B1 (en) * 2011-07-15 2012-05-09 菊水化学工業株式会社 Implant fixture and manufacturing method thereof
JP2013180180A (en) * 2012-03-05 2013-09-12 Kikusui Chemical Industries Co Ltd Implant fixture
JP2014218389A (en) * 2013-05-02 2014-11-20 クラレノリタケデンタル株式会社 Zirconia sintered body, zirconia composition, zirconia calcined body, and dental prosthetic appliance
JP2014218418A (en) * 2013-05-10 2014-11-20 クラレノリタケデンタル株式会社 Zirconia sintered body, zirconia composition, zirconia calcined body, and prosthesis for dentistry
WO2015098453A1 (en) 2013-12-27 2015-07-02 株式会社 村田製作所 Separator for solid electrolyte fuel cells, and solid electrolyte fuel cell
US11927561B2 (en) 2017-11-03 2024-03-12 Denso Corporation Solid electrolyte for gas sensor and gas sensor
JP2023109721A (en) * 2022-01-27 2023-08-08 東ソー株式会社 Powder and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP5366398B2 (en) Composite ceramics and manufacturing method thereof
Palmero et al. Towards long lasting zirconia-based composites for dental implants. Part I: Innovative synthesis, microstructural characterization and in vitro stability
JP3368090B2 (en) Zirconia-based sintered body, method for producing the same, crushing component material and orthodontic bracket material
KR100639686B1 (en) Zirconia alumina composite ceramic material and production method therefor
EP1382586B1 (en) ZrO2-Al2O3 composite ceramic material and production method thereof
US7056851B2 (en) ZrO2-Al2O3 composite ceramic material
US7148167B2 (en) Alumina/zirconia ceramics and method of producing the same
JP5396691B2 (en) Translucent yttria-containing zirconia sintered body, method for producing the same, and use thereof
US8093168B2 (en) ZrO2-Al2O3 composite ceramic material and production method therefor
JPH11116328A (en) Zirconia-based sintered compact
JPH10101418A (en) Zirconia-based composite ceramic sintered compact and its production
EP1514856B1 (en) Alumina/zirconia ceramics and method of producing the same
JP5018142B2 (en) Translucent zirconia sintered body and method for producing the same
CN100522870C (en) Composite ceramic and method for producing same
KR101575561B1 (en) Manufacturing Method of Polycrystalline Aluminum Oxynitride with Improved Transparency
US4975397A (en) Sintered molding, a method for producing it and its use
JP2004059374A (en) Colored zirconia-based composite ceramic sintered compact and method of manufacturing the same
JPH08117248A (en) Orthodontics bracket and its manufacture
JP2000191372A (en) Zirconia sintered body for medical material and its production
JP2005075659A (en) Ceramic sintered compact, method for producing the same, and biomaterial
JP3736649B2 (en) Zirconia sintered body, method for producing the same, and pulverized component material
JP2517249B2 (en) High-strength zirconia-based HIP sintered body
US9353012B2 (en) Charge-compensating dopant stabilized alumina-zirconia ceramic materials and related materials, apparatus, and methods
JPH03170148A (en) Dental orthodontic bracket
JP2537132B2 (en) High toughness ceramic sintered body excellent in heat resistance stability and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060530