JP2001213690A - Growing method of rare earth hexaboron single crystal - Google Patents
Growing method of rare earth hexaboron single crystalInfo
- Publication number
- JP2001213690A JP2001213690A JP2000023262A JP2000023262A JP2001213690A JP 2001213690 A JP2001213690 A JP 2001213690A JP 2000023262 A JP2000023262 A JP 2000023262A JP 2000023262 A JP2000023262 A JP 2000023262A JP 2001213690 A JP2001213690 A JP 2001213690A
- Authority
- JP
- Japan
- Prior art keywords
- crystal
- rare earth
- single crystal
- growing
- boron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、フローティング・
ゾーン(FZ)法による六ホウ化希土類単結晶の育成法
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a method for growing a rare earth hexaboride single crystal by a zone (FZ) method.
【0002】[0002]
【従来の技術およびその課題】六ホウ化ランタンや六ホ
ウ化セリウム単結晶は、現在、寿命の長い高輝度電子放
射材料として、走査型電子顕微鏡や電子描画装置などに
利用されている。この電子放射材料として用いる場合、
純度の高い高品質単結晶が必要である。高純度な希土類
六ホウ化物単結晶の育成法としては、育成温度が高く、
不純物が蒸発により除去されるFZ法が適している。2. Description of the Related Art Lanthanum hexaboride and cerium hexaboride single crystals are currently used as long-lived, high-brightness electron-emitting materials in scanning electron microscopes and electron drawing apparatuses. When used as this electron emitting material,
A high-quality single crystal with high purity is required. As a method for growing a high-purity rare earth hexaboride single crystal, the growing temperature is high,
The FZ method in which impurities are removed by evaporation is suitable.
【0003】しかしながら、従来のFZ法による育成で
は、希土類六ホウ化物を溶融するとホウ素蒸発により希
土類元素過剰な融帯組成(通常、B/RE原子比=約
5.5)となる。その結果、育成速度を1cm/h以下
に下げる必要があった(「A survey on the floating z
one crystal growth of the monocarbides of Iva, Vaa
nd Via transition metals 」T.Tanaka, S.Otani Prog.
Crystal Growth and Charct. 16(1988)1-18 、16
頁)。However, in the conventional FZ growth, when a rare earth hexaboride is melted, a rare earth element-excess melt zone composition (generally, a B / RE atomic ratio = about 5.5) is obtained by boron evaporation. As a result, it was necessary to reduce the growth rate to 1 cm / h or less ("A survey on the floating z
one crystal growth of the monocarbides of Iva, Vaa
nd Via transition metals '' T.Tanaka, S.Otani Prog.
Crystal Growth and Charct. 16 (1988) 1-18, 16
page).
【0004】本発明は、上記従来技術の欠点を解消し、
より高速での単結晶育成を可能にするとともに、欠陥の
少ない良質な六ホウ化希土類単結晶を得る方法を提供す
ることを目的とするものである。[0004] The present invention overcomes the above-mentioned disadvantages of the prior art,
It is an object of the present invention to provide a method capable of growing a single crystal at a higher speed and obtaining a high quality rare earth hexaboride single crystal having few defects.
【0005】[0005]
【課題を解決するための手段】前記課題を解決するた
め、本発明者らは、従来のFZ法において、育成速度を
決めている要因を調べた結果、次のことが判明した。す
なわち、希土類六ホウ化物単結晶の育成の際、融帯組成
が定比組成(B/RE原子比=6)より希土類元素過剰
(通常、B/RE原子比=約5.5)となることが育成
速度を決めていることが判明した。Means for Solving the Problems In order to solve the above problems, the present inventors have investigated the factors that determine the growth rate in the conventional FZ method and found the following. In other words, when growing a rare earth hexaboride single crystal, the melt zone composition becomes rare earth element excess (normally, B / RE atomic ratio = about 5.5) from the stoichiometric composition (B / RE atomic ratio = 6). Has determined that the growth rate.
【0006】そこで、ホウ素を原料供給棒に添加するこ
とで、すなわち、REB6 とBよりなる原料供給棒を用
いることで、育成中の融帯組成を希土類過剰(すなわ
ち、ホウ素不足)にならないように融帯組成を制御し、
ホウ化ランタン単結晶の育成をFZ法により試みた(特
開平9−169597号公報、「Preparation of LaB6
single crystals from a boron-rich molten zone by t
he floating zone method」S.Otani, S.Honma, Y.Yajim
a, Y.Ishizawa, J.Crystal Growth 126(1993)466-47
0.)。しかしながら、この方法では、融帯直上に半溶融
部分が形成され、その上部にREB6 とBの共融組成を
もつ傘状のものが形成され、突然溶融する問題が生じ、
安定な育成が不可能であった。Therefore, by adding boron to the raw material supply rod, that is, by using the raw material supply rod composed of REB 6 and B, the melt zone composition during the growth is prevented from becoming rare earth excess (ie, boron deficiency). Control the melt zone composition
An attempt was made to grow a lanthanum boride single crystal by the FZ method (Japanese Unexamined Patent Publication No. 9-169597, "Preparation of LaB6
single crystals from a boron-rich molten zone by t
he floating zone method '' S. Otani, S. Honma, Y. Yajim
a, Y. Ishizawa, J. Crystal Growth 126 (1993) 466-47
0.). However, in this method, a semi-molten portion is formed immediately above the melt zone, and an umbrella-shaped material having a eutectic composition of REB 6 and B is formed thereon, which causes a problem of sudden melting.
Stable breeding was not possible.
【0007】そこで、ホウ素の代わりにアルカリ土類六
ホウ化物AEB6 (AEは、Ca,Sr,Ba、または
(Ca,Sr)、(Ca,Ba)、(Sr,Ba)、
(Ca,Sr,Ba)固溶体を示す)を添加すること
で、上記問題を解決した。AEB 6 は、希土類六ホウ化
物と低い温度において共融体を形成せず、融液状態にお
いてホウ素を残しアルカリ土類元素が蒸発するため、融
帯中のホウ素成分が増加するためである。その結果、従
来最大1cm/h程度であった育成速度が2〜3cm/
hの速度においても育成が可能になった。得られた結晶
は含有物(インクリュージョン)を含まず、また、亜粒
界の少ない良質な単結晶が得られる様になった。これら
の知見に基づき、本発明をなしたものである。Therefore, instead of boron, an alkaline earth metal
Boride AEB6(AE is Ca, Sr, Ba, or
(Ca, Sr), (Ca, Ba), (Sr, Ba),
(Indicating a solid solution of (Ca, Sr, Ba))
Solved the above problem. AEB 6Is a rare earth hexaboride
Does not form a eutectic at low temperature with
And the alkaline earth elements evaporate leaving boron,
This is because the boron component in the band increases. As a result,
The growth rate, which was about 1 cm / h at the maximum,
At the speed of h, the breeding became possible. The resulting crystal
Does not contain any inclusions (inclusions).
A high quality single crystal with few boundaries can be obtained. these
The present invention has been made based on the findings described above.
【0008】すなわち、本発明は、フローティング・ゾ
ーン法により、REB6 (REは、La,Ce、または
(La,Ce)を示す)で表される希土類六ホウ化単結
晶の育成に際し、AEB6 (AEは、Ca,Sr,B
a、または(Ca,Sr.Ba)固溶体を示す)で表さ
れるアルカリ土類六ホウ化物をホウ素添加剤として添加
した原料供給棒を用いることにより、育成中、融帯中の
ホウ素含量(B/RE(AE),モル比)を5.9〜8
に保持して結晶を育成することを特徴とする六ホウ化希
土類単結晶の育成法である。Namely, the present invention is the floating zone method, REB 6 (RE is La, Ce or (La, Ce) shows a) upon development of rare earth hexaboride single crystal represented by, AEB 6 (AE is Ca, Sr, B
a, or a (Ca, Sr. Ba) solid solution) is used as a boron feed additive to which an alkaline earth hexaboride is added as a boron additive. / RE (AE), molar ratio) from 5.9 to 8
And growing the crystal while maintaining the temperature of the rare earth hexaboride single crystal.
【0009】さらに、本発明は、融帯組成を定比組成に
近づけ、育成速度1〜3cm/hで結晶を育成して、結
晶中の含有物や気泡を少なくすることを特徴とする上記
の六ホウ化希土類単結晶の育成法である。Further, the present invention is characterized in that the melt zone composition is brought close to the stoichiometric composition, the crystal is grown at a growth rate of 1 to 3 cm / h, and the content and bubbles in the crystal are reduced. This is a method for growing rare earth hexaboride single crystals.
【0010】以下に本発明を更に詳細に説明する。本発
明において用いられる装置の一例を図1に示す。この装
置は、数気圧の不活性ガス雰囲気において結晶育成が可
能なようにデザインされた高周波誘導加熱FZ炉であ
る。原料供給棒10の下端の加熱は、ワークコイル4に
高周波電流を流すことにより、原料供給棒10に誘導電
流を生じさせ、そのジュール熱により行う。このように
して、形成された融帯7に上方より原料供給棒10を送
り込み、下方より単結晶6を育成する。Hereinafter, the present invention will be described in more detail. FIG. 1 shows an example of an apparatus used in the present invention. This apparatus is a high-frequency induction heating FZ furnace designed so that crystals can be grown in an inert gas atmosphere of several atmospheres. The lower end of the raw material supply rod 10 is heated by causing a high frequency current to flow through the work coil 4 to generate an induced current in the raw material supply rod 10 and using Joule heat. In this way, the raw material supply rod 10 is fed into the formed melt zone 7 from above, and the single crystal 6 is grown from below.
【0011】本発明による単結晶育成の手順を示す。ま
ず、原料の希土類六ホウ化物粉末(REB6 )とアルカ
リ土類六ホウ化物(AEB6 )粉末をよく混合後、結合
剤として少量の樟脳を加え、ラバープレス(2000k
g/cm2 )により圧粉棒を作製する。この圧粉棒を真
空中または不活性ガス中で千数百℃に加熱し、原料焼結
棒を作製する。A procedure for growing a single crystal according to the present invention will be described. First, after mixing the raw material rare earth hexaboride powder (REB 6 ) and alkaline earth hexaboride (AEB 6 ) powder well, a small amount of camphor was added as a binder, and a rubber press (2000 kN) was used.
g / cm 2 ) to produce a dust bar. This powder bar is heated in a vacuum or an inert gas to a temperature of several hundreds of degrees Celsius to produce a raw material sintered bar.
【0012】得られた原料焼結棒10を上軸2にホルダ
ー3を介してセットし、下軸2’には<100>種結晶
(または初期融帯形成用の焼結棒)5をホルダー3’を
介してセットする。つぎに、原料焼結棒10の下端を加
熱により溶融させ、融帯7を形成させ、上軸2と下軸
2’をゆっくりと下方に移動させて単結晶6を育成す
る。 このとき、原料焼結棒10の融帯7への供給速度
は、供給原料棒の密度が低いので、それを補償して原料
供給棒10とほぼ同じ直径をもつ単結晶が育成されるよ
うに設定する。雰囲気としては、数気圧のアルゴンまた
はヘリウムなどの不活性ガスを用いる。これは、高周波
ワークコイル4の部分で発生する放電を防止するためで
ある。The obtained raw material sintered rod 10 is set on the upper shaft 2 via the holder 3, and a <100> seed crystal (or a sintered rod for forming an initial melt zone) 5 is mounted on the lower shaft 2 ′. Set via 3 '. Next, the lower end of the raw material sintered rod 10 is melted by heating to form a fusion zone 7, and the upper shaft 2 and the lower shaft 2 'are slowly moved downward to grow the single crystal 6. At this time, the feed rate of the raw material sintering rods 10 to the melt zone 7 is set so that the density of the raw material sintering rods is low. Set. As the atmosphere, an inert gas such as argon or helium at several atmospheres is used. This is to prevent discharge generated in the high-frequency work coil 4 portion.
【0013】融帯組成が希土類元素過剰(B/RE原子
比<6)となると、育成速度を下げなければ、結晶中に
希土類元素過剰な相(即ち、LaB4 相やCeB4 相)
が含有物(一般に、数百μm以下の含有物)としてとり
こまれ、電子放射材料として使用出来なくなる。従っ
て、希土類六ホウ化物を原料棒に用いた従来法の場合、
融帯組成はB/RE=5.5付近の組成をもち、育成速
度が1cm/h以下に下げていた。If the melt zone composition becomes a rare earth element excess (B / RE atomic ratio <6), the phase containing the rare earth element in the crystal (ie, LaB 4 phase or CeB 4 phase) is required unless the growth rate is reduced.
Is included as a content (generally, a content of several hundred μm or less) and cannot be used as an electron-emitting material. Therefore, in the case of the conventional method using a rare earth hexaboride as a raw material rod,
The melt zone composition had a composition near B / RE = 5.5, and the growth rate was reduced to 1 cm / h or less.
【0014】また、上記問題の解決法として、ホウ素を
過剰に含む原料棒を用いることで、融帯組成を定比組成
(B/RE原子比=6)に近づけ、結晶を育成する方法
が試みられているが、この場合、融帯7直上に半溶融部
分8が形成され、その上部にREB6 とBの共融組成を
もつ傘状のもの9が形成する。これが、育成中ワークコ
イル4に接触し、それ以後の融帯移動を不可能にするこ
とが起こったり、その傘状の部分は、融点が低いため融
帯に溶け込む以前に突然溶融し原料棒に吸い込まれ、融
液の体積が常に変動し、安定な結晶育成は不可能であっ
た。As a solution to the above problem, a method of growing a crystal by using a raw material rod containing an excessive amount of boron to bring the melt zone composition closer to a stoichiometric composition (B / RE atomic ratio = 6) has been attempted. In this case, a semi-molten portion 8 is formed immediately above the fusible zone 7, and an umbrella-shaped material 9 having a eutectic composition of REB 6 and B is formed thereon. This may come into contact with the work coil 4 during growth, making it impossible to move the melt zone thereafter, or the umbrella-shaped portion may be suddenly melted before melting into the melt zone due to its low melting point, and may become a raw material rod. It was sucked in and the volume of the melt constantly fluctuated, and stable crystal growth was impossible.
【0015】本発明においては、ホウ素を原料棒に加え
るのではなく、アルカリ土類六ホウ化物を添加すること
により、希土類六ホウ化物と低い温度において共融とな
らず、しかも、アルカリ土類金属は融帯への溶融直後に
ホウ素を残し蒸発するため、アルカリ土類六ホウ化物が
ホウ素供給剤となり、融帯中のホウ素含量を増加させる
働きがあることが判明した。In the present invention, boron is not added to the raw material rod, but an alkaline earth hexaboride is added, so that the rare earth hexaboride does not become eutectic at a low temperature, and the alkaline earth metal is not added. It has been found that alkaline earth hexaboride acts as a boron supply agent because boron remains and evaporates immediately after melting into the melt zone, and has a function of increasing the boron content in the melt zone.
