JPH04338191A - Production of single crystal - Google Patents

Production of single crystal

Info

Publication number
JPH04338191A
JPH04338191A JP13844091A JP13844091A JPH04338191A JP H04338191 A JPH04338191 A JP H04338191A JP 13844091 A JP13844091 A JP 13844091A JP 13844091 A JP13844091 A JP 13844091A JP H04338191 A JPH04338191 A JP H04338191A
Authority
JP
Japan
Prior art keywords
raw material
single crystal
zone
rod
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13844091A
Other languages
Japanese (ja)
Inventor
Yukinobu Nakabayashi
中林 幸信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP13844091A priority Critical patent/JPH04338191A/en
Publication of JPH04338191A publication Critical patent/JPH04338191A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To easily and stably obtain single crystal by passing the sintered rod for a raw material through the inside of an infrared convergent band melting furnace at high speed and making the sintered rod uniform and dense and thereafter passing the same through the inside of the furnace at low speed and crystallizing it in the case of using the melting furnace and growing single crystal in a band melting method. CONSTITUTION:MgO and Al2O3 are mixed with oxides of lanthanoid elements at such a ratio that single crystal having composition of LnMgAl11O19 (Ln shows lanthanoid elements of La, Ce, Pr, Nd, Sm, Eu, Gd and solid solution thereof) is obtained. The sintered rod for a raw material is produced by forming this mixture and heat-treating the formed body. Then this sintered rod is melted in an infrared convergent band melting furnace equipped with the halogen lamps 4, a quartz pipe 3 and a rotary ellipsoidal mirror 5 or the like. This melt is once passed through a zone at 30-70mm/h speed and the uniform and dense raw material rod M is produced. Then the obtained raw material rod M is again melted in the furnace. While this melt is brought into contact with a seed crystal S, it is passed through the zone at 1-4mm/h. Single crystal of LnMgAl11O19 is grown by a band melting method.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はLnMgAl11O19
単結晶を帯溶融法を用いて育成するにあたり、その原料
となる焼結棒を一旦比較的短時間に融解してゾーンパス
することにより、単結晶育成を行う方法に関する。
[Industrial Application Field] The present invention relates to LnMgAl11O19
The present invention relates to a method for growing a single crystal using a zone melting method, by once melting a sintered rod, which is a raw material, in a relatively short period of time and subjecting it to a zone pass.

【0002】0002

【従来の技術】LnMgAl11O19単結晶は、その
単結晶の持つ高い熱伝導性,化学的安定性希土類位置へ
のNd等の光学活性種の高い固溶性等の特性を有するた
め、高出力レーザー発振材料として期待されている工業
材料である。帯溶融法による単結晶育成は、ブリッジマ
ン法及び引き上げ法と違い、坩堝を用いずに結晶育成が
可能であり、また比較的速い育成が可能であるので、不
純物の混入をきらう半導体結晶や光学結晶,磁性体結晶
において行われてきた。
[Prior Art] LnMgAl11O19 single crystal has properties such as high thermal conductivity, chemical stability, and high solid solubility of optically active species such as Nd in rare earth positions, and is therefore a high-power laser oscillation material. It is an industrial material that is expected to be used as a material. Unlike the Bridgman method and the pulling method, single crystal growth using the band melting method allows crystal growth without using a crucible, and can be grown relatively quickly, so it can be used for semiconductor crystals and optical devices that do not want to be contaminated with impurities. It has been performed on crystals and magnetic crystals.

【0003】0003

【発明が解決しようとする課題】ところで帯溶融法によ
って単結晶を育成する場合、その原料としては組成及び
その径において均一、かつ緻密でまっすぐな原料棒を用
いる。従来LnMgAl11O19の焼結棒を製造する
場合、化合物の融点が1950℃と非常に高温のため、
通常の焼結法では緻密な焼結体を得ることが困難であり
、単結晶育成を行う際に、多孔質な焼結体の浸透作用等
によりゾーンの維持が困難になり、結晶育成を安定に行
うことが困難であった。
When a single crystal is grown by the zone melting method, a raw material rod that is uniform in composition and diameter, and is dense and straight is used as the raw material. Conventionally, when manufacturing a sintered rod of LnMgAl11O19, the melting point of the compound was as high as 1950°C, so
It is difficult to obtain a dense sintered body using normal sintering methods, and when growing a single crystal, it is difficult to maintain the zone due to the permeation effect of the porous sintered body, making crystal growth stable. It was difficult to do so.

【0004】本発明の目的は、均一、かつ緻密な育成原
料を比較的短時間で製造し、LnMgAl11O19単
結晶の育成を容易に、かつ安定に行う方法を提供するこ
とにある。
An object of the present invention is to provide a method for producing uniform and dense growth raw materials in a relatively short time and for easily and stably growing LnMgAl11O19 single crystals.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
、本発明による単結晶の製造方法においては、赤外集光
帯溶融炉を用い、帯溶融法によってLnMgAl11O
19の単結晶を育成する単結晶の製造方法(ただし、L
nは、La,Ce,Pr,Nd,Sm,Eu,Gdの各
ランタノイド元素及びそれらの固溶体を示す)であって
、原料となる焼結棒を赤外集光帯溶融炉中にて融解し、
30mm/h〜70mm/hの速度で一旦ゾーンパスす
ることで均一、且つ緻密な原料棒を作成し、得られた原
料棒を、再度赤外集光帯溶融炉内にて融解し、1mm/
h〜4mm/hでゾーンパスすることにより単結晶化す
るものである。
[Means for Solving the Problems] In order to achieve the above object, in the method for producing a single crystal according to the present invention, an infrared convergence zone melting furnace is used, and LnMgAl11O is produced by a zone melting method.
19 Single crystal manufacturing method for growing single crystals (However, L
n represents each lanthanide element La, Ce, Pr, Nd, Sm, Eu, Gd and their solid solution), and the sintered rod serving as the raw material is melted in an infrared condensing zone melting furnace. ,
A uniform and dense raw material rod is created by once zone passing at a speed of 30 mm/h to 70 mm/h, and the obtained raw material rod is melted again in an infrared condensing zone melting furnace to form a 1 mm/h
A single crystal is formed by zone pass at a speed of 4 mm/h.

【0006】[0006]

【作用】LnMgAl11O19単結晶を帯溶融法を用
いて製造する場合、その原料として緻密で、かつ組成の
均一な原料棒が必要となる。従来原料棒を作成する場合
、通常の固相焼結法によっていたが、LnMgAl11
O19の融点が1950℃程度と高温なため緻密な焼結
が難しく、安定なゾーンパスを行うことが困難であった
。それは多孔質な原料を用いる場合、多孔質原料の浸透
差用によりゾーン部分の融液が原料棒にしみこみ、その
結果、原料棒が膨らんだりひどい場合には原料棒が割れ
落ちてしまうためである。
[Operation] When LnMgAl11O19 single crystal is produced using the zone melting method, a dense raw material rod with a uniform composition is required as the raw material. Conventionally, when creating a raw material rod, the usual solid phase sintering method was used, but LnMgAl11
Since O19 has a high melting point of about 1950° C., it is difficult to perform dense sintering, and it is difficult to perform stable zone pass. This is because when using a porous raw material, the melt in the zone permeates into the raw material rod due to the difference in permeability of the porous raw material, resulting in the raw material rod swelling or, in severe cases, cracking and falling. .

【0007】焼結の不十分な原料棒を用いる場合、育成
中にその原料の気化もしくは飛散が激しく、炉心管を汚
染するため、結晶育成が困難になる。また原料棒の組成
が均一でない場合、ゾーンの組成が変動を起こしその結
果結晶育成が困難になる。しかしながら、ゾーンの融液
が原料棒に浸透する速さよりもゾーンを速く移動させる
場合にはこれらの問題は起こらず、たとえ多孔質な原料
を用いる場合でも、安定にゾーンパスを短時間で行うこ
とができる。
[0007] When using a raw material rod that is insufficiently sintered, the raw material vaporizes or scatters violently during growth and contaminates the furnace tube, making crystal growth difficult. Furthermore, if the composition of the raw material rod is not uniform, the composition of the zone will vary, making crystal growth difficult. However, these problems do not occur if the zone is moved faster than the speed at which the melt in the zone permeates into the raw material rod, and even when using porous raw materials, it is possible to stably perform zone passes in a short time. can.

【0008】このようにして作成した棒は多結晶体であ
るが、いったん融解した後に再固化しているので、完全
に緻密であり、その組成においても均一性に優れている
。その融解原料を用いて育成を行う場合、上述した理由
によりゾーンの維持が安定に行われ、原料を単結晶化す
るために1mm/h〜4mm/hで再度ゾーンパスをす
ることが容易に行われる。この範囲のゾーンの移動速度
を用いると、比較的緻密性の悪い焼結棒でも安定にゾー
ンパスが行え、その結果得られた溶融原料を用いると、
単結晶育成が容易に行われ得る。
The rod thus produced is a polycrystalline substance, but since it is once melted and then resolidified, it is completely dense and has excellent uniformity in its composition. When growing using the molten raw material, the zone is stably maintained for the reasons mentioned above, and it is easy to perform another zone pass at 1 mm/h to 4 mm/h to monocrystallize the raw material. . By using the zone movement speed within this range, even a relatively poorly dense sintered rod can be stably zone-passed, and by using the resulting molten raw material,
Single crystal growth can be easily performed.

【0009】[0009]

【実施例】以下、本発明の実施例を図によって説明する
[Embodiments] Hereinafter, embodiments of the present invention will be explained with reference to the drawings.

【0010】(実施例1)ランタンネオジムマグネシュ
ウムアルミネート(La0.9Nd0.1MgAl11
O19)において、原料粉は通常の固相反応法によって
合成した。 すなわち所定量のLa2O3,MgO及びAl2O3を
ボールミルによって十分混合した後に、所定温度(12
00℃)で10時間以上反応させることによって行った
。得られた反応物は、粉末X線回折によってその反応の
程度を調べたが、充分な反応は起こらず、その、X線回
折パターンは、混合粉の物と類似であった。
(Example 1) Lanthanum neodymium magnesium aluminate (La0.9Nd0.1MgAl11
In O19), the raw material powder was synthesized by a conventional solid phase reaction method. That is, after sufficiently mixing a predetermined amount of La2O3, MgO, and Al2O3 with a ball mill, the predetermined temperature (12
The reaction was carried out by reacting at 00°C for 10 hours or more. The degree of reaction of the obtained reaction product was examined by powder X-ray diffraction, but sufficient reaction did not occur and the X-ray diffraction pattern was similar to that of the mixed powder.

【0011】得られた原料粉末の粒度を細かく、均一に
揃えるために再度ボールミルを用いて粉砕を行った後、
一方が封じられた太さ8mm,長さ150mm,厚さ0
.2mmの天然ゴム製の袋を用いて、1〜2ton/c
m2の静水圧プレスによって均一な長さ130mmのプ
レス成形体を得た。プレス成形体の密度は外形と質量か
ら求めたが、2.6g/cm3であった。これは試料の
理想密度の60%に達する。静水圧プレスを行う際には
、充填をして余分な空気を減圧ポンプで抜いた袋を内径
8mmの半割にしたパイプの上にのせて粘着テープで固
定することによって曲がりの少ないプレス体を得ること
ができた。
After pulverizing the obtained raw material powder again using a ball mill to make the particle size fine and uniform,
One side sealed, thickness 8mm, length 150mm, thickness 0
.. 1-2 ton/c using a 2mm natural rubber bag
A press molded body having a uniform length of 130 mm was obtained by hydrostatic pressing of m2. The density of the press-formed body was determined from the external shape and mass and was 2.6 g/cm3. This amounts to 60% of the ideal density of the sample. When performing a hydrostatic press, the bag is filled and excess air is removed using a vacuum pump, and then placed on top of a halved pipe with an inner diameter of 8 mm and fixed with adhesive tape to create a pressed body with less bending. I was able to get it.

【0012】得られたプレス成形体は、1550℃の温
度に維持された縦型電気炉の中に白金ワイヤーに保持さ
れて0.1mm/min〜1.0mm/minの速度で
電気炉外から挿入された。その後、3時間の保持の後、
冷却は電気炉の入力を切り、炉冷にて行った。得られた
結晶体の密度はアルキメデス法により測定したが3.6
g/cm3で、格子定数より求めた理想密度の84%で
あった。これは帯溶融法によって単結晶育成するには不
充分である。
[0012] The obtained press-formed body is held by a platinum wire in a vertical electric furnace maintained at a temperature of 1550°C, and is heated from outside the electric furnace at a speed of 0.1 mm/min to 1.0 mm/min. inserted. Then, after holding for 3 hours,
Cooling was performed by turning off the electric furnace input and using furnace cooling. The density of the obtained crystal was measured by the Archimedes method and was 3.6.
g/cm3, which was 84% of the ideal density determined from the lattice constant. This is insufficient for single crystal growth by the zone melting method.

【0013】得られた焼結棒を、赤外集光帯溶融炉中に
て融解し、30mm/h〜70mm/hの速度で一旦ゾ
ーンパスすることで、均一、かつ緻密な原料棒を作成し
た。その際、融解に必要な電力は約750Wであり、空
気を250cc/minの速度で炉心管中に流しながら
行った。ゾーンの移動速度は30mm/hより遅いと原
料の焼結棒にゾーンの融液が浸透し、安定に行えなかっ
た。一方70mm/hより速いと原料が融解してゾーン
に溶け込む速さが間に合わず、やはりゾーンの安定な維
持が難しかった。
[0013] The obtained sintered rod was melted in an infrared condensing zone melting furnace and once zone-passed at a speed of 30 mm/h to 70 mm/h to produce a uniform and dense raw material rod. . At that time, the power required for melting was approximately 750 W, and the melting was performed while flowing air into the reactor core tube at a rate of 250 cc/min. When the moving speed of the zone was slower than 30 mm/h, the melt in the zone penetrated into the raw material sintered rod, making it impossible to perform stably. On the other hand, if the speed was faster than 70 mm/h, the raw material would not be able to melt and melt into the zone fast enough, making it difficult to maintain the zone stably.

【0014】このようにして作成した融解原料を再度赤
外集光帯溶融炉に設置して、250cc/minの空気
flow雰囲気中で単結晶育成を行った。設置時のレイ
アウトを図1に示す。図1に示す帯溶融炉は、雰囲気ガ
スの入口1及び出口2を有する石英管3は、周囲にハロ
ゲンランプ4を備え、回転楕円面鏡5で囲まれたもので
ある。種結晶Sを用いた原料棒Mからの結晶成長は、レ
ンズ6を通してスクリーン7に写し出される。種結晶は
使用しなくてもよいが、多結晶から出発して単結晶化を
図る場合、たとえば3mm/hで育成するときは直径2
mm程度にネッキングをして10mm程度育成した段階
で単結晶化した。種結晶から出発した場合にはネッキン
グをしなくてもすぐに単結晶が育成された。
[0014] The molten raw material thus prepared was again placed in an infrared focusing zone melting furnace, and single crystal growth was performed in an air flow atmosphere of 250 cc/min. Figure 1 shows the layout during installation. In the belt melting furnace shown in FIG. 1, a quartz tube 3 having an inlet 1 and an outlet 2 for atmospheric gas is surrounded by a halogen lamp 4 and surrounded by a spheroidal mirror 5. Crystal growth from the raw material rod M using the seed crystal S is projected onto a screen 7 through a lens 6. Seed crystals do not need to be used, but when growing a single crystal starting from a polycrystal, for example, when growing at 3 mm/h, a seed crystal with a diameter of 2 mm is required.
After necking to about 10 mm and growing to about 10 mm, the crystal was turned into a single crystal. When starting from a seed crystal, single crystals were grown immediately without necking.

【0015】育成速度は1mm/h及び2mm/h,4
mm/hで行ったがいずれの場合も良好な透明単結晶化
を得ることができた。いずれの場合も融解及びゾーン維
持に必要な電力は700W程度であった。
[0015] The growth speed is 1 mm/h and 2 mm/h, 4
mm/h, good transparent single crystallization could be obtained in all cases. In all cases, the power required for melting and zone maintenance was approximately 700W.

【0016】またLa0.5Nd0.5MgAl11O
19及びLa0.8Pr0.2MgAl11O19,C
e0.8Nd0.2MgAl11O19等でも同様の手
法で良好な単結晶を育成することができた。
[0016] Also, La0.5Nd0.5MgAl11O
19 and La0.8Pr0.2MgAl11O19,C
A good single crystal of e0.8Nd0.2MgAl11O19 etc. could also be grown using the same method.

【0017】また、ここでは焼成する原料の例としてL
aMgAl11O19を選んで説明したが、希土類位置
がCe,Pr,Nd,Sm,Eu,Gdの各元素であっ
てもまたそれらの固溶体であってもその焼結に関係する
化学的性質や物理的性質(融点,反応性,焼結性,粒度
)等には変化なく、まったく同じ方法を用いて緻密な焼
結棒を製造することが可能である。
[0017] Also, as an example of the raw material to be fired, L
aMgAl11O19 was selected for explanation, but whether the rare earth element is Ce, Pr, Nd, Sm, Eu, or Gd, or a solid solution thereof, the chemical and physical properties related to sintering will be explained. It is possible to produce a dense sintered rod using exactly the same method without any change in (melting point, reactivity, sinterability, particle size), etc.

【0018】[0018]

【発明の効果】以上詳細に説明したように、本発明によ
る単結晶製造方法を用いれば、緻密で、かつ組成の変動
の少ない原料棒を容易に得られ、赤外集光帯溶融炉を用
いてLnMgAl11O19の単結晶を容易に、かつ安
定に製造することができる。LnMgAl11O19単
結晶は、その化学的安定性,光熱伝導性等の理由により
高出力レーザー発振材料として有望な材料であり、工業
上に与える影響は大きい。
Effects of the Invention As explained in detail above, by using the single crystal manufacturing method according to the present invention, it is possible to easily obtain a raw material rod that is dense and has little variation in composition, and by using an infrared condensing zone melting furnace. Thus, a single crystal of LnMgAl11O19 can be easily and stably produced. LnMgAl11O19 single crystal is a promising material as a high-power laser oscillation material due to its chemical stability, photothermal conductivity, etc., and has a great influence on industry.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】赤外集光帯溶融炉のレイアウトを示す図である
FIG. 1 is a diagram showing the layout of an infrared condensing zone melting furnace.

【符号の説明】[Explanation of symbols]

3  石英管 4  ハロゲンランプ M  原料棒 S  種結晶 3 Quartz tube 4. Halogen lamp M Raw material rod S Seed crystal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  赤外集光帯溶融炉を用い、帯溶融法に
よってLnMgAl11O19の単結晶を育成する単結
晶の製造方法(ただし、Lnは、La,Ce,Pr,N
d,Sm,Eu,Gdの各ランタノイド元素及びそれら
の固溶体を示す)であって、原料となる焼結棒を赤外集
光帯溶融炉中にて融解し、30mm/h〜70mm/h
の速度で一旦ゾーンパスすることで均一、且つ緻密な原
料棒を作成し、得られた原料棒を、再度赤外集光帯溶融
炉内にて融解し、1mm/h〜4mm/hでゾーンパス
することにより単結晶化することを特徴とする単結晶の
製造方法。
Claim 1: A method for producing a single crystal of LnMgAl11O19 using an infrared condensing zone melting furnace and growing a single crystal of LnMgAl11O19 by a zone melting method (however, Ln is one of La, Ce, Pr, N
d, Sm, Eu, Gd and their solid solutions), a sintered rod serving as a raw material is melted in an infrared condensing zone melting furnace, and the melting rate is 30 mm/h to 70 mm/h.
A uniform and dense raw material rod is created by zone-passing at a speed of A method for producing a single crystal, characterized by forming a single crystal.
JP13844091A 1991-05-14 1991-05-14 Production of single crystal Pending JPH04338191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13844091A JPH04338191A (en) 1991-05-14 1991-05-14 Production of single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13844091A JPH04338191A (en) 1991-05-14 1991-05-14 Production of single crystal

Publications (1)

Publication Number Publication Date
JPH04338191A true JPH04338191A (en) 1992-11-25

Family

ID=15222043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13844091A Pending JPH04338191A (en) 1991-05-14 1991-05-14 Production of single crystal

Country Status (1)

Country Link
JP (1) JPH04338191A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0796931A1 (en) * 1996-03-22 1997-09-24 Murata Manufacturing Co., Ltd. Cerium-containing magnetic garnet single crystal and producing method thereof
JP2010143811A (en) * 2008-12-22 2010-07-01 National Institute Of Advanced Industrial Science & Technology Method for growing single crystal from polycrystal material
CN113387699A (en) * 2021-07-20 2021-09-14 北京理工大学 High-entropy REMGAL11O19 ceramic and preparation method and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0796931A1 (en) * 1996-03-22 1997-09-24 Murata Manufacturing Co., Ltd. Cerium-containing magnetic garnet single crystal and producing method thereof
US6033470A (en) * 1996-03-22 2000-03-07 Murata Manufacturing Co., Ltd. Method of producing a cerium-containing magnetic garnet single crystal
US6063304A (en) * 1996-03-22 2000-05-16 Murata Manufacturing Co., Ltd. Cerium-containing magnetic garnet single crystal and production method therefor
JP2010143811A (en) * 2008-12-22 2010-07-01 National Institute Of Advanced Industrial Science & Technology Method for growing single crystal from polycrystal material
CN113387699A (en) * 2021-07-20 2021-09-14 北京理工大学 High-entropy REMGAL11O19 ceramic and preparation method and application thereof

Similar Documents

Publication Publication Date Title
EP2360511B1 (en) Optical isolator based on a Faraday rotator consisting of ytterbium oxide and yttrium oxide
JP5067596B2 (en) Sapphire single crystal manufacturing method and manufacturing apparatus thereof
JPH04338191A (en) Production of single crystal
JP2002249399A (en) Method for manufacturing single crystal and single crystal
JP2822451B2 (en) Superconductor manufacturing method
JP2684432B2 (en) Superconducting oxide single crystal and method for producing the same
EP0148946B1 (en) Method of producing a chrysoberyl single crystal
CN115386956B (en) Method for growing gadolinium gallium garnet crystal by moving flux floating zone method
JPH04338167A (en) Production of sintered rod
CN115467024B (en) Potassium barium calcium boron oxyfluoride compound, potassium barium calcium boron oxyfluoride nonlinear optical crystal, preparation method and application
Dittmann et al. Verneuil growth of Mg2TiO4 crystals
JP2000335999A (en) Production of barium titanate single crystal
JPS5938193B2 (en) Manufacturing method of corundum single crystal that emits starry colors
JP3906359B2 (en) Method for producing P-type semiconductor SrCu2O2 single crystal
JPH0253397B2 (en)
JPS63274697A (en) Production of cupric acid-lanthanum single crystal
JPH04132675A (en) Growth of single crystal
JPS60161388A (en) Growing method of single crystal
JPH06345583A (en) Method and device for producing single crystal
JPS6149278B2 (en)
CN103436960A (en) Technology for growth of rare earth element-doped Ta2O5 crystals through optical floating zone method
JPS6213320B2 (en)
JPS58120597A (en) Chrysoberyl single crystal showing luster effect and its production
JPH0512317B2 (en)
JPS6210960B2 (en)