JP2730674B2 - Growth method of rare earth hexaboride single crystals - Google Patents

Growth method of rare earth hexaboride single crystals

Info

Publication number
JP2730674B2
JP2730674B2 JP7349874A JP34987495A JP2730674B2 JP 2730674 B2 JP2730674 B2 JP 2730674B2 JP 7349874 A JP7349874 A JP 7349874A JP 34987495 A JP34987495 A JP 34987495A JP 2730674 B2 JP2730674 B2 JP 2730674B2
Authority
JP
Japan
Prior art keywords
boron
rare earth
raw material
single crystal
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7349874A
Other languages
Japanese (ja)
Other versions
JPH09169597A (en
Inventor
茂樹 大谷
芳夫 石沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Original Assignee
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO filed Critical KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority to JP7349874A priority Critical patent/JP2730674B2/en
Publication of JPH09169597A publication Critical patent/JPH09169597A/en
Application granted granted Critical
Publication of JP2730674B2 publication Critical patent/JP2730674B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Electron Sources, Ion Sources (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、六ホウ化希土類
単結晶の育成法に関するものである。さらに詳しくは、
この発明は、走査型電子顕微鏡や電子描画装置等に利用
される高輝度熱電子放射材料として有用な六ホウ化希土
類単結晶の育成法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing rare earth hexaboride single crystals. For more information,
The present invention relates to a method for growing a rare earth hexaboride single crystal useful as a high-brightness thermionic emission material used in a scanning electron microscope, an electron drawing apparatus, and the like.

【0002】[0002]

【従来の技術とその課題】従来より、フローティング・
ゾーン法によってLaB6 やCeB6 の単結晶が育成さ
れており、これらの六ホウ化希土類単結晶は高輝度熱電
子放射材料として走査型電子顕微鏡や電子描画装置等に
利用されている。また、これらの固溶体である(La,
Ce)B6 単結晶も、LaB6 、CeB6 と同様に優れ
た電子放射材料であることが知られている。
[Prior art and its problems]
Single crystals of LaB 6 and CeB 6 are grown by the zone method, and these rare earth hexaboride single crystals are used as high-brightness thermionic emission materials in scanning electron microscopes, electron drawing apparatuses, and the like. These solid solutions (La,
It is known that the Ce) B 6 single crystal is also an excellent electron-emitting material like LaB 6 and CeB 6 .

【0003】ただ、このように優れた性能の熱電子放射
材料であっても、近年では、その性能のさらなる向上が
求められており、特に、高輝度熱電子放射材料のための
より長寿命な高品質単結晶の実現が望まれている。そこ
で、LaB6 、(La,Ce)B6 、CeB6 熱陰極材
の組成をホウ素過剰に制御する場合には、蒸気圧が低下
し、熱陰極材の寿命が長くなることが期待されることか
ら、従来のフローティング・ゾーン法におけるこれら六
ホウ化物単結晶の育成における定比組成に代えてホウ素
含量の多い単結晶を育成するために、融帯(液)のホウ
素成分を多くすることが考えられる。
[0003] However, even with such a high-performance thermoelectron-emitting material, further improvement in its performance has been demanded in recent years. The realization of high quality single crystals is desired. Therefore, when the composition of the LaB 6 , (La, Ce) B 6 , and CeB 6 hot cathode materials is controlled to be excessively boron, it is expected that the vapor pressure is reduced and the life of the hot cathode materials is prolonged. From the above, in order to grow a single crystal having a high boron content instead of the stoichiometric composition in growing these hexaboride single crystals in the conventional floating zone method, it is conceivable to increase the boron component in the melt zone (liquid). Can be

【0004】しかしながら、実際には、ホウ素成分過剰
にすると融帯が原料の中に侵入し、融帯が保持できなく
なり、結晶育成が不可能になる等の問題がある。この発
明は、以上のとおりの事情に鑑みてなされたものであっ
て、従来技術の限界を克服し、フローティング・ゾーン
法を用いて、より寿命の長い、高輝度熱電子放射材料等
として有用な、ホウ素過剰の六ホウ化希土類単結晶の改
善された育成方法を提供することを目的としている。
[0004] However, in practice, when the boron component is excessive, there is a problem that the melt zone invades the raw material, the melt zone cannot be maintained, and crystal growth becomes impossible. The present invention has been made in view of the circumstances as described above, and overcomes the limitations of the conventional technology, and is useful as a long-life, high-brightness thermionic emission material using a floating zone method. It is an object of the present invention to provide an improved method of growing a boron-excess rare earth hexaboride single crystal.

【0005】[0005]

【課題を解決するための手段】この発明は、上記の課題
を解決するものとして、フローティング・ゾーン法によ
るRe6+x (ReはLa、Ceまたは(La,Ce)を
示し、0.05≦x≦0.2である)で表わされる六ホ
ウ化希土類単結晶の育成法であって、定比組成よりもホ
ウ素成分の多い原料棒を用いることで、長寿命であり、
結晶欠陥(亜粒界)を含まない高品質なホウ素過剰の六
ホウ化希土類単結晶を得ることを特徴とする六ホウ化希
土類単結晶の育成法を提供する。
The present invention solves the above-mentioned problems by providing Re 6 + x (where Re is La, Ce or (La, Ce)) by the floating zone method, and 0.05 ≦ x ≦ 0.2) is a method for growing a rare earth hexaboride single crystal represented by the formula:
A method for growing a rare earth hexaboride single crystal characterized by obtaining a high-quality boron-excess rare earth hexaboride single crystal containing no crystal defects (sub-grain boundaries).

【0006】[0006]

【発明の実施の形態】この発明は、上記のとおりの構成
として、フローティング法による六ホウ化希土類単結晶
の育成法において、定比組成よりもホウ素成分の多い原
料棒を用いることにより、長寿命で、結晶欠陥(亜粒
界)を含まない高品質なホウ素過剰の六ホウ化希土類単
結晶が得られるとの知見に基づいている。
BEST MODE FOR CARRYING OUT THE INVENTION According to the present invention, as described above, in a method for growing a rare earth hexaboride single crystal by a floating method, a raw material rod having a boron component larger than a stoichiometric composition is used to provide a long life. Thus, it is based on the knowledge that a high-quality boron-excess rare earth hexaboride single crystal containing no crystal defects (sub-grain boundaries) can be obtained.

【0007】フローティング・ゾーン法によるこの発明
のホウ素過剰な六ホウ化希土類単結晶の育成法について
説明すると、まず原料棒の作製が必要になる。そこで、
たとえば、希土類六ホウ化物粉末とホウ素成分を多量に
含有する粉末を各々ゴム袋に充填し、ラバープレス(2
000kg/cm2 )により圧粉棒を作製する。この圧
粉棒を真空中または不活性ガス中で千数百℃に加熱し、
ホウ素成分を多量に含有するホウ素含有原料焼結棒を作
製する。
The method of growing a boron-excess rare earth hexaboride single crystal of the present invention by the floating zone method will be described. First, it is necessary to prepare a raw material rod. Therefore,
For example, a rare earth hexaboride powder and a powder containing a large amount of a boron component are each filled in a rubber bag, and the rubber press (2)
2,000 kg / cm 2 ) to prepare a dust bar. This powder bar is heated in a vacuum or an inert gas to a few hundred degrees centigrade,
A boron-containing raw material sintered rod containing a large amount of a boron component is manufactured.

【0008】この場合、原料棒については、通常、Re
6 の定比組成に対して、ホウ素が、原子比でB/Re
>20程度過剰になるようにする。より好ましくはB/
Re>30程度とする。次いで、図1に例示したよう
に、得られたホウ素含有原料焼結棒(6)を上軸(2)
にホルダー(3)を介してセットし、下軸(20)には
希土類ホウ化物焼結棒(5)をホルダー(30)を介し
てセットする。つぎにホウ素含有原料焼結棒(6)と希
土類ホウ化物焼結棒(5)とその周辺を、ワークコイル
(4)に高周波電流を流して試料に誘導電流を生じさせ
ることで発生するジュール熱によって加熱し、溶融固着
させる。
In this case, the raw material rod is usually
With respect to the stoichiometric composition of B 6 , boron has an atomic ratio of B / Re
> 20 excess. More preferably B /
Re> about 30. Next, as illustrated in FIG. 1, the obtained boron-containing raw material sintered rod (6) is
And a rare-earth boride sintered rod (5) is set on the lower shaft (20) via the holder (30). Next, Joule heat generated by causing a high-frequency current to flow through the work coil (4) to generate an induced current in the sample is generated between the boron-containing raw material sintered rod (6), the rare earth boride sintered rod (5), and the periphery thereof. To melt and fix.

【0009】その後、ホウ素含有原料焼結棒(6)をわ
ずかに移動させて初期融帯(7)を形成する。その後、
上軸(2)と下軸(20)をゆっくりと下方に移動させ
て単結晶(8)を育成する。このとき、下軸(20)の
移動速度、すなわち、結晶育成速度は、育成中、常に一
定に保持する。その範囲は、通常は、0.2〜3.0c
m/hr程度とする。より好ましくは、1.0cm/h
r程度であることが望ましい。また、上軸(2)の移動
速度、すなわち、ホウ素含有原料焼結棒(6)の融帯へ
の供給速度は、ホウ素含有原料焼結棒(6)の低い密度
を補償するように、通常は、10〜30%程度高く設定
する。
Thereafter, the boron-containing raw material sintering rod (6) is slightly moved to form an initial molten zone (7). afterwards,
The single crystal (8) is grown by slowly moving the upper axis (2) and the lower axis (20) downward. At this time, the moving speed of the lower shaft (20), that is, the crystal growth speed is always kept constant during the growth. The range is usually 0.2-3.0c
m / hr. More preferably, 1.0 cm / h
It is desirably about r. Further, the moving speed of the upper shaft (2), that is, the feeding speed of the boron-containing raw material sintering rod (6) to the melt zone is usually set so as to compensate for the low density of the boron-containing raw material sintering rod (6). Is set about 10 to 30% higher.

【0010】育成雰囲気としては、数気圧程度までのA
rまたはHeなどの不活性ガスを用いるのが好ましい
が、これは高周波ワークコイル(4)で発生する放電を
防止するためである。この結晶育成における初期の3〜
4cm程度のホウ素含有原料焼結棒(6)上の融帯移動
の段階において、ほぼ加熱電力が一定に保持され、育成
開始時に導入される結晶粒界が除去される。それ以後の
ホウ素成分を多量に含有するホウ素含有原料焼結棒
(6)上の融帯移動においては、融帯中にホウ素成分が
増加し、育成温度が低下する。この育成温度の低下につ
いては、ReB6 の定比組成の場合の育成時の加熱電力
を100とすると、およそ40〜90程度において、定
比組成よりホウ素成分の多いこの発明が目的とする希土
類ホウ化物単結晶が得られる。なお、ホウ素との共存状
態となり単結晶が得られなくなる状態は、ホウ素を析出
し始める直前の組成が、ホウ素と希土類金属との原子比
としてB/Re=6.2を超えた組成となっている。こ
の状態は、融帯の移動速度等の条件を制御することで回
避することができる。
[0010] As a growing atmosphere, A
It is preferable to use an inert gas such as r or He, in order to prevent discharge generated in the high-frequency work coil (4). The initial 3 ~
At the stage of moving the molten zone on the boron-containing raw material sintered rod (6) of about 4 cm, the heating power is kept substantially constant, and the crystal grain boundaries introduced at the start of growth are removed. In the subsequent movement of the melt zone on the boron-containing raw material sintering rod (6) containing a large amount of the boron component, the boron component increases in the melt zone and the growth temperature decreases. Regarding the decrease in the growth temperature, assuming that the heating power at the time of growth in the case of the stoichiometric composition of ReB 6 is 100, the rare-earth borane which the present invention aims at has a boron component larger than the stoichiometric composition in about 40 to 90. Is obtained. The state in which coexistence with boron and a single crystal cannot be obtained is such that the composition immediately before starting to precipitate boron has a composition in which the atomic ratio of boron to the rare earth metal exceeds B / Re = 6.2. I have. This state can be avoided by controlling conditions such as the moving speed of the zone.

【0011】以上のとおりのこの発明の育成方法におい
ては、ホウ素過剰な融液の原料棒への侵入が生じること
もなく、再現性よく粒界のない良質な単結晶が得られ
る。また、この発明の育成法では、高周波加熱以外の加
熱法、たとえば、赤外線集中加熱法等であってもよい。
以下、実施例を示してさらに詳しくこの発明のホウ素過
剰の六ホウ化希土類単結晶の育成法について説明する。
In the growing method of the present invention as described above, a high-quality single crystal having no grain boundaries can be obtained with good reproducibility without intrusion of the boron-excess melt into the raw material rod. Further, in the growing method of the present invention, a heating method other than high-frequency heating, for example, an infrared concentrated heating method or the like may be used.
Hereinafter, the method for growing a boron-excess rare earth hexaboride single crystal of the present invention will be described in more detail with reference to examples.

【0012】[0012]

【実施例】ホウ素粉末とともに、LaB6 粉末、CeB
6 粉末、並びにLaB6 とCeB6 の混合粉末(モル比
で7:3)のそれぞれを、直径10mmのゴム袋に充填
し円柱形にした。これをラバープレス(2000kg/
cm2 )により圧粉体を得た。この圧粉体を真空中、1
800℃で加熱し、直径9mm、長さ12cm程度の焼
結棒を得た。
[Example] LaB 6 powder, CeB together with boron powder
6 powder, and LaB 6 and mixed powder of CeB 6 (molar ratio 7: 3) to each, and the cylindrical packed into a rubber bag diameter 10 mm. This is pressed with a rubber press (2000kg /
cm 2 ) to obtain a green compact. This green compact is placed in a vacuum for 1
It was heated at 800 ° C. to obtain a sintered rod having a diameter of 9 mm and a length of about 12 cm.

【0013】ホウ素含有原料焼結棒の組成は、B/Re
≒30である。得られたホウ素含有原料焼結棒(6)を
上軸(2)にホルダー(3)を介してセットし、下軸
(20)には希土類ホウ化物焼結棒(5)をホルダー
(30)を介してセットした。つぎにホウ素含有原料焼
結棒(6)と希土類ホウ化物焼結棒(5)を加熱し溶融
固着させた後、ホウ素含有原料焼結棒(6)を上方に5
cm移動させ初期融帯(7)を形成した。その後、上軸
(2)と下軸(20)をゆっくりと下方に移動させて単
結晶(8)を育成した。
The composition of the boron-containing raw material sintered rod is B / Re
$ 30. The obtained boron-containing raw material sintered rod (6) is set on an upper shaft (2) via a holder (3), and a rare earth boride sintered rod (5) is mounted on a lower shaft (20) with a holder (30). Set through. Next, the boron-containing raw material sintered rod (6) and the rare earth boride sintered rod (5) are heated and fixed by melting.
cm to form an initial melt zone (7). Thereafter, the upper axis (2) and the lower axis (20) were slowly moved downward to grow a single crystal (8).

【0014】具体的には、育成炉に7気圧のArを充填
した後、高周波ワークコイル(4)(内径16mm、3
巻2段)により希土類ホウ化物焼結棒(5)の下端部を
溶かし初期融帯を形成し、1cm/hrの速度で6時間
に下方に移動させた。添付した図面の図2は、LaB
6+x の場合の加熱電力と得られる結晶の組成を融帯移動
距離の関数として示したものである。
Specifically, after filling the growth furnace with 7 atm of Ar, the high-frequency work coil (4) (inner diameter 16 mm, 3 mm
The lower end of the rare-earth boride sintered rod (5) was melted by a two-step winding to form an initial melt zone, and was moved downward at a speed of 1 cm / hr for 6 hours. FIG. 2 of the accompanying drawings shows that LaB
It shows the heating power and the resulting crystal composition for 6 + x as a function of the zone travel distance.

【0015】従来の方法では、結晶育成が困難であった
1%以上ホウ素過剰な結晶が、加熱電力で約17%以上
下がった部分で得られ、加熱電力が40%以上下がった
部分から、すなわち、ホウ素とランタンの原子比B/R
eが6.2を越えた部分よりホウ素が析出し始めた。そ
の間に得られた結晶の長さは5mm程度であった。Ce
6+X 、(La0.7 Ce0.8 )B6+x の場合も、LaB
6+x 同様の結果が得られた。ただ、加熱電力が約30%
減少するとホウ素を析出し始め、1%以上ホウ素過剰な
組成を有する単結晶が得られる幅がLaB6 に比較し
て、少し狭い傾向にあった。
In the conventional method, a 1% or more boron-excess crystal, which is difficult to grow, is obtained at a portion where the heating power is reduced by about 17% or more, and from a portion where the heating power is reduced by 40% or more. , Atomic ratio of boron to lanthanum B / R
Boron began to precipitate from the portion where e exceeded 6.2. The length of the crystal obtained during that time was about 5 mm. Ce
In the case of B 6 + X and (La 0.7 Ce 0.8 ) B 6 + x , LaB
Similar results were obtained with 6 + x . However, heating power is about 30%
When decreasing start to precipitate boron, width single crystals having a boron excess composition 1% or more as compared to the LaB 6, was in the slightly narrower trend.

【0016】[0016]

【発明の効果】この発明により、以上詳しく説明したと
おり、結晶欠陥(亜粒界)を含まない高品質なホウ素過
剰の六ホウ化希土類単結晶を育成して得られる。これに
より、六ホウ化希土類単結晶を長寿命な高輝度熱電子放
射材料として利用することが可能になる。
According to the present invention, as described in detail above, a high-quality boron-excess rare earth hexaboride single crystal containing no crystal defects (sub-grain boundaries) can be grown and obtained. This makes it possible to use the rare earth hexaboride single crystal as a long-lived high-brightness thermionic emission material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】単結晶の育成装置の概略図である。FIG. 1 is a schematic diagram of an apparatus for growing a single crystal.

【図2】LaB6+x の場合の加熱電力と得られる結晶の
組成を融帯移動距離の関数として示した図である。
FIG. 2 is a diagram showing the heating power and the composition of the obtained crystal in the case of LaB 6 + x as a function of the fusion zone movement distance.

【符号の説明】[Explanation of symbols]

1 上軸駆動部 10 下軸駆動部 2 上軸 20 下軸 3 ホルダー 30 ホルダー 4 高周波ワークコイル 5 希土類ホウ化物焼結棒 6 ホウ素含有原料焼結棒 7 融帯 DESCRIPTION OF SYMBOLS 1 Upper shaft drive part 10 Lower shaft drive part 2 Upper shaft 20 Lower shaft 3 Holder 30 Holder 4 High frequency work coil 5 Rare earth boride sintered rod 6 Boron-containing raw material sintered rod 7 Fusion zone

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 フローティング・ゾーン法によるReB
6+x (ReはLa、Ceまたは(La,Ce)を示し、
0.05≦x≦0.2である)で表わされる六ホウ化希
土類単結晶の育成法であって、定比組成よりホウ素成分
を多く含む原料棒を用いて単結晶を育成することを特徴
とするホウ素過剰の六ホウ化希土類単結晶の育成法。
1. ReB by the floating zone method
6 + x (Re indicates La, Ce or (La, Ce),
A rare earth hexaboride single crystal represented by the following formula: 0.05 ≦ x ≦ 0.2), characterized in that the single crystal is grown using a raw material rod containing a larger amount of a boron component than a stoichiometric composition. To grow a boron-excess rare earth hexaboride single crystal.
【請求項2】 ReB6 の定比組成に対して、原料棒の
ホウ素含有量を原子比でB/Re>20とする請求項1
の育成法。
2. The method according to claim 1, wherein the boron content of the raw material rod is B / Re> 20 in atomic ratio with respect to the stoichiometric composition of ReB 6.
Nurturing method.
【請求項3】 結晶育成速度を0.2〜3.0cm/h
rとする請求項1または2の育成法。
3. A crystal growth rate of 0.2 to 3.0 cm / h.
3. The method according to claim 1, wherein r is r.
【請求項4】 原料棒の融帯への供給速度は、結晶育成
速度よりも10〜30%高くする請求項1ないし3のい
ずれかの育成法。
4. The growth method according to claim 1, wherein the feed rate of the raw material rods to the melt zone is higher than the crystal growth rate by 10 to 30%.
【請求項5】 ReB6 の定比組成における育成時の加
熱電力に対して、より低い、40〜90%レベル程度で
育成する請求項1ないし4のいずれかの育成法。
5. The growth method according to claim 1, wherein the growth is carried out at a level of about 40 to 90% lower than the heating power during the growth in the stoichiometric composition of ReB 6 .
JP7349874A 1995-12-21 1995-12-21 Growth method of rare earth hexaboride single crystals Expired - Lifetime JP2730674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7349874A JP2730674B2 (en) 1995-12-21 1995-12-21 Growth method of rare earth hexaboride single crystals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7349874A JP2730674B2 (en) 1995-12-21 1995-12-21 Growth method of rare earth hexaboride single crystals

Publications (2)

Publication Number Publication Date
JPH09169597A JPH09169597A (en) 1997-06-30
JP2730674B2 true JP2730674B2 (en) 1998-03-25

Family

ID=18406703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7349874A Expired - Lifetime JP2730674B2 (en) 1995-12-21 1995-12-21 Growth method of rare earth hexaboride single crystals

Country Status (1)

Country Link
JP (1) JP2730674B2 (en)

Also Published As

Publication number Publication date
JPH09169597A (en) 1997-06-30

Similar Documents

Publication Publication Date Title
US4303465A (en) Method of growing monocrystals of corundum from a melt
JP2730674B2 (en) Growth method of rare earth hexaboride single crystals
CN114985737B (en) Multi-element hexaboride [100] monocrystal and preparation method thereof
JP3755021B2 (en) Growth method of rare earth hexaboride single crystals
JPH1095699A (en) Growth of zirconium diboride single crystal
US6027670A (en) Rare earth hexaboride electron-emitting material
JP2949212B2 (en) Growth method of lanthanum hexaboride single crystal
JP2642882B2 (en) Growth method of tungsten diboride single crystal
JP2997762B2 (en) Growth method of calcium hexaboride crystals
JP2580523B2 (en) Growth method of titanium diboride single crystal
US5690732A (en) Method of automatically growing a single crystal
JPH05319991A (en) Method for growing lanthanum hexaboride single crystal
JPH0524992A (en) Method for growing lanthanum hexaboride single crystal
JP2997760B2 (en) Method for producing hafnium diboride single crystal
Tsai et al. Growth of (FexMg1− x) 2SiO4 single crystals by the double pass floating zone method
JPH0686358B2 (en) Cerium boride single crystal and its growth method
JPH0686357B2 (en) Lanthanum boride single crystal and its growth method
JPH04198093A (en) Method for growing lanthanum boride single crystal
JPS5812240B2 (en) Method for producing hafnium carbide crystals
JPH07115993B2 (en) Method for growing lanthanum boride single crystal
JP2929007B1 (en) Method for growing single crystal of group Va diboride
JPS6086098A (en) Growth of single crystal of lanthanum boride
JPH0688874B2 (en) Lanthanum boride single crystal and its growth method
US3442719A (en) Method of growing a crystal or crystalline layer by means of a direct current arc discharge
JPH09328399A (en) Production of potassium niobate single crystal

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term