【0016】アルカリ土類六ホウ化物の添加量と加熱電
力の関係を調べた。LaB6 にCaB6 を添加し、育成
速度2cm/hにおいて結晶を育成した結果を図2に示
す。図中の○は、2cm/hの育成速度において、気泡
も含有物も含まない結晶を示す。CaB6 の添加により
加熱電力が増加し、7〜10モル%添加した付近に加熱
電力の極大が存在し、さらに添加量を増加させると加熱
電力が減少した。The relationship between the amount of alkaline earth hexaboride added and the heating power was examined. FIG. 2 shows the results obtained by adding CaB 6 to LaB 6 and growing crystals at a growth rate of 2 cm / h. A circle in the figure indicates a crystal containing neither bubbles nor inclusions at a growth rate of 2 cm / h. The heating power was increased by the addition of CaB 6, the heating power had a maximum in the vicinity of the addition of 7 to 10 mol%, and the heating power was decreased by further increasing the amount.
【0017】加熱電力が最大になるまでの領域(5モル
%以下のCaB6 を添加)において、育成後固化した融
帯中にLaB4 相が確認できた。CaB6 を5モル%添
加した場合、結晶中に含有物が確認され、融帯組成はB
/RE(AE)=5.7であった。CaB6 を7mol
%添加した場合には、結晶中に含有物も気泡も確認され
なかった。融帯組成はB/RE(AE)=5.9であっ
た。In the region where the heating power was maximized (CaB 6 of 5 mol% or less was added), a LaB 4 phase was confirmed in the melt zone solidified after the growth. When CaB 6 was added at 5 mol%, inclusions were confirmed in the crystal, and
/RE(AE)=5.7. 7 mol of CaB 6
When% was added, neither inclusions nor bubbles were found in the crystals. The melt zone composition was B / RE (AE) = 5.9.
【0018】さらに、CaB6 を30mol%添加した
場合には、結晶中に含有物も気泡も確認されなかった。
融帯組成はB/RE(AE)=7.9であった。ホウ素
過剰の融帯であるが、ホウ素は原子量が希土類元素(L
aやCe)に比較して1桁以上小さく、成長界面での拡
散が容易なため、定比組成からのずれは問題とならず、
2cm/hの高速育成も可能だったと推測される。40
mol%CaB6 を添加した場合には、結晶の表面部分
に遊離したCaB6 相を確認した。融帯組成はB/RE
(AE)=8.9であった。Furthermore, when CaB 6 was added in an amount of 30 mol%, neither inclusions nor bubbles were found in the crystal.
The melt zone composition was B / RE (AE) = 7.9. Although the boron is a boron-excess melt zone, boron has a rare earth element (L
a and Ce) are smaller by one order of magnitude or more and diffusion at the growth interface is easy, so that deviation from the stoichiometric composition does not matter,
It is presumed that high-speed growth of 2 cm / h was also possible. 40
When mol% CaB 6 was added, a CaB 6 phase released on the surface of the crystal was confirmed. Melt zone composition is B / RE
(AE) = 8.9.
【0019】さらに、加熱電力が極大となる10モル%
添加した原料棒を用い、育成速度と結晶品質の関係を調
べた。1cm/h、2cm/h、3cm/hにおいてイ
ンクリュージョンや気泡を含有しない結晶が育成され
た。しかしながら、3cm/h以上の速度では結晶にク
ラックが生じはじめた。従って、好ましい育成速度とし
ては、2〜3cm/hであった。得られる結晶中のCa
含有量は180ppmであった。Further, 10 mol% at which the heating power is maximized
Using the added raw material rod, the relationship between the growth rate and the crystal quality was examined. At 1 cm / h, 2 cm / h, and 3 cm / h, crystals containing no inclusions or bubbles were grown. However, at a speed of 3 cm / h or more, cracks began to form in the crystal. Therefore, the preferred growth rate was 2-3 cm / h. Ca in the resulting crystals
The content was 180 ppm.
【0020】つぎに、CeB6 結晶の育成においても、
CaB6 を添加し、同様の実験を行った。上記LaB6
の場合同様、10モル%CaB6 を添加した際、加熱電
力が最大になり、さらに添加量を増加させると加熱電力
が減少した。また、加熱電力が最大となる組成におい
て、育成速度は2cm/hの速度においても、インクリ
ュージョンや気泡が含有しない良質単結晶を育成した。Next, in growing the CeB 6 crystal,
Added CaB 6, a similar experiment was performed. LaB 6 above
As in the case of the above, when 10 mol% CaB 6 was added, the heating power was maximized, and when the addition amount was further increased, the heating power was decreased. In addition, a high-quality single crystal containing no inclusions or bubbles was grown even at a growth rate of 2 cm / h at a composition where the heating power was maximized.
【0021】CaB6 以外の添加物として、SrB6 ,
BaB6 を用いた場合について検討した。10原子%の
添加により、加熱電力が最大となった。また、2cm/
hの速度においても良質なLaB6 結晶を得た。従っ
て、ホウ素添加物として、CaB6 ,SrB6 ,BaB
6 相互の間に差を見いだせなかった。[0021] as additives other than CaB 6, SrB 6,
The case where BaB 6 was used was examined. The heating power was maximized by adding 10 atomic%. In addition, 2cm /
High quality LaB 6 crystal was obtained even at the speed of h. Therefore, as a boron additive, CaB 6 , SrB 6 , BaB
No difference was found between the six .
【0022】以上の育成法は、高周波加熱以外の加熱
法、例えば、赤外線集中加熱によるFZ法による単結晶
の育成に適用することができる。また、アルカリ土類六
ホウ化物のホウ素添加剤としての利用は、FZ法による
結晶育成だけでなく、溶融法による試料作製に適用する
ことができる。The above growing method can be applied to a heating method other than high-frequency heating, for example, to grow a single crystal by the FZ method using infrared concentrated heating. The use of alkaline earth hexaboride as a boron additive can be applied not only to crystal growth by the FZ method but also to sample preparation by a melting method.
【0023】[0023]
【実施例】次に、本発明の実施例を示す。 実施例1 市販のLaB6 粉末にCaB6 粉末を10モル%添加混
合した後、結合剤として樟脳を少量加え、直径12mm
のゴム袋に詰め円柱形とした。これに2000kg/c
m2 のラバープレスによる加圧を行い圧粉体を得た。こ
の圧粉体を真空中、1800℃で加熱し、直径1cm、
長さ12cm程度の焼結棒を得た。密度は約55%であ
った。Next, examples of the present invention will be described. Example 1 Commercially available LaB 6 powder was mixed with 10 mol% of CaB 6 powder, mixed with a small amount of camphor as a binder, and had a diameter of 12 mm.
And packed in a rubber bag. 2000kg / c
Pressing was performed with a rubber press of m 2 to obtain a green compact. This green compact is heated in vacuum at 1800 ° C.,
A sintered rod having a length of about 12 cm was obtained. The density was about 55%.
【0024】この焼結棒を図1に示すFZ育成炉の上軸
にホルダーを介し固定し、下軸にはLaB6 焼結棒を固
定した。育成炉に5気圧のアルゴンを充填した後、高周
波誘導加熱によりホウ素焼結棒の下端部を溶かして初期
融帯を形成し、2cm/hの速度で3時間に下方に移動
させ、全長6cm、直径0.9cmの単結晶を育成し
た。得られた結晶中のCa不純物量は、180ppmで
あった。融帯中のCa量は500ppmであり、融帯組
成は、B/La=6.6であった。The sintered rod was fixed to the upper shaft of the FZ growth furnace shown in FIG. 1 via a holder, and the LaB 6 sintered rod was fixed to the lower shaft. After filling the growth furnace with 5 atm of argon, the lower end of the boron sintering rod is melted by high-frequency induction heating to form an initial melt zone, which is moved downward at a speed of 2 cm / h for 3 hours, and has a total length of 6 cm. A single crystal having a diameter of 0.9 cm was grown. The amount of Ca impurities in the obtained crystal was 180 ppm. The amount of Ca in the melt zone was 500 ppm, and the melt zone composition was B / La = 6.6.
【0025】得られた結晶から(100)面を切り出し
鏡面研磨の後、エッチングを行い表面観察を行った。そ
の結果、気泡のないこと、また、他相の含有しないこと
を確認した。The (100) plane was cut out from the obtained crystal, and after mirror polishing, etching was performed to observe the surface. As a result, it was confirmed that there were no bubbles and no other phase was contained.
【0026】[0026]
【発明の効果】以上説明したように、本発明によれば、
六ホウ化希土類単結晶が従来の育成速度に比較して、2
〜3倍の速度において得られる。また、従来法における
育成速度においては、より欠陥の少ない良質な結晶が育
成される。As described above, according to the present invention,
The rare earth hexaboride single crystal is 2
Obtained at ~ 3 times speed. In addition, high-quality crystals with fewer defects are grown at the growth rate in the conventional method.
【図1】図1は、本発明に用いる単結晶育成装置の一例
を示す概略断面図である。FIG. 1 is a schematic sectional view showing an example of a single crystal growing apparatus used in the present invention.
【図2】図2は、Ca添加量と加熱電力の関係を示すグ
ラフである。FIG. 2 is a graph showing the relationship between the amount of Ca added and heating power.
1 上軸駆動部 1’下軸駆動部 2 上軸 2’下軸 3 ホルダー 3’ホルダー 4ワークコイル 5 種結晶または初期融帯形成用の焼結棒 6 単結晶 7 融帯 8 半溶融部分 9 傘状部分 10 原料焼結棒 DESCRIPTION OF SYMBOLS 1 Upper shaft drive part 1 'Lower shaft drive part 2 Upper shaft 2' Lower shaft 3 Holder 3 'Holder 4 Work coil 5 Sintered rod for seed crystal or initial fusion zone formation 6 Single crystal 7 Fusion zone 8 Semi-molten part 9 Umbrella-shaped part 10 Raw material sintered rod
Claims (2)
B6 (REは、La,Ce、または(La,Ce)固溶
体を示す)で表される希土類六ホウ化単結晶の育成に際
し、AEB6 (AEは、Ca,Sr,Ba、または(C
a,Sr)、(Ca,Ba)、(Sr,Ba)、(C
a,Sr,Ba)固溶体を示す)で表されるアルカリ土
類六ホウ化物をホウ素添加剤として添加した原料供給棒
を用いることにより、育成中、融帯中のホウ素含量(B
/RE(AE),モル比)を5.9〜8に保持して結晶
を育成することを特徴とする六ホウ化希土類単結晶の育
成法。1. A floating zone method,
When growing a rare earth hexaboride single crystal represented by B 6 (RE represents La, Ce, or (La, Ce) solid solution), AEB 6 (AE represents Ca, Sr, Ba, or (C
a, Sr), (Ca, Ba), (Sr, Ba), (C
a, Sr, Ba) which indicates a solid solution), using a raw material supply rod to which an alkaline earth hexaboride represented by the following formula (1) is added as a boron additive:
/ RE (AE), molar ratio) in the range of 5.9 to 8 to grow the crystal.
1〜3cm/hで結晶を育成し、結晶中の含有物や気泡
を少なくすることを特徴とする請求項1記載の六ホウ化
希土類単結晶の育成法。2. A hexahedron according to claim 1, wherein the melt zone composition is brought close to the stoichiometric composition, the crystal is grown at a growth rate of 1 to 3 cm / h, and the content and bubbles in the crystal are reduced. Method for growing rare earth single crystals.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000023262A JP3755021B2 (en) | 2000-01-27 | 2000-01-27 | Growth method of rare earth hexaboride single crystals |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000023262A JP3755021B2 (en) | 2000-01-27 | 2000-01-27 | Growth method of rare earth hexaboride single crystals |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001213690A true JP2001213690A (en) | 2001-08-07 |
JP3755021B2 JP3755021B2 (en) | 2006-03-15 |
Family
ID=18549440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000023262A Expired - Lifetime JP3755021B2 (en) | 2000-01-27 | 2000-01-27 | Growth method of rare earth hexaboride single crystals |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3755021B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003089596A (en) * | 2001-09-11 | 2003-03-28 | National Institute For Materials Science | Boride single crystal and substrate for forming semiconductor |
JP2003104800A (en) * | 2001-09-28 | 2003-04-09 | National Institute For Materials Science | Boride single crystal, substrate for forming semiconductor, and its manufacturing method |
CN114985737A (en) * | 2022-05-11 | 2022-09-02 | 合肥工业大学 | Multi-element hexaboride [100] monocrystal and preparation method thereof |
-
2000
- 2000-01-27 JP JP2000023262A patent/JP3755021B2/en not_active Expired - Lifetime
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003089596A (en) * | 2001-09-11 | 2003-03-28 | National Institute For Materials Science | Boride single crystal and substrate for forming semiconductor |
JP4515674B2 (en) * | 2001-09-11 | 2010-08-04 | 独立行政法人物質・材料研究機構 | Boride single crystal and substrate for semiconductor formation |
JP2003104800A (en) * | 2001-09-28 | 2003-04-09 | National Institute For Materials Science | Boride single crystal, substrate for forming semiconductor, and its manufacturing method |
JP4538619B2 (en) * | 2001-09-28 | 2010-09-08 | 独立行政法人物質・材料研究機構 | Boride single crystal, semiconductor forming substrate and method for manufacturing the same |
CN114985737A (en) * | 2022-05-11 | 2022-09-02 | 合肥工业大学 | Multi-element hexaboride [100] monocrystal and preparation method thereof |
CN114985737B (en) * | 2022-05-11 | 2024-06-04 | 合肥工业大学 | Multi-element hexaboride [100] monocrystal and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3755021B2 (en) | 2006-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007277049A (en) | METHOD FOR PRODUCING SiC SINGLE CRYSTAL | |
JP3755021B2 (en) | Growth method of rare earth hexaboride single crystals | |
JP6935738B2 (en) | Method for manufacturing SiC single crystal | |
US5238527A (en) | Lanthanum boride type single crystal and method for growing the same | |
JP2949212B2 (en) | Growth method of lanthanum hexaboride single crystal | |
JPH1095699A (en) | Growth of zirconium diboride single crystal | |
JP2580523B2 (en) | Growth method of titanium diboride single crystal | |
JP2730674B2 (en) | Growth method of rare earth hexaboride single crystals | |
JP2997762B2 (en) | Growth method of calcium hexaboride crystals | |
JP2642882B2 (en) | Growth method of tungsten diboride single crystal | |
CN115386956B (en) | Method for growing gadolinium gallium garnet crystal by moving flux floating zone method | |
JPH05319991A (en) | Method for growing lanthanum hexaboride single crystal | |
JPH0524992A (en) | Method for growing lanthanum hexaboride single crystal | |
JP2997760B2 (en) | Method for producing hafnium diboride single crystal | |
JPH0477397A (en) | Lanthanum boride base single crystal and its growing method | |
JPS5812240B2 (en) | Method for producing hafnium carbide crystals | |
JPH04198093A (en) | Method for growing lanthanum boride single crystal | |
JPH07115993B2 (en) | Method for growing lanthanum boride single crystal | |
JPS58135200A (en) | Preparation of single crystal from yttrium aluminum garnet (y3al5o12) or solid solution thereof | |
JP4515674B2 (en) | Boride single crystal and substrate for semiconductor formation | |
JPH0686358B2 (en) | Cerium boride single crystal and its growth method | |
JP2997761B2 (en) | Method for producing rhenium diboride single crystal | |
JPH08183694A (en) | Crucible for producing fine wire-shaped silicon and fine wire-shaped silicon | |
JP2005075688A (en) | Growing method for garnet-type single crystal | |
JPH0648889A (en) | Production of single crystal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040120 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040322 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051129 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3755021 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |