JPS6086098A - Growth of single crystal of lanthanum boride - Google Patents

Growth of single crystal of lanthanum boride

Info

Publication number
JPS6086098A
JPS6086098A JP58194674A JP19467483A JPS6086098A JP S6086098 A JPS6086098 A JP S6086098A JP 58194674 A JP58194674 A JP 58194674A JP 19467483 A JP19467483 A JP 19467483A JP S6086098 A JPS6086098 A JP S6086098A
Authority
JP
Japan
Prior art keywords
composition
rod
zone
melting zone
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58194674A
Other languages
Japanese (ja)
Inventor
Shigeki Otani
茂樹 大谷
Takao Tanaka
高穂 田中
Yoshio Ishizawa
石沢 芳夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP58194674A priority Critical patent/JPS6086098A/en
Publication of JPS6086098A publication Critical patent/JPS6086098A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:In the titled growth by floating zone method, to obtain high-quality and large-sized single crystal easily in good reproducibility, by specifying a composition of initial melting zone, regulating a composition of a sintered rod of feed rod. CONSTITUTION:The end of the feed rod 3 is melted under given Ar pressure by induction heating of high frequency generated from the RF coil 6, the melting zone 5 is formed, it is supported by the other rod 3', and crystal is grown to give the crystal rod 4 while being rotated and dropped at a given speed. The composition of the initial melting zone 5 is changed from B/La=6.0, the melting point of the melting zone 5 is lowered, and the composition of the rod 3 is regulated to make the composition of the melting zone constant. To be concrete, (1) the composition of the rod 3 is B/La=6.0, and the initial melting composition is B/La=5.4. Or, (2) the composition of the rod 3 is changed from B/La=6.0 to B excess or B deficient side, and the composition of the initial melting zone is brought close to the eutectic composition of BLa6-B or B/La=3.5.

Description

【発明の詳細な説明】 、二1 本発明はフローティング法(以下FZ法と口う)による
ほう化ランタン単結晶の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION , 21 The present invention relates to a method for producing a lanthanum boride single crystal by a floating method (hereinafter referred to as the FZ method).

はう化ランタンは現在最も優れた高輝度熱電子放射材料
であシ、走査型電子顕微鏡等の高輝度lt電子源超集積
回路加工に用いる電子ビームρ“に先様等の用途を間・
つ材料である。
Lanthanum ferride is currently the most excellent high-brightness thermionic emission material, and has been used for many purposes such as electron beam ρ used for processing ultra-integrated circuits using high-brightness LT electron sources such as scanning electron microscopes.
There are two materials.

はう化ランタン電子源は単結晶電子源であるので、その
単結晶育成は重要である。しかしながら、itう化ラン
タンは第1図に示すその相図からも明ら蜘なように、通
常−0FZ法、すなわち、焼結体供給ロッドをそのまま
溶融して融帯を作り、結晶育成すると、融帯からほう素
の選択的蒸発によりA組成(LaB6の組成)からB組
成へ変化することから、結晶育成温度が変化する。従っ
て熱源の電力調整が必要となる。CはB組成から得られ
る結晶組成を示す。
Since the lanthanum hydride electron source is a single crystal electron source, growing the single crystal is important. However, as is clear from the phase diagram shown in Figure 1, lanthanum uride is usually produced using the -0FZ method, that is, by melting the sintered body supply rod as it is to create a melt zone and growing crystals. Since the A composition (LaB6 composition) changes to the B composition due to selective evaporation of boron from the melting zone, the crystal growth temperature changes. Therefore, it is necessary to adjust the power of the heat source. C indicates a crystal composition obtained from the B composition.

はう化ランタンは融点が約3000 Kと高く、しかも
融体の粘度が小さいため、加熱電力の制御を他の物質に
比べ厳密にする必要がある。さもなければ融帯がたれて
0帯移動が不可能にガる。また従来の方法(通常のFZ
法)では本発明の育成温度よりも高温で且つ融帯組成の
変化による育成温度の変化のため、結晶の良質化には不
利である。
Since lanthanum hydride has a high melting point of about 3000 K and a low viscosity of the melt, it is necessary to control the heating power more strictly than for other materials. Otherwise, the fusion zone will sag and zero zone movement will become impossible. Also, the conventional method (normal FZ
method) is disadvantageous for improving the quality of crystals because the growth temperature is higher than that of the present invention and the growth temperature changes due to changes in the melt zone composition.

本発明の目的は通常のFZ法における欠点のない、良質
で且つ大型の単結晶を再現性よく容易に育成する方法を
提供するにある。
An object of the present invention is to provide a method for easily growing high-quality, large-sized single crystals with good reproducibility, without the drawbacks of the conventional FZ method.

次に通常の高周波加熱によるFZ法によるほう化ランタ
ンの単結晶育成を示す。
Next, the growth of a single crystal of lanthanum boride using the FZ method using conventional high-frequency heating will be described.

第2図の装置を使用し、B/Laが6.0組成の直1C
OD 径10酩、長さ#間の原料焼結棒を、供給ロツ波を発生
させ誘導加熱によって溶融し融帯5を形成し、他方の供
給ロッド3′によって支持し、10mm / hの速度
で回転下降させながら結晶を育成させて結晶棒4を形成
させた。なお、図中1はシャフト、2はホルダーを示す
Using the apparatus shown in Figure 2, straight 1C with a composition of B/La of 6.0.
A raw material sintered rod with an OD diameter of 10 mm and a length of # is melted by induction heating by generating supply waves to form a melt zone 5, supported by the other supply rod 3', and melted at a speed of 10 mm/h. A crystal rod 4 was formed by growing crystals while rotating and descending. In addition, in the figure, 1 indicates a shaft and 2 indicates a holder.

、′?4!られた結晶棒4の化学組成は、結晶棒の始端
及Q終端はB/La = e 、 oであるが、5 Q
 +nm融帯移動、癲の融帯の組成は3/La = 5
.4となっている。
,′? 4! The chemical composition of the crystal rod 4 obtained is that the starting end and Q ending of the crystal rod are B/La = e, o, but 5 Q
+nm melt zone movement, composition of leprosy melt zone is 3/La = 5
.. It is 4.

〜1 、、: 初期融帯の組成は供給ロッドの組成と同じB / La
=6.0であるから、融帯組成がB/La = 6.0
から5.4 K変化したことになる。いいかえると、融
帯からの蒸発物の組成がB/La = 6.0になる捷
で融帯組成が変化したのである。
~1,,: The composition of the initial melt zone is the same as the composition of the feeding rod B/La
= 6.0, so the fusion zone composition is B/La = 6.0
This means a change of 5.4 K from the current value. In other words, the composition of the melt zone changed when the composition of evaporated matter from the melt zone reached B/La = 6.0.

本発明者らは前記の実験結果から新しいほう化ランタン
の単結晶の育成法を発明し得た。
The present inventors were able to invent a new method for growing a single crystal of lanthanum boride based on the above experimental results.

すなわち、(1)供給ロッドの焼結棒の組成をB/La
=6.0(第1図のA点)とし、初期融帯組成をB、/
La = 5.4 (第1図のB点)とすることにより
融帯移動を行えば、融帯には常に13/La = 6.
0の供給ロッドの焼結棒が溶は込み、融帯からはB/L
a=6.0の組成をもつほう化物が蒸発すると共にB/
La=6.0の組成をもつ単結晶を析出し続け、育成中
の溶帯の組成は一定に保たれること。
That is, (1) the composition of the sintered rod of the supply rod is B/La
= 6.0 (point A in Figure 1), and the initial melt zone composition is B, /
If the fusion zone is moved by setting La = 5.4 (point B in Figure 1), the fusion zone will always have 13/La = 6.
The sintered rod of the supply rod of 0 melts into the melting zone, and from the melting zone B/L
As the boride with the composition a=6.0 evaporates, B/
A single crystal with a composition of La=6.0 should be continuously precipitated, and the composition of the growing weld zone should be kept constant.

また、(2)供給ロッドの焼結棒の組成を、B / L
a(2200K )あるいはLaB6− B共融点温度
温度でLaB6の単結晶の育成が可能であることが分っ
た。このような低い屯結晶では熱歪が少な”いため、良
質の単結晶の育成ができる。
In addition, (2) the composition of the sintered rod of the supply rod is B / L
It was found that it is possible to grow a single crystal of LaB6 at a temperature of 2200 K or the eutectic temperature of LaB6-B. Since such a low tonne crystal has little thermal strain, it is possible to grow a high-quality single crystal.

本発明の要旨は、フローティングゾーン法によりほう化
ランタン弔結晶を育成するに際し、初期融帯の組成をB
/La = t5.oよシずらし、融帯の融点を低下さ
せると共に、融帯組成を一定にするよう罠供給ロンドの
焼結棒の組成を制御することを特徴とするほう化ランタ
ン単結晶の育成法にある。
The gist of the present invention is that when growing lanthanum boride crystals by the floating zone method, the composition of the initial melt zone is changed to B.
/La=t5. This method of growing a lanthanum boride single crystal is characterized in that the composition of the sintered rod of the trap feeding iron is controlled so as to lower the melting point of the melting zone and keep the composition of the melting zone constant.

その具体的な方法は前記したように、(1ン供給ロンド
の焼結棒の組成をB/La 〜6.0とし、初期融帯組
成をB/La=5.4とする。または−給ロツドの焼結
棒の組成をB/La=’6.0よりほう素過剰あるいは
ほう素手足側にずらし、初期融帯組成を1(La’+8
6− Bの共融組成あるいはB/La = 3.5近く
に、干ることによって得られる。
The specific method is as described above (the composition of the sintered rod of the 1-ton feed iron is set to B/La ~ 6.0, and the initial melting zone composition is set to B/La = 5.4. The composition of the rod's sintered rod is shifted from B/La='6.0 to the boron-excessive or boron-rich side, and the initial melt zone composition is changed to 1(La'+8
6- A eutectic composition of B or close to B/La = 3.5 can be obtained by drying.

、i明の方法によると、育成中の融帯組成が一定に保持
されるために、加熱電力を殆んど調整する必要がなく、
極めて安定に結晶育成することができる。このため結晶
育成の自動化が容易となる。
According to the method of Ikei, the composition of the melt zone during growth is kept constant, so there is almost no need to adjust the heating power.
Crystals can be grown extremely stably. This facilitates automation of crystal growth.

また従来法のFZ法により結晶育成する場合に比べて、
より低い湿度で結晶育成ができるため、高融点はう化ラ
ンタンも溶融電力も少なくて、且良質の単結晶を容易に
作ることができる優れた効果を有する。
Also, compared to the case of crystal growth using the conventional FZ method,
Since crystal growth can be performed at lower humidity, high melting point lanthanum silicide and less melting power are required, and high quality single crystals can be easily produced.

実施例1゜ trz法によシ、供給ロッドの焼結棒組成をB/La=
 6.0 、融帯の組成をB/La = 5.4とし、
アルゴン雰囲気1.5 X 10’パスカル下で、育成
速度1゜mttr / h、結晶育成温度2900 K
で結晶育成し、の温度は一定に保持された。単結晶は歪
みのない良質のものであった。
Example 1 By the trz method, the sintered rod composition of the supply rod was B/La=
6.0, the composition of the fusion zone is B/La = 5.4,
Under argon atmosphere 1.5 x 10' Pascal, growth rate 1゜mttr/h, crystal growth temperature 2900 K
The crystals were grown at a constant temperature. The single crystal was of good quality with no distortion.

供給焼結棒の組成は、この育成条件下において、融帯移
動中融帯組成が変化しないように種々の組育成中は、融
帯の温度がほぼ2200 Kに保たれ・安定に育成が行
なえ、良質のLaB 6単結晶が得られた。
The composition of the supplied sintered rod is such that under these growth conditions, the temperature of the melt zone is maintained at approximately 2200 K during the growth of various groups so that the composition of the melt zone does not change during the movement of the melt zone, and stable growth is possible. , a good quality LaB 6 single crystal was obtained.

実施例3゜ 1LaB6− B共融点近くの組成をもつ融帯からのL
aB 6単結晶の育成。
Example 3゜1LaB6-L from a fusion zone with a composition near the B eutectic point
Growth of aB6 single crystal.

育成条件は実施例1と同じとした。The growth conditions were the same as in Example 1.

融帯組成として、B/La=10−0を選んだ。B/La=10-0 was selected as the melt zone composition.

供給棒の組成を実施例2同様、試行錯誤的にB/La 
= 8.5と決めた。
As in Example 2, the composition of the supply rod was changed to B/La by trial and error.
= 8.5.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はLaB 6の相図で、A点はB/La−660
の組成、B点の融帯組成を持ち、A点の供給ロンドの焼
結棒により0点のLaB6IIL結晶が得られる。 第2図はFZ法の概念図である。 1:シャフト、 2:ホルダー、
Figure 1 is the phase diagram of LaB 6, where point A is B/La-660
A LaB6IIL crystal having a composition of , a fusion zone composition of point B, and a point of 0 is obtained by the sintered rod of the feeding Rondo of point A. FIG. 2 is a conceptual diagram of the FZ method. 1: shaft, 2: holder,

Claims (1)

【特許請求の範囲】[Claims] フローティングゾーン法によりほう化ランタン単結晶を
育成するに際し、初期融帯の組成をB/’L a=6.
0よシずらし融帯の融点を低下させると共に、融帯組成
を一定するように供給ロンドの焼結棒の
When growing a lanthanum boride single crystal by the floating zone method, the composition of the initial melting zone is set to B/'L a = 6.
In order to lower the melting point of the melting zone and to keep the composition of the melting zone constant, the sintered rod of the supplied iron is shifted from zero.
JP58194674A 1983-10-18 1983-10-18 Growth of single crystal of lanthanum boride Pending JPS6086098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58194674A JPS6086098A (en) 1983-10-18 1983-10-18 Growth of single crystal of lanthanum boride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58194674A JPS6086098A (en) 1983-10-18 1983-10-18 Growth of single crystal of lanthanum boride

Publications (1)

Publication Number Publication Date
JPS6086098A true JPS6086098A (en) 1985-05-15

Family

ID=16328410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58194674A Pending JPS6086098A (en) 1983-10-18 1983-10-18 Growth of single crystal of lanthanum boride

Country Status (1)

Country Link
JP (1) JPS6086098A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0524992A (en) * 1991-07-19 1993-02-02 Natl Inst For Res In Inorg Mater Method for growing lanthanum hexaboride single crystal
CN103205801A (en) * 2013-03-23 2013-07-17 北京工业大学 Method for preparing large rare-earth boride SmB<6> single crystal
CN108048907A (en) * 2017-12-14 2018-05-18 合肥工业大学 A kind of preparation method of large-size and high performance lanthanum hexaboride monocrystalline

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5648479A (en) * 1979-09-25 1981-05-01 Peteiitojien Ando Co Yuukee Lt Hollow ball
JPS5650197A (en) * 1979-09-27 1981-05-07 Denki Kagaku Kogyo Kk Manufacture of single crystal
JPS5812239A (en) * 1981-06-15 1983-01-24 Nec Home Electronics Ltd Production method of fluorescent lamp

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5648479A (en) * 1979-09-25 1981-05-01 Peteiitojien Ando Co Yuukee Lt Hollow ball
JPS5650197A (en) * 1979-09-27 1981-05-07 Denki Kagaku Kogyo Kk Manufacture of single crystal
JPS5812239A (en) * 1981-06-15 1983-01-24 Nec Home Electronics Ltd Production method of fluorescent lamp

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0524992A (en) * 1991-07-19 1993-02-02 Natl Inst For Res In Inorg Mater Method for growing lanthanum hexaboride single crystal
CN103205801A (en) * 2013-03-23 2013-07-17 北京工业大学 Method for preparing large rare-earth boride SmB<6> single crystal
CN103205801B (en) * 2013-03-23 2015-11-18 北京工业大学 A kind of large scale rare-earth boride SmB 6the preparation method of single crystal
CN108048907A (en) * 2017-12-14 2018-05-18 合肥工业大学 A kind of preparation method of large-size and high performance lanthanum hexaboride monocrystalline
CN108048907B (en) * 2017-12-14 2020-08-07 合肥工业大学 Preparation method of large-size and high-performance lanthanum hexaboride single crystal

Similar Documents

Publication Publication Date Title
US4303465A (en) Method of growing monocrystals of corundum from a melt
JPS6086098A (en) Growth of single crystal of lanthanum boride
US20220325439A1 (en) Functional metal oxides and methods of making same
US4323418A (en) Method for growing a pipe-shaped single crystal
JP2001233697A (en) Silicon carbide single crystal
US5690732A (en) Method of automatically growing a single crystal
Otani et al. Preparation of LaB6 single crystals by the floating zone method
US3053639A (en) Method and apparatus for growing crystals
US3226193A (en) Method for growing crystals
JPS5815472B2 (en) crystal growth equipment
JP2997762B2 (en) Growth method of calcium hexaboride crystals
JP2580523B2 (en) Growth method of titanium diboride single crystal
JPH04198093A (en) Method for growing lanthanum boride single crystal
US3442719A (en) Method of growing a crystal or crystalline layer by means of a direct current arc discharge
JPS60226495A (en) Method of allowing lanthanum hexaboride single crystal to grow
JP2642882B2 (en) Growth method of tungsten diboride single crystal
JPH05238889A (en) Production of crystal substance of yttrium hexacontahexaboride for soft x-ray spectroscopy
JPH05319991A (en) Method for growing lanthanum hexaboride single crystal
JP2001213690A (en) Growing method of rare earth hexaboron single crystal
Robertson et al. Observations on the unrestrained growth of germanium crystals
JPH0524992A (en) Method for growing lanthanum hexaboride single crystal
JP2949212B2 (en) Growth method of lanthanum hexaboride single crystal
JPH09169597A (en) Method for growing hexaboride rare earth single crystal
JPS606914B2 (en) Method for producing tantalum carbide crystals
JP2573655B2 (en) Method for producing non-doped compound semiconductor single crystal