JPH04338167A - Production of sintered rod - Google Patents

Production of sintered rod

Info

Publication number
JPH04338167A
JPH04338167A JP3138441A JP13844191A JPH04338167A JP H04338167 A JPH04338167 A JP H04338167A JP 3138441 A JP3138441 A JP 3138441A JP 13844191 A JP13844191 A JP 13844191A JP H04338167 A JPH04338167 A JP H04338167A
Authority
JP
Japan
Prior art keywords
press
raw material
formed body
electric furnace
sintered rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3138441A
Other languages
Japanese (ja)
Inventor
Yukinobu Nakabayashi
中林 幸信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3138441A priority Critical patent/JPH04338167A/en
Publication of JPH04338167A publication Critical patent/JPH04338167A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To obtain a dense and straight sintered rod at comparatively low temp. in a short time by controlling the heating speed of the press-formed body of a powdery raw material at specified speed in the case of producing the sintered rod for a raw material by which LnMgAl11O19 single crystal is grown by a band melting method. CONSTITUTION:A sintered rod for a raw material is produced which is used in the case of growing LnMgAl11O19 single crystal (Ln shows each lanthanoid element of La, Ce, Pr, Nd, Sm, Eu, Gd and solid solution thereof) by a band melting method. Therefor the rodlike press-formed body M of a powdery raw material is hung by a wire 2 made of platinum or platinum-rhodium alloy and held in an electric furnace 1. Thereafter this rodlike press-formed body M is heated at the rate of temp. rise of 20-50 deg.C/min and held at 1550-1700 deg.C. Otherwise the press-formed body M is inserted into the electric furnace 1 held at 1550-1700 deg.C from the upper part thereof at the speed of 0.1-2cm/min.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はLnMgAl11O19
単結晶(Lnは、La,Ce,Pr,Nd,Sm,Eu
,Gdの各ランタノイド元素及びそれらの固溶体を示す
)を帯溶融法を用いて育成するにあたり、その原料とな
る焼結棒を製造する方法に関する。
[Industrial Application Field] The present invention relates to LnMgAl11O19
Single crystal (Ln is La, Ce, Pr, Nd, Sm, Eu
, Gd (showing each lanthanide element and their solid solutions) using a zone melting method, the present invention relates to a method for producing a sintered rod that is a raw material for growing lanthanide elements such as , Gd and their solid solutions.

【0002】0002

【従来の技術】LnMgAl11O19単結晶は、その
単結晶の持つ高い熱伝導性,化学的安定性希土類位置へ
のNd等の光学活性種の高い固溶性等により、高出力の
レーザー発振材料として期待されている工業材料である
。帯溶融法による単結晶育成法は、ブリッジマン法及び
引き上げ法とは違い、坩堝を用いずに結晶育成が可能で
あり、また比較的速い育成が可能であるので、不純物の
混入をきらう半導体結晶や光学結晶,磁性体結晶の製造
に用いられてきた。
[Prior Art] LnMgAl11O19 single crystal is expected to be a high-power laser oscillation material due to its high thermal conductivity, chemical stability, and high solid solubility of optically active species such as Nd in rare earth positions. It is an industrial material. Unlike the Bridgman method and the pulling method, the single crystal growth method using the band melting method allows crystal growth without using a crucible, and can be grown relatively quickly. It has been used to manufacture optical crystals, optical crystals, and magnetic crystals.

【0003】0003

【発明が解決しようとする課題】ところで帯溶融法によ
って単結晶を育成する場合、その原料としては組成及び
その径において均一で、かつ緻密でまっすぐな焼結棒を
用いる。従来、LnMgAl11O19の焼結棒を製造
する場合、化合物の融点が1950℃と非常に高温のた
め、緻密な焼結体を得るには融点直下の1800℃以上
の高温が必要になり、緻密な焼結棒を製造することは困
難であった。
When a single crystal is grown by the zone melting method, a sintered rod that is uniform in composition and diameter, and is dense and straight is used as the raw material. Conventionally, when manufacturing a sintered rod of LnMgAl11O19, the melting point of the compound is extremely high at 1950°C, so in order to obtain a dense sintered body, a high temperature of 1800°C or higher, just below the melting point, is required. It was difficult to manufacture knotted rods.

【0004】本発明の目的は、従来より比較的低温で、
緻密でかつ、まっすぐなLnMgAl11O19の焼結
棒を短時間で製造する方法を提供することにある。
[0004] The object of the present invention is to
The object of the present invention is to provide a method for manufacturing a dense and straight LnMgAl11O19 sintered rod in a short time.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
、本発明による焼結棒の製造方法においては、原料粉末
の棒状プレス成形体をワイヤーでぶら下げて電気炉中で
焼成し、LnMgAl11O19単結晶(Lnは、La
,Ce,Pr,Nd,Sm,Eu,Gdの各ランタノイ
ド元素及びそれらの固溶体を示す)の原料用焼成棒を製
造する焼結棒の製造方法であって、プレス成形体の加熱
速度を制御して焼成を行うものであり、加熱速度の制御
は、電気炉の昇温レート若しくは、電気炉中へのプレス
成形体の挿入速度を制御して選択的に行われ、昇温レー
ト制御においては、20℃/min以上50℃/min
以下に設定して最終温度1550℃以上1700℃以下
に保持するものであり、プレス成形体の挿入速度制御に
おいては、1550℃以上1700℃以下の温度に保た
れた電気炉中に、上部から0.1cm/min以上2c
m/min以下の速度に設定するものである。
[Means for Solving the Problems] In order to achieve the above object, in the method for manufacturing a sintered rod according to the present invention, a rod-shaped press molded body of raw material powder is suspended by a wire and fired in an electric furnace to produce a LnMgAl11O19 single crystal. (Ln is La
, Ce, Pr, Nd, Sm, Eu, Gd and their solid solutions), the method includes controlling the heating rate of the press-formed body. The heating rate is selectively controlled by controlling the heating rate of the electric furnace or the insertion speed of the press-formed body into the electric furnace. 20℃/min or more 50℃/min
The final temperature is maintained at 1,550°C or higher and 1,700°C or lower by setting the following.In order to control the insertion speed of the press-formed product, it is .1cm/min or more 2c
The speed is set at m/min or less.

【0006】[0006]

【作用】粉末のプレス成形体を焼結する場合、良く知ら
れているように物質の融点に対して比較的低温では、焼
結作用は表面拡散によって行われる。この場合物質の焼
結は、おもに粒子同士の結合部に頸部の発生及び肥大に
よって行われ、構成粒子の重心の移動は生じない。その
ため、焼結は、緻密化を伴わず材料強度の増大のみに終
わる。これは粒子の表面に存在する原子が、粒子内部に
存在する原子に比べて比較的活性化された状態にあり、
粒子内部に存在する原子に比べて比較的低温から移動が
容易に起こるためである。このように比較的低温で焼結
が進んだプレス形成体はその後温度をあげても、それ以
上の緻密化は非常に困難になる。
[Operation] When sintering a pressed powder body, the sintering action is carried out by surface diffusion at a relatively low temperature relative to the melting point of the substance, as is well known. In this case, the material is sintered mainly by the generation and enlargement of necks at the joints between the particles, and no movement of the center of gravity of the constituent particles occurs. Therefore, sintering results in only an increase in material strength without densification. This is because the atoms on the surface of the particle are in a relatively activated state compared to the atoms inside the particle.
This is because migration occurs easily at a relatively low temperature compared to atoms existing inside the particles. It is extremely difficult to further densify a press-formed body that has been sintered at a relatively low temperature even if the temperature is subsequently raised.

【0007】一方、物質の融点に比較的近い高温では、
粒子内部の原子も容易に移動することが可能になり、焼
結は、体積拡散によって進行する。この場合は粒子の結
合部の頸部の発生,肥大のみならずプレス成形体内部の
空孔の移動及び空孔が成形体の外部に押し出されて消失
する過程も盛んに行われる。そのため、焼結は緻密化を
伴い、帯溶融法による単結晶の育成に必要な緻密な焼結
体が得られる。このように表面拡散を引き起こさずに、
体積拡散のみで焼結を行うには、表面拡散が起こり易い
低温状態を短時間で通過して、体積拡散の起こり易い高
温状態に速くもってゆくことが大事になる。一方、体積
拡散が起こるような高温度ではプレス成形体は、比較的
柔らかく、展性に富む状態になる。そのためプレス成形
体をぶら下げた状態で焼結を行うことにより、たとえプ
レス成形体が多少曲がっていたとしても、自重によりま
っすぐな状態に修正しながら焼結することが可能になる
。しかしながら、あまりに急激に温度を上昇し過ぎると
、プレス成形体の熱膨張により、ひび割れが発生したり
、さらに悪い場合にはプレス成形体が砕けることになる
。しかし、請求範囲で特定した範囲の温度及び昇温スピ
ードを用いると、プレス成形体にひび割れなどが発生せ
ず、さらに表面拡散で焼結が進行する前に体積拡散の起
こる温度に昇温できることを見いだした。
On the other hand, at high temperatures relatively close to the melting point of the substance,
Atoms inside the particles can also move easily, and sintering proceeds by volumetric diffusion. In this case, not only the formation and enlargement of the neck at the joining part of the particles, but also the movement of pores inside the press-formed body and the process in which the pores are extruded to the outside of the press-formed body and disappear are also actively carried out. Therefore, sintering is accompanied by densification, and a dense sintered body required for growing single crystals by the band melting method can be obtained. In this way, without causing surface diffusion,
In order to perform sintering using only volume diffusion, it is important to quickly pass through a low temperature state where surface diffusion occurs easily and quickly bring the material to a high temperature state where volume diffusion occurs easily. On the other hand, at high temperatures where volumetric diffusion occurs, the press molded product becomes relatively soft and malleable. Therefore, by performing sintering while the press-formed body is suspended, even if the press-formed body is slightly bent, it is possible to sinter the press-formed body while correcting it to a straight state due to its own weight. However, if the temperature is raised too rapidly, cracks may occur due to thermal expansion of the press-formed body, or in worse cases, the press-formed body may break. However, if the temperature and heating speed within the range specified in the claims are used, cracks will not occur in the press-formed body, and the temperature can be raised to a temperature at which volume diffusion occurs before sintering progresses due to surface diffusion. I found it.

【0008】[0008]

【実施例】以下、本発明を実施例によりさらに詳細に説
明する。
EXAMPLES The present invention will now be explained in more detail with reference to Examples.

【0009】(実施例1)ランタンマグネシュウムアル
ミネート(LaMgAl11O19)において、原料粉
は通常の固相反応法によって合成した。すなわち所定量
のLa2O3,MgOおよびAl2O3をボールミルに
よって十分混合した後に、所定温度(1500℃)で1
0時間以上反応させた。得られた反応物は粉末X線回折
によって、単一相であることが確かめられた。
(Example 1) In lanthanum magnesium aluminate (LaMgAl11O19), raw material powder was synthesized by a conventional solid phase reaction method. That is, after thoroughly mixing a predetermined amount of La2O3, MgO and Al2O3 using a ball mill, the mixture is heated at a predetermined temperature (1500°C).
The reaction was carried out for 0 hours or more. The obtained reaction product was confirmed to be a single phase by powder X-ray diffraction.

【0010】得られた原料粉末の粒度を細かく、均一に
揃えるために再度ボールミルを用いて粉砕を行った後、
一方が封じられた太さ8mm,長さ150mm,厚さ0
.2mmの天然ゴム製の袋を用いて、1〜2ton/c
m2の静水圧プレスによって均一なプレス成形体を得た
。プレス成形体の密度は外形と質量から求めたが、2.
5g/cm3であった。これは試料の理想密度の60%
に達する。静水圧プレスを行う際には、充填をして余分
な空気を減圧ポンプで抜いた袋を内径8mmの半割にし
たパイプの上にのせて粘着テープで固定することによっ
て曲がりの少ないプレス体を得ることができた。
[0010] After pulverizing the obtained raw material powder again using a ball mill to make the particle size fine and uniform,
One side sealed, thickness 8mm, length 150mm, thickