JP2003089596A - Boride single crystal and substrate for forming semiconductor - Google Patents

Boride single crystal and substrate for forming semiconductor

Info

Publication number
JP2003089596A
JP2003089596A JP2001275170A JP2001275170A JP2003089596A JP 2003089596 A JP2003089596 A JP 2003089596A JP 2001275170 A JP2001275170 A JP 2001275170A JP 2001275170 A JP2001275170 A JP 2001275170A JP 2003089596 A JP2003089596 A JP 2003089596A
Authority
JP
Japan
Prior art keywords
single crystal
crystal
inclusions
substrate
boride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001275170A
Other languages
Japanese (ja)
Other versions
JP4515674B2 (en
Inventor
Shigeki Otani
茂樹 大谷
Atsushi Suda
淳 須田
Hiroyuki Kinoshita
博之 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
National Institute for Materials Science
Original Assignee
Kyocera Corp
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp, National Institute for Materials Science filed Critical Kyocera Corp
Priority to JP2001275170A priority Critical patent/JP4515674B2/en
Publication of JP2003089596A publication Critical patent/JP2003089596A/en
Application granted granted Critical
Publication of JP4515674B2 publication Critical patent/JP4515674B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a good quality ZrB2 or TiB2 diboride single crystal which is free from inclusions or surface defects and which is useful as a substrate for growing a thin film semiconductor layer of gallium nitride and aluminum nitride. SOLUTION: When a single crystal of ZrB2 or TiB2 is produced by a zone melting method, a single crystal substantially free from inclusions is produced by blending a hexaboride of an alkaline earth metal with a diboride raw material and subjecting the resulting mixture to zone melting. The substrate is cut out from the single crystal, and the inclusions or surface defects such as pits being the empty shells of the inclusions are not present in the main face of the substrate. The substrate can be used for growing the nitrides semiconductor layer on its surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、TiB又はZr
のホウ化物単結晶とその製造方法に関する。本発明
は、また、これらホウ化物単結晶を利用した半導体形成
用の基板に関する。
TECHNICAL FIELD The present invention relates to TiB 2 or Zr.
The present invention relates to a boride single crystal of B 2 and a method for producing the same. The present invention also relates to a substrate for semiconductor formation using these boride single crystals.

【0002】[0002]

【従来の技術】近年、発光ダイオードなどに窒化ガリウ
ム系半導体の実用化されているが、窒化ガリウム系半導
体には、窒化アルミニウム(AlN)、窒化ガリウム
(GaN)、窒化インジウム(InN)があり、又、こ
れらの混晶であるインジウム・ガリウム・アルミニウム
窒化物InGaAlNを含んでいる(x+y≦
1,z=1−x−y)。そのような窒化ガリウム系半導
体は、従来、サファイア基板の上にエピタキシャル成長
させて、通常は多層の半導体層に形成されていた。
2. Description of the Related Art In recent years, gallium nitride-based semiconductors have been put to practical use in light-emitting diodes and the like, and gallium nitride-based semiconductors include aluminum nitride (AlN), gallium nitride (GaN), and indium nitride (InN). also includes an indium gallium aluminum nitride in x Ga y Al z N a mixed crystal thereof (x + y ≦
1, z = 1-xy). Conventionally, such a gallium nitride-based semiconductor has been conventionally epitaxially grown on a sapphire substrate to form a multi-layer semiconductor layer.

【0003】化学式XBで表されるTiBとZrB
の結晶は、公知であり、例えば、 (文献1)S. Otani and Y. Ishizawa:"Preparation o
f ZrB2 single crystals by the floating zone metho
d",J. Crystal Growth 165(1996)319-322、 (文献2)S. Otani, M. M. Korskova and T. Mitshhas
hi:" Preparation ofHfB2 and ZrB2 single crystals
by the floating zone method",J. CrystalGrowth 168
6(1998)582-586、及び、 (文献3)S. Otani and Y. Ishizawa:"Preparation o
f TiB2 single crystals by the floating zone metho
d",J. Crystal Growth 140(1994)451-453 に開示され
ている。
TiB 2 and ZrB represented by the chemical formula XB 2
The crystal of No. 2 is known, and for example, (Reference 1) S. Otani and Y. Ishizawa: "Preparation o.
f ZrB 2 single crystals by the floating zone metho
d ", J. Crystal Growth 165 (1996) 319-322, (Reference 2) S. Otani, MM Korskova and T. Mitshhas.
hi: "Preparation of HfB 2 and ZrB 2 single crystals
by the floating zone method ", J. CrystalGrowth 168
6 (1998) 582-586, and (Reference 3) S. Otani and Y. Ishizawa: "Preparation o
f TiB 2 single crystals by the floating zone metho
d ", J. Crystal Growth 140 (1994) 451-453.

【0004】上記TiBとZrB の結晶は、その
融点が3000℃程度の非常に高温であるので、単結晶
にするには、帯溶融法の1種であるフローティング・ゾ
ーン法(FZ法)と、フラックス法とで成長させること
ができる。成長法には、特に、大型の単結晶の製造に
は、FZ法が有利であり、従来最も安定して結晶が得ら
れることが知られていた。
Since the above-mentioned TiB 2 and ZrB 2 crystals have a very high melting point of about 3000 ° C., a floating zone method (FZ method), which is one of zone melting methods, is used to form a single crystal. And the flux method. It has been known that the FZ method is advantageous for the growth method, particularly for the production of a large single crystal, and the crystal can be obtained most stably in the past.

【0005】また、ZrBの結晶の製造については、
高輝度電子放射材料への利用に関連して、特開平10−
95699に開示されているが、この製造方法は、融帯
中のホウ素BとジルコニウムZrとの含有量の原子比
(B/Zr比)を1.5〜2.8程度とし、3〜5気圧
のHeガスを雰囲気中でフローティング・ゾーン法によ
る単結晶育成を行うと、結晶内部への包有物の含有が抑
えられ、成長速度3〜10cm/hrの高速での結晶成
長が可能となることが記載されている。
Regarding the production of ZrB 2 crystals,
Japanese Patent Application Laid-Open No. 10-
Although disclosed in 95699, this manufacturing method sets the atomic ratio (B / Zr ratio) of the contents of boron B and zirconium Zr in the melt zone to about 1.5 to 2.8 and 3 to 5 atm. When the single crystal is grown by the floating zone method in the atmosphere of He gas as described above, inclusion of inclusions inside the crystal is suppressed, and it becomes possible to grow the crystal at a high growth rate of 3 to 10 cm / hr. Is listed.

【0006】[0006]

【発明が解決しようとする課題】上記のサファイアは、
窒化ガリウム系半導体と大きな格子不整合を持ってお
り、格子不整合に起因して結晶格子欠陥がエピタキシャ
ル成長層中に導入され、結晶性の優れた窒化ガリウム系
半導体層が得られなかった。また、サファイア基板は、
絶縁体であるから、発光ダイオードなどの構造において
サファイア基板面側からの電極取り出しができなかっ
た。そこで、従来は、窒化ガリウム系半導体の形成され
た面にのみ正電極・負電極の両極を形成していた。この
ため、発光ダイオードなどの製造プロセスが複雑にな
り、発光面積に比して素子面積を大きくする必要があっ
た。
The above-mentioned sapphire is
It has a large lattice mismatch with the gallium nitride based semiconductor, and a crystal lattice defect was introduced into the epitaxial growth layer due to the lattice mismatch, and a gallium nitride based semiconductor layer with excellent crystallinity could not be obtained. Also, the sapphire substrate is
Since it is an insulator, it was not possible to take out the electrode from the sapphire substrate surface side in the structure such as a light emitting diode. Therefore, conventionally, both electrodes of the positive electrode and the negative electrode are formed only on the surface on which the gallium nitride based semiconductor is formed. For this reason, the manufacturing process of the light emitting diode or the like becomes complicated, and it is necessary to increase the element area compared to the light emitting area.

【0007】本発明は、窒化ガリウム系半導体成長の基
板として、TiBやZrBの単結晶を利用しようと
するものであるが、これらの結晶の六方晶系の面指数
(0001)面上の格子定数が、GaNやAlNなどの
窒化物半導体の格子定数に非常に近くとほぼ等しく、上
記のサファイアの格子定数より、格子整合性が高い。
The present invention intends to utilize a single crystal of TiB 2 or ZrB 2 as a substrate for growing a gallium nitride-based semiconductor. The hexagonal plane index (0001) plane of these crystals is used. The lattice constant is substantially close to that of a nitride semiconductor such as GaN or AlN, and has a higher lattice matching than that of sapphire.

【0008】さらに、TiBとZrBの単結晶は、
窒化物半導体と、熱膨張係数も略等しく、しかも、XB
単結晶は、比較的高い熱伝導性をもち、さらに、電気
的に良導体であることから、窒化ガリウム系半導体層を
エピタキシャル成長させるための基板結晶には、サファ
イアより優れている。
Further, the single crystal of TiB 2 and ZrB 2 is
The coefficient of thermal expansion is almost equal to that of the nitride semiconductor, and XB
Since the 2 single crystal has a relatively high thermal conductivity and is an electrically good conductor, it is superior to sapphire as a substrate crystal for epitaxially growing a gallium nitride based semiconductor layer.

【0009】しかしながら、上記のS. Otaniらの従来の
ZrB単結晶の製造方法で、ZrB組成の原料をそ
のまま用いて、帯溶融により単結晶を成長させると、結
晶中のBとZrとの原子比B/Zrが1.8ないしそれ
以下に低下している。さらに、そのような単結晶から
(0001)面を切り出して研磨加工を行うと、0.0
1〜0.1mmの大きさの介在物(inclusion)粒子や
くぼみが多数露出していることが観察される。くぼみ
は、研磨加工の際に研摩面から介在物粒子が脱落して生
じたもので、研磨した結晶表面に直径10μm〜100
μm程度で深さ数十μmの大きさであった。
However, in the conventional method for producing a ZrB 2 single crystal by S. Otani et al., When a single crystal is grown by zone melting using a raw material having a ZrB 2 composition as it is, B and Zr in the crystal are The atomic ratio B / Zr of is reduced to 1.8 or less. Furthermore, when a (0001) plane is cut out from such a single crystal and subjected to polishing, 0.0
It is observed that a large number of inclusion particles and depressions having a size of 1 to 0.1 mm are exposed. The dents are formed by dropping inclusion particles from the polished surface during polishing, and have a diameter of 10 μm to 100 μm on the polished crystal surface.
The depth was about several μm and the depth was several tens of μm.

【0010】基板表面にこのような表面欠陥が存在する
と、その上に成長させた窒化ガリウム系半導体の成長層
には高密度の転位等の格子欠陥が発生し、半導体層の電
気的性能を低下させる。
If such surface defects are present on the substrate surface, lattice defects such as high-density dislocations are generated in the growth layer of the gallium nitride based semiconductor grown on the surface defects, and the electrical performance of the semiconductor layer is deteriorated. Let

【0011】本発明は、上記のXB単結晶の研摩面に
表面欠陥を生成するのを防止するために、フローティン
グ・ゾーン法を用いて介在物のない清浄なXB単結晶
とその製造方法を提供するものである。さらに、本発明
は、成長用結晶面に介在物やくぼみなど表面欠陥のない
XB単結晶を利用して窒化物半導体層成長用の基板を
提供することを目的とするものである。
In order to prevent the generation of surface defects on the polished surface of the above XB 2 single crystal, the present invention uses a floating zone method to clean XB 2 single crystal without inclusions and a method for producing the same. Is provided. A further object of the present invention is to provide a substrate for growing a nitride semiconductor layer by using an XB 2 single crystal having no surface defects such as inclusions and depressions on the growth crystal plane.

【0012】[0012]

【課題を解決するための手段】本発明は、化学式XB
(Xは、Ti又はZrである)で示される二ホウ化物を
帯溶融法により単結晶化する際に介在物生成を防止する
ものであり、このために、XB化合物とアルカリ土類
元素Rのホウ化物RBとを配合した原料棒から帯溶融
法によりXB単結晶を形成するものである。ここで、
アルカリ土類元素Rは、Ca、Ba、Srの少なくとも
一つが利用される。このようにして製造したXBホウ
化物単結晶は、アルカリ土類元素Rを、1〜100pp
mの含有量で、含むが、介在物を実質的に含有しない。
The present invention provides a compound of formula XB 2
(X is Ti or Zr) prevents the formation of inclusions when the diboride represented by the formula (1) is single-crystallized by the zone melting method. For this reason, the XB 2 compound and the alkaline earth element R The XB 2 single crystal is formed from the raw material rod containing the boride RB 6 of Example 1 by the zone melting method. here,
As the alkaline earth element R, at least one of Ca, Ba and Sr is used. The XB 2 boride single crystal produced in this manner contains 1 to 100 pp of alkaline earth element R.
The content of m is included, but inclusions are not substantially included.

【0013】XBホウ化物単結晶における介在物の生
成は、溶融帯におけるBの蒸発によるXBの化学的量
論的不足に起因するものであるから、本発明は、RB
を使用してBの蒸発を防止するのである。即ち、RB
は融点が高く、溶融に際してR成分が蒸発し、Bが融帯
へ溶け込み、融帯中のB/Xを高めて、XBホウ化物
の分解を防止するからである。
Since the formation of inclusions in the XB 2 boride single crystal is due to the stoichiometric deficiency of XB 2 due to the evaporation of B in the melting zone, the present invention provides RB 6
Is used to prevent the evaporation of B. That is, RB 6
Has a high melting point, the R component evaporates during melting, B dissolves in the melt zone, and B / X in the melt zone is increased to prevent decomposition of the XB 2 boride.

【0014】好ましくは、XB化合物とアルカリ土類
元素Rのホウ化物RBとを配合した原料棒中で、ホウ
化物RBの配合量を0.5〜20mol%を含有さ
せ、帯溶融法により、単結晶に育成する。
Preferably, in the raw material rod in which the XB 2 compound and the boride RB 6 of the alkaline earth element R are mixed, the compounding amount of the boride RB 6 is 0.5 to 20 mol%, and the zone melting method is used. To grow into a single crystal.

【0015】この製造方法によって、介在物を含有しな
いXBホウ化物単結晶が製造でき、研磨面には介在物
も、くぼみ(以下、ピットという)も、実質的に含まな
い単結晶を得る。このような単結晶は、研磨面を窒化物
半導体層のエピタキシャル成長面として利用して、格子
欠陥の極めて少ない窒化ガリウム系半導体層を形成する
ことができる。
By this manufacturing method, an XB 2 boride single crystal containing no inclusions can be manufactured, and a single crystal containing substantially no inclusions or depressions (hereinafter referred to as pits) is obtained on the polished surface. In such a single crystal, the polished surface can be used as an epitaxial growth surface of the nitride semiconductor layer to form a gallium nitride based semiconductor layer with extremely few lattice defects.

【0016】[0016]

【発明の実施の形態】本発明においては、XB(Xは
Ti若しくはZrの少なくとも一つを含む)で表記され
るホウ化物結晶を帯溶融法により製造するが、帯融液部
分の組成をXの含有量に対するBの含有量の原子比(以
下、B/X比とする)で1.95〜2.2の範囲にし
て、介在物の生成を防止するものである。この方法で
は、このようなBの調整を単体ホウ素の配合でするので
はなく、本発明は、原料のXBの化合物中にアルカリ
土類元素のフッ化物RBの配合によって行なわれる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a boride crystal represented by XB 2 (X contains at least one of Ti and Zr) is produced by a zone melting method. The atomic ratio of the content of B to the content of X (hereinafter referred to as the B / X ratio) is set in the range of 1.95 to 2.2 to prevent the formation of inclusions. In this method, the adjustment of B is not carried out by blending boron as a simple substance, but the present invention is carried out by blending the fluoride RB 6 of alkaline earth element in the compound of XB 2 as a raw material.

【0017】即ち、XBのホウ化物結晶を帯溶融法で
製造する方法において、帯溶融法の溶融前の原料中に主
成分としてXB化合物と共に0.5〜20mol%の
アルカリ土類元素Rのホウ化物RB(RはCr、S
r、Baの少なくとも一つを含む)を配合するのであ
る。このように配合調製した混合物から、焼結棒に形成
し、焼結棒を帯溶融して、単結晶を成長させ、介在物を
実質的に含まない上記ホウ化物単結晶を得ることができ
る。
That is, in the method for producing a boride crystal of XB 2 by the zone melting method, 0.5 to 20 mol% of the alkaline earth element R together with the XB 2 compound as a main component in the raw material before melting in the zone melting method. Boride RB 6 (R is Cr, S
(including at least one of r and Ba). From the mixture thus prepared and prepared, a sintered rod can be formed, the sintered rod can be band-melted to grow a single crystal, and the boride single crystal substantially free of inclusions can be obtained.

【0018】帯溶融の過程では、原料XB化合物は溶
融帯からBが蒸発するので、B/Xは2より低くなり、
結晶化の過程で、多量の介在物が生成する。XB化合
物とアルカリ土類フッ化物RBとの混合原料を使用す
る場合に、原料中のRB0.5mol%未満では、帯
溶融後の単結晶には、なお介在物を含有する。他方は、
配合原料中にRB20mol%を超えると、帯溶融に
よる結晶化によっても、多結晶化し、単結晶が得られな
い。RBの添加量は、好ましくは、0.5〜20mo
l%であり、さらに、1〜10mol%の範囲が好まし
く、特に4〜10mol%の範囲とすれば、完全な単結
晶で且つ介在物を含まない清浄な結晶が得られる。
In the process of zone melting, B / X becomes lower than 2 because B of the raw material XB 2 compound evaporates from the zone of melting.
A large amount of inclusions are formed during the crystallization process. When a mixed raw material of an XB 2 compound and an alkaline earth fluoride RB 6 is used, if RB 6 in the raw material is less than 0.5 mol%, inclusions are still contained in the single crystal after band melting. The other is
If the content of RB 6 exceeds 20 mol% in the blended raw material, polycrystallization occurs due to crystallization by zone melting and a single crystal cannot be obtained. The addition amount of RB 6 is preferably 0.5 to 20 mo.
1%, more preferably in the range of 1 to 10 mol%, and particularly in the range of 4 to 10 mol%, a perfect single crystal and a clean crystal containing no inclusions can be obtained.

【0019】XB単結晶中の介在物の生成について
は、一般には、X又はそのホウ素化合物XBの形をと
る。溶融帯中のBが蒸発し、凝固結晶化の過程で、B不
足によりXB相が分解して、金属X相又はその一ホウ
素化合物XB相が析出して、XB 相マトリックス中に
介在物して分散する。TiB結晶では、介在物は、T
i相ないしTiB相であり、ZrB結晶では、Zr相
又はZrB相の何れも微細な粒子である。融帯中のB不
足は、専ら、帯溶融過程で融帯が、通常はXBの融点
直上温度、3000℃程度に加熱されるので、XB
成の融液からBが優先的に蒸発することにより生じる。
XBTwoOn the formation of inclusions in single crystals
Is generally in the form of X or its boron compound XB.
It B in the melting zone evaporates, and in the course of solidification and crystallization, B
XB by footTwoThe phase decomposes and the metal X phase or its
Elementary compound XB phase precipitates, XB TwoIn the phase matrix
Disperse as inclusions. TiBTwoIn crystals, inclusions are T
i phase or TiB phase, ZrBTwoIn crystals, Zr phase
Alternatively, both ZrB phases are fine particles. B in the zone
Feet are exclusively melted during the melting process, usually XBTwoMelting point of
Since it is heated to the temperature directly above 3000 ° C, XBTwoset
It is generated by preferentially evaporating B from the melt.

【0020】介在物の発生を防止するには、融帯中のB
含有量をXB相の化学量論的組成ないしそれよりB過
剰の組成に保持することにより可能であるが、そのため
に単にホウ素B単体を原料中に配合したのでは、融帯中
ないしそれに近接する原料棒中からのBの蒸発を招い
て、十分に高くできない。
In order to prevent the generation of inclusions, B in the melt zone
It is possible to maintain the content in the stoichiometric composition of the XB 2 phase or in a composition in which the B content is in excess of that of the XB 2 phase. The vaporization of B from the raw material bar causes the vaporization of B, which cannot be made sufficiently high.

【0021】本発明は、融帯中のB含有量の調整に、単
体Bに代えて、アルカリ土類ホウ化物RBを、原料の
XB化合物に配合するもので、融帯中では、RB
分解によりRが徐々に蒸発するが、Bの蒸発が比較的少
なく、これにより、融帯中のB含有量を高くして、金属
X相又はその一ホウ素化合物XB相の形成を防止し、こ
れにより、介在物を実質的になくするものである。
In the present invention, in order to adjust the B content in the melt band, alkaline earth boride RB 6 is blended with the raw material XB 2 compound in place of the simple substance B. Although R gradually evaporates due to the decomposition of 6 , the evaporation of B is relatively small, which increases the B content in the melt zone to prevent the formation of the metal X phase or its monoboron compound XB phase. By doing so, inclusions are substantially eliminated.

【0022】製造されたXBホウ化物単結晶は、Z
r、Ti、ZrB、TiBなどの分散粒子を含まず、従
ってピットも実質的に含まず、微量ではあるが1〜10
0ppm程度にRを含む。
The XB 2 boride single crystal produced was
It does not contain dispersed particles of r, Ti, ZrB, TiB, etc., and therefore does not substantially contain pits.
R is included in about 0 ppm.

【0023】アルカリ土類金属元素Rは、Ca、Sr、
Baであるが、これらは略同じ効果があり、かつ結晶に
は同程度の残留が見られ、それぞれ相互に特に顕著な違
いは見られない。
The alkaline earth metal element R is Ca, Sr,
Although it is Ba, they have substantially the same effect, and the same degree of residual is observed in the crystals, and there is no significant difference between them.

【0024】この方法によって得られた単結晶を使用す
ることにより、主面が(0001)面になるよう結晶方
位を決めて板を切り出して研磨加工を行っても、図5に
示すようにピットの全く存在しない半導体形成用基板を
製造することができる。
By using the single crystal obtained by this method, even if the crystal orientation is determined so that the main surface is the (0001) plane and the plate is cut out and subjected to polishing, the pits as shown in FIG. It is possible to manufacture a semiconductor-forming substrate that does not exist at all.

【0025】本発明の単結晶の製造方法は、帯溶融法に
広く利用できるが、好ましくは、浮揚帯溶融(floating
zone melting )法(FZ法)であり、これには、帯溶融の
ための局部加熱の方式として、TiまたはZrのXB
化合物が適度の電導度を有することを利用して、高周波
加熱法が利用できる。さらに、プラズマ加熱、レーザ照
射、高光度ランプ照射などの加熱法も利用できる。
The method for producing a single crystal of the present invention can be widely applied to the zone melting method, but preferably, the float zone melting is performed.
zone melting) method (FZ method), in which Ti or Zr XB 2 is used as a local heating method for melting the zone.
The high frequency heating method can be used by utilizing the fact that the compound has an appropriate electric conductivity. Furthermore, heating methods such as plasma heating, laser irradiation, and high intensity lamp irradiation can also be used.

【0026】単結晶製造にアルカリ土類金属ホウ化物の
硼素添加剤としての利用は、FZ法など帯溶融法の他
に、例えば、スカルメルト法などの他の溶融法で結晶化
する場合にも適用することができる。
The use of an alkaline earth metal boride as a boron additive in the production of a single crystal is applicable not only to the zone melting method such as the FZ method but also to other crystallization such as the skull melting method. can do.

【0027】本発明による単結晶の製造法は、好ましく
は、帯溶融法が利用されるが、このために使用可能な製
造装置の一例を図1に示す。この装置は数気圧の不活性
ガス雰囲気において結晶成長ができるように設計された
高周波誘導加熱FZ炉である。
As the method for producing a single crystal according to the present invention, a zone melting method is preferably used, and an example of a production apparatus usable for this purpose is shown in FIG. This apparatus is a high frequency induction heating FZ furnace designed to allow crystal growth in an inert gas atmosphere of several atmospheres.

【0028】この装置においては、原料棒8を上部から
吊り下げ先端を高周波電流の流れている誘導コイル4の
中まで下げると、原料棒8に誘導電流が発生してジュー
ル熱によって原料棒8の先端部分が溶融する。溶融した
原料を、原料棒8の下に配した種子結晶または初期融帯
形成用の焼結棒5に接することによって誘導コイル中心
部に融帯7を形成する。このようにして形成された融帯
7に上方から原料棒8を連続的に送り込むと同時に下側
の種子結晶5を下方に引き抜くことによって、融帯下側
に単結晶6を成長させるものである。
In this apparatus, when the raw material rod 8 is suspended from the upper part and lowered to the inside of the induction coil 4 in which high frequency current is flowing, an induced current is generated in the raw material rod 8 and Joule heat causes the raw material rod 8 to move. The tip part melts. The melted raw material is brought into contact with the seed crystal arranged below the raw material rod 8 or the sintered rod 5 for forming the initial melt zone to form the melt zone 7 in the central portion of the induction coil. The raw material rod 8 is continuously fed from above to the thus formed melt zone 7, and at the same time, the lower seed crystal 5 is pulled out to grow the single crystal 6 below the melt zone. .

【0029】単結晶の製造においては、まず、焼結棒が
製造される。原料となるXB粉末とRB粉末を良く
混合し、結合材として少量の樟脳を加え、ゴム容器に充
填して封入し、静水圧プレス内で、高圧で、例えば、1
〜4t/cmの圧力を加て、圧粉棒を製造する。この
圧粉棒を真空中又はアルゴンなどの不活性ガス中で12
00〜1800℃程度に加熱して焼結した原料棒8を製
造する。
In producing a single crystal, first, a sintered rod is produced. The raw material XB 2 powder and RB 6 powder were mixed well, a small amount of camphor was added as a binder, and the mixture was filled in a rubber container and sealed. At a high pressure in a hydrostatic press, for example, 1
A powder bar is manufactured by applying a pressure of ˜4 t / cm 2 . Place the dust bar in vacuum or in an inert gas such as argon.
The raw material rod 8 which is heated and sintered at about 00 to 1800 ° C. is manufactured.

【0030】焼結した原料棒8を上軸2にホルダー3を
介してセットし、下軸10には種結晶5をホルダー11
を介してセットする。種結晶5に代えて、初期融帯形成
用の焼結棒を用いることもできる。この場合は、例え
ば、原料棒と同じ組成の粉末を、原料棒と同じ手順を用
いて圧扮した棒を真空焼成した焼結体を用いる。次に、
数気圧の不活性ガスを炉内に充填後、原料棒8を誘導コ
イルの中心に送り込み先端を溶融させ、融帯7を形成
し、上軸2と下軸10をゆっくりと下方に移動させて単
結晶6を成長させる。
The sintered raw material rod 8 is set on the upper shaft 2 via the holder 3, and the seed crystal 5 is set on the lower shaft 10 by the holder 11.
Set through. Instead of the seed crystal 5, a sintered rod for forming an initial melt zone can be used. In this case, for example, a sintered body is used, in which a powder having the same composition as the raw material rod is pressed by the same procedure as the raw material rod, and the rod is vacuum-fired. next,
After filling the furnace with an inert gas of several atmospheres, the raw material rod 8 is fed to the center of the induction coil to melt the tip, form a fusion zone 7, and slowly move the upper shaft 2 and the lower shaft 10 downward. The single crystal 6 is grown.

【0031】このとき、原料棒8は単結晶に比べて密度
が低いので、密度差を保証するように速度設定し、単結
晶を引き抜く速度よりも早い速度で原料棒8を送り込
む。また、雰囲気は高周波誘導コイル4での放電を防止
するため、例えば、1〜10気圧のアルゴンまたはヘリ
ウムなどの不活性ガスを用いる。
At this time, since the raw material rod 8 has a lower density than the single crystal, the speed is set so as to guarantee the density difference, and the raw material rod 8 is fed at a speed faster than the speed of pulling out the single crystal. Further, as the atmosphere, in order to prevent discharge in the high frequency induction coil 4, an inert gas such as argon or helium at 1 to 10 atm is used.

【0032】単結晶棒から半導体層成長用の基板を作る
には、X線回折法を用いて結晶棒の結晶方位を決定し、
(0001)面に平行に、厚さ0.8〜1.2mm程度
の薄板を、マルチバンドソーを用いて切り出す。この結
晶板について、ダイヤモンド砥石にて外形を整えた後、
強アルカリを用いた化学研磨加工を行い、厚さ0.3〜
1.0mmの基板を製造する。
To prepare a substrate for growing a semiconductor layer from a single crystal rod, the crystal orientation of the crystal rod is determined by using the X-ray diffraction method,
A thin plate with a thickness of about 0.8 to 1.2 mm is cut parallel to the (0001) plane using a multiband saw. After adjusting the outer shape of this crystal plate with a diamond grindstone,
Chemical polishing using strong alkali, thickness 0.3 ~
A 1.0 mm substrate is manufactured.

【0033】この後、光学顕微鏡を用いて基板を観察す
る。含有物やピットは、存在すれば、50〜400倍の
倍率で十分にその形状を確認することができる。
After that, the substrate is observed using an optical microscope. If the inclusions and pits are present, their shapes can be sufficiently confirmed at a magnification of 50 to 400 times.

【0034】[0034]

【実施例】[実施例1]市販のZrB粉末に、CaB
粉末を0〜20mol%の範囲で、5水準添加して良く
混合し、結合材として樟脳を少量添加した後、直径12
mmのゴム容器中に充填して、2000kg/cm
静水圧プレスを行い圧粉棒を製造した。各圧粉棒は、真
空雰囲気1400℃で加熱して直径10mm長さ120
mm程度の焼結棒とした。このとき焼結棒の相対密度は
55%であった。
[Example] [Example 1] CaB 6 was added to commercially available ZrB 2 powder.
Add 5 levels of powder in the range of 0 to 20 mol%, mix well, add a small amount of camphor as a binder, and then add 12
It was filled in a rubber container of mm and subjected to a hydrostatic pressing of 2000 kg / cm 2 to manufacture a dust bar. Each dust bar is heated in a vacuum atmosphere at 1400 ° C. and has a diameter of 10 mm and a length of 120.
A sintered rod of about mm was used. At this time, the relative density of the sintered rod was 55%.

【0035】各焼結棒を図1に示す高周波誘導加熱FZ
炉の上軸2にホルダーを介して固定し、下軸10にはZ
rB焼結棒を固定した。FZ炉内には6気圧のアルゴ
ンを充填し、高周波誘導加熱により原料棒8を溶融して
初期融帯を形成し、20mm/hrの速度で3時間かけ
て全長60mm、直径9mmの単結晶棒を製造した。得
られる結晶棒の化学分析を行い、Ca含有量、B/Zr
比を測定した。得られた結晶から(0001)面を切り
出し、鏡面に加工して、顕微鏡観察した結果、含有物や
ピットを観察した。試験結果を表1にまとめた。
A high frequency induction heating FZ shown in FIG.
It is fixed to the upper shaft 2 of the furnace through a holder, and the lower shaft 10 is Z-shaped.
The rB 2 sintered rod was fixed. The FZ furnace was filled with 6 atm of argon, and the raw material rod 8 was melted by high frequency induction heating to form an initial melt zone, and a single crystal rod having a total length of 60 mm and a diameter of 9 mm was formed at a speed of 20 mm / hr for 3 hours. Was manufactured. Chemical analysis of the obtained crystal rod is carried out, Ca content, B / Zr
The ratio was measured. The (0001) plane was cut out from the obtained crystal, processed into a mirror surface, and as a result of microscopic observation, inclusions and pits were observed. The test results are summarized in Table 1.

【0036】[0036]

【表1】 [Table 1]

【0037】この実施例でZrBの単結晶を製造する
と、原料棒へのCaBの配合量を増加させると、1m
ol%で単結晶中の含有物が減少する傾向が見られ、4
mol%配合すると、融帯中のB/Zr比が1.95と
なり、単結晶中含有物(破断面上のピット)は消滅す
る。さらにCaB配合量を増加させると、研摩面上の
介在物により生じたピットも実質的に発生しなくなる
(ピットとして100-300/cm)。しかし、CaB
が、10mol%の配合では、結晶棒には、2つ以上の
結晶粒の発生がしばしば観察されるようになり、20m
ol%以上の配合では得られる結晶は多結晶体となる。
When a single crystal of ZrB 2 was produced in this example, when the content of CaB 6 in the raw material rod was increased, it was 1 m.
It was observed that the content in the single crystal tends to decrease at ol%, and 4
When blended in mol%, the B / Zr ratio in the melt zone becomes 1.95, and the inclusions (pits on the fracture surface) in the single crystal disappear. When the CaB 6 content is further increased, pits caused by inclusions on the polished surface are substantially eliminated (100-300 / cm 2 as pits). However, CaB 6
However, when 10 mol% was added, the occurrence of two or more crystal grains was often observed in the crystal rod,
When the content is ol% or more, the obtained crystal becomes a polycrystal.

【0038】このようにして、FZ法においては、融帯
中のB/Zr比が原子比で1.95〜2.2の範囲にす
ることにより、含有物に起因すると思われるピットの減
少が顕著になり、ほとんど観察することができない。さ
らに、好ましくはB/Zr比2.05〜2.20の範囲
で含有物は完全に含まれない。
As described above, in the FZ method, when the B / Zr ratio in the melt zone is in the range of 1.95 to 2.2 in atomic ratio, the pits which are considered to be caused by inclusions are reduced. It becomes noticeable and almost unobservable. Further, preferably, the inclusion is not completely contained in the B / Zr ratio of 2.05 to 2.20.

【0039】TiBの単結晶の製造の実施例では、T
iBの単結晶の製造においては、同じくCaBを配
合すると、CaB0.5mol%の配合で介在物の減
少傾向が認められ、1mol%の配合では含有物は全く
消滅した。配合量を更に増加させると、5mol%では
結晶粒の発生がしばしば観察された。TiBの場合、
融帯のB/Ti比で2.15以上の範囲になっている場
合にのみ含有物に起因すると思われるピットの減少が顕
著になり、ほとんど観察できなかった。さらに、好まし
くは2.2以上の場合に含有物が完全に消滅した。
In the example of the production of a single crystal of TiB 2 , T
In the production of a single crystal of iB 2 , when CaB 6 was also mixed, a decrease tendency of inclusions was observed at a CaB 6 content of 0.5 mol%, and inclusions disappeared at a 1 mol% composition. When the compounding amount was further increased, the occurrence of crystal grains was often observed at 5 mol%. In the case of TiB 2 ,
Only when the B / Ti ratio of the melt zone was in the range of 2.15 or more, the pits decrease, which is thought to be due to the inclusions, became remarkable and could not be observed. Further, preferably, the content completely disappeared in the case of 2.2 or more.

【0040】上記実施例表1中、0mol%のCaB
試料では、配合見料は、B/Zr比が、2.0である
が、帯溶融により単結晶を製造すると、図6に示すよう
に、結晶中に0.01〜0.1mmの含有物や、含有物
が脱落したと考えられるピットが多数確認された。この
含有物若しくはピットの分布を見ると、結晶の成長方向
などの特定の方向に依存している形跡はなく、ほぼ均一
に分布していた。この分布からこれらの含有物が結晶の
凝固時点、すなわち図2に示す相図における番号7から
13への過程において発生しているのではなく、凝固後
の冷却過程において、すなわち図2における番号14か
ら15への過程において、固相の分解によって発生した
ことが判る。このようにして製造した結晶を半導体形成
用基板として検討した結果、結晶に多数の介在物粒子が
存在するために、研磨加工後の結晶表面に直径数μm〜
百数十μm程度で深さ数十μmのピットが多数見られ、
半導体形成用基板としては使用することが困難であるこ
とが判る。
In Table 1 of the above example, 0 mol% of CaB 6
In the sample, the compounding ingredient has a B / Zr ratio of 2.0, but when a single crystal is produced by zone melting, as shown in FIG. 6, the content of 0.01 to 0.1 mm is contained in the crystal. In addition, a large number of pits where the inclusions were considered to have fallen off were confirmed. Looking at the distribution of the inclusions or pits, there was no evidence of dependence on a specific direction such as the crystal growth direction, and the distribution was almost uniform. From this distribution, these inclusions are not generated at the time of solidification of the crystal, that is, in the process from number 7 to 13 in the phase diagram shown in FIG. 2, but in the cooling process after solidification, that is, number 14 in FIG. It can be seen that in the process from No. 15 to No. 15, it occurred due to decomposition of the solid phase. As a result of studying the crystal thus produced as a semiconductor-forming substrate, a large number of inclusion particles are present in the crystal, so that the crystal surface after polishing has a diameter of several μm or more.
There are many pits with a depth of several tens of μm and a few hundreds of μm.
It turns out that it is difficult to use as a substrate for semiconductor formation.

【0041】なお、比較例として、前記特開平10−9
5699と同じ方法を用い、単体ホウ素Bを理論比のZ
rB原料に混入させて実際に結晶を製造し半導体形成
用基板として加工した状態でピット(含有物)の確認を
行った。このとき、原料棒へのBの配合量を上げるとピ
ットの数量が減少していくことは確認できた。しかし、
ピットが消滅する程度まで原料棒中の単体Bの配合濃度
を上げると、原料棒のB/Zr比が2.8を越え、原料
の融点降下が激しくなり、原料が溶融域であるべき所で
はない上部から溶融し始め結晶成長状態が分安定にな
り、結晶成長が困難になった。さらに融液が高温である
ためB単体組成での揮発が激しく融液中へのBの供給効
率が悪くなった。このようにして、単体Bは高価である
にも拘わらずピット数を減らすためには大量の配合を必
要とすることがわかる。
As a comparative example, the above-mentioned Japanese Patent Laid-Open No. 10-9
Using the same method as 5699, elemental boron B was added to the theoretical ratio Z
The pits (inclusions) were confirmed in a state where a crystal was actually produced by mixing it with the rB 2 raw material and processed as a semiconductor formation substrate. At this time, it was confirmed that the number of pits decreased as the amount of B added to the raw material rod was increased. But,
If the mixing concentration of elemental B in the raw material rod is increased to such an extent that the pits disappear, the B / Zr ratio of the raw material rod exceeds 2.8, the melting point of the raw material drops sharply, and the raw material should be in the melting region. It started to melt from the upper part and the crystal growth state became stable for a while, making the crystal growth difficult. Furthermore, since the melt is at a high temperature, volatilization of the simple substance of B is severe and the efficiency of supplying B into the melt is poor. Thus, it can be seen that although the simple substance B is expensive, a large amount of compound is required to reduce the number of pits.

【0042】TiBにおいても、文献3に記載されて
いるTiBのみを出発原料とした方法を実施したが、
ZrB同様に結晶中には含有物やピットが観察され
た。尤も、TiBの場合では、ZrBの場合と異な
り、融帯の組成はB過剰でB/Ti比では2.1となっ
ていた。これは、結晶製造時の融帯からの蒸発におい
て、Tiの方がBよりも多く蒸発してしまうからであ
る。しかしながら、結晶中の含有物についてはZrB
同様にBの配合により減少する傾向があり、従ってTi
とBの間の相図は図3に示す形になっていると推測され
る。
For TiB 2 as well, the method described in Document 3 was carried out using only TiB 2 as a starting material.
Like ZrB 2, inclusions and pits were observed in the crystal. However, in the case of TiB 2 , unlike the case of ZrB 2 , the composition of the melt zone was excessive B and the B / Ti ratio was 2.1. This is because Ti vaporizes more than B vaporizes from the melt zone during crystal production. However, regarding the inclusion in the crystal, ZrB 2
Similarly, it tends to decrease with the addition of B, and therefore Ti
It is assumed that the phase diagram between B and B has the form shown in FIG.

【0043】[実施例2]市販のTiB粉末にCaB
粉末を2mol%配合・混合し、静水圧加圧及び真空
焼成を行い直径10mmで長さ120mmの原料棒8を
製造した。密度は55%であった。原料棒を炉内にセッ
トして、下軸側にはTiB焼結棒を固定した。
Example 2 Commercially available TiB 2 powder was added to CaB.
The 6 powders were blended and mixed in an amount of 2 mol%, and hydrostatic pressure and vacuum firing were performed to manufacture a raw material rod 8 having a diameter of 10 mm and a length of 120 mm. The density was 55%. The raw material rod was set in the furnace, and the TiB 2 sintered rod was fixed to the lower shaft side.

【0044】FZ炉内には6気圧のヘリウムを充填し、
高周波誘導加熱により原料棒8を溶融して初期融帯を形
成し、90mm/hrの速度で0.6時間かけて全長6
0mm、直径9mmの単結晶を製造した。得られる結晶
中のCa含有量は20ppmであった。融帯組成はB/
Ti比で3.00であった。得られた結晶から(000
1)面を切り出し、鏡面に加工して、顕微鏡観察した結
果、含有物やピットが存在しないことが確認された。
The FZ furnace was filled with 6 atm of helium,
The raw material rod 8 is melted by high frequency induction heating to form an initial melt zone, and the total length is 6 at a speed of 90 mm / hr for 0.6 hours.
A single crystal with a diameter of 0 mm and a diameter of 9 mm was produced. The Ca content in the obtained crystals was 20 ppm. Zone composition is B /
The Ti ratio was 3.00. From the crystals obtained (000
1) The surface was cut out, processed into a mirror surface and observed under a microscope. As a result, it was confirmed that inclusions and pits did not exist.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施形態にかかる製造方法に利用す
る単結晶製造装置の模式的断面図を示す。
FIG. 1 is a schematic sectional view of a single crystal manufacturing apparatus used in a manufacturing method according to an embodiment of the present invention.

【図2】 Zr−B系の相図の一部を示す。FIG. 2 shows a part of a phase diagram of the Zr-B system.

【図3】 Ti−B系の相図の一部を示す。FIG. 3 shows a part of a phase diagram of Ti—B system.

【図4】 FZ法により単結晶製造中の結晶棒の模式図
を示す。
FIG. 4 shows a schematic view of a crystal ingot during the production of a single crystal by the FZ method.

【図5】 本発明の製造方法により製造した単結晶基板
表面の拡大図を示す。
FIG. 5 shows an enlarged view of the surface of a single crystal substrate manufactured by the manufacturing method of the present invention.

【図6】 研磨後の基板表面に存在する介在物・ピット
の拡大図を示す。
FIG. 6 shows an enlarged view of inclusions / pits existing on the substrate surface after polishing.

【符号の説明】[Explanation of symbols]

1:上軸駆動部 2:上軸 3:ホルダー 4:誘導コイル 5:種結晶 6:単結晶 7:融帯 8:原料棒 9:下軸駆動部 10:下軸 11:ホルダー 1: Upper shaft drive 2: Upper axis 3: Holder 4: Induction coil 5: Seed crystal 6: Single crystal 7: Zone 8: Raw material bar 9: Lower shaft drive 10: Lower axis 11: Holder

フロントページの続き (72)発明者 木下 博之 滋賀県八日市市蛇溝町長谷野1166番地の6 京セラ株式会社滋賀工場内 Fターム(参考) 4G077 AA02 BE06 CE03 EC08 HA12Continued front page    (72) Inventor Hiroyuki Kinoshita             6 at 1166 Haseno, Jamizo-cho, Yokaichi-shi, Shiga               Kyocera Corporation Shiga Factory F-term (reference) 4G077 AA02 BE06 CE03 EC08 HA12

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 XB(XはTi若しくはZrの少なく
とも一つを含む)で表記される二ホウ化物結晶におい
て、該結晶中にCa、Sr及びBaの少なくとも一つを
1〜100ppm含有することを特徴とするホウ化物単
結晶。
1. A diboride crystal represented by XB 2 (X includes at least one of Ti and Zr), and containing 1 to 100 ppm of at least one of Ca, Sr and Ba in the crystal. A boride single crystal characterized by:
【請求項2】 XB(XはTi若しくはZrの少なく
とも一つを含む)で表記されるホウ化物結晶であって、
結晶中に金属X相とXの一ホウ化物XBとを実質的に含
まないことを特徴とするホウ化物単結晶。
2. A boride crystal represented by XB 2 (X includes at least one of Ti and Zr),
A boride single crystal which is substantially free of a metal X phase and X monoboride XB in the crystal.
【請求項3】 上記請求項1または2に記載のホウ化物
単結晶よりなる半導体形成用基板。
3. A semiconductor-forming substrate made of the boride single crystal according to claim 1 or 2.
【請求項4】 XB(XはTi若しくはZrの少なく
とも一つを含む)で表記されるホウ化物単結晶を帯溶融
法により製造する製造方法において、 ホウ化物結晶を帯溶融法により製造する際に、帯融液部
分の組成がXの含有量に対するホウ素Bの含有量の原子
比B/Xで1.95〜2.2に設定することを特徴とす
るXB単結晶の製造方法
4. A method for producing a boride single crystal represented by XB 2 (X includes at least one of Ti and Zr) by a zone melting method, wherein the boride crystal is produced by a zone melting method. In addition, the composition of the zone melt portion is set to an atomic ratio B / X of the content of boron B with respect to the content of X to 1.95 to 2.2, and a method for producing an XB 2 single crystal.
【請求項5】 帯溶融法の溶融前の上記XB含有原料
が、アルカリ土類ホウ化物RB(RはCr、Sr、B
aの少なくとも一つを含む)0.5〜20mol%を含
有することを特徴とする請求項4に記載のXB単結晶
の製造方法。
5. The XB 2 -containing raw material before melting in the zone melting method is alkaline earth boride RB 6 (R is Cr, Sr, B
including at least one) manufacturing method of XB 2 single crystal according to claim 4, characterized in that it contains 0.5~20Mol% of a.
【請求項6】 請求項4又は5のいずれかの製造方法に
より製造したXB単結晶を使用した半導体形成用基
板。
6. A semiconductor-forming substrate using an XB 2 single crystal manufactured by the manufacturing method according to claim 4.
【請求項7】 半導体形成用基板が、窒化物半導体層を
成長させるための基板である請求項3又は6に記載の半
導体形成用基板。
7. The semiconductor forming substrate according to claim 3, wherein the semiconductor forming substrate is a substrate for growing a nitride semiconductor layer.
JP2001275170A 2001-09-11 2001-09-11 Boride single crystal and substrate for semiconductor formation Expired - Fee Related JP4515674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001275170A JP4515674B2 (en) 2001-09-11 2001-09-11 Boride single crystal and substrate for semiconductor formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001275170A JP4515674B2 (en) 2001-09-11 2001-09-11 Boride single crystal and substrate for semiconductor formation

Publications (2)

Publication Number Publication Date
JP2003089596A true JP2003089596A (en) 2003-03-28
JP4515674B2 JP4515674B2 (en) 2010-08-04

Family

ID=19100082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001275170A Expired - Fee Related JP4515674B2 (en) 2001-09-11 2001-09-11 Boride single crystal and substrate for semiconductor formation

Country Status (1)

Country Link
JP (1) JP4515674B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001213690A (en) * 2000-01-27 2001-08-07 Natl Inst For Research In Inorganic Materials Mext Growing method of rare earth hexaboron single crystal

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2580523B2 (en) * 1993-11-05 1997-02-12 科学技術庁無機材質研究所長 Growth method of titanium diboride single crystal
JPH1095699A (en) * 1996-09-13 1998-04-14 Natl Inst For Res In Inorg Mater Growth of zirconium diboride single crystal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001213690A (en) * 2000-01-27 2001-08-07 Natl Inst For Research In Inorganic Materials Mext Growing method of rare earth hexaboron single crystal

Also Published As

Publication number Publication date
JP4515674B2 (en) 2010-08-04

Similar Documents

Publication Publication Date Title
KR101235772B1 (en) Method for growing silicon carbide single crystal
JP5068423B2 (en) Silicon carbide single crystal ingot, silicon carbide single crystal wafer, and manufacturing method thereof
EP2484815A1 (en) Sic single crystal and method for producing same
JP2007254161A (en) Method of and device for producing group iii nitride crystal
KR100655106B1 (en) Spinel substrate and heteroepitaxial growth of III-V materials thereon
JP2013237591A (en) Gallium oxide melt, gallium oxide single crystal, gallium oxide substrate, and method for producing gallium oxide single crystal
EP1772540B1 (en) Method for preparing crystal of nitride of metal belonging to 13 group of periodic table and method for manufacturing semiconductor device using the same
JP4480298B2 (en) Boride crystal, substrate for forming semiconductor layer using the same, and method for producing the same
JP4515674B2 (en) Boride single crystal and substrate for semiconductor formation
JP2011190138A (en) Method for producing multiferroic single crystal
JP2003335600A (en) PROCESS FOR PREPARING AlN SINGLE CRYSTAL
JP5471398B2 (en) Sapphire single crystal wafer for epitaxial growth and manufacturing method thereof
TWI276710B (en) Spinel articles and methods for forming same
JP4817099B2 (en) Carbide single crystal and manufacturing method thereof
JPH1095699A (en) Growth of zirconium diboride single crystal
JP4538619B2 (en) Boride single crystal, semiconductor forming substrate and method for manufacturing the same
JP3755021B2 (en) Growth method of rare earth hexaboride single crystals
CN110578170B (en) ScAlMgO4Single crystal and device
EP2154273B1 (en) Method for production of ultraviolet light-emitting hexagonal boron nitride crystal
JP4766375B2 (en) Boride single crystal, method for producing the same, and substrate for semiconductor growth using the same
JP5218960B2 (en) Zirconium diboride (ZrB2) single crystal growth method and semiconductor forming substrate
JP4302927B2 (en) Boride single crystal, manufacturing method thereof, and semiconductor layer forming substrate using the same
JP4518782B2 (en) Method for producing diboride single crystal
JP2997762B2 (en) Growth method of calcium hexaboride crystals
JPH08143395A (en) Method for growing lanthanum hexaboride single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100513

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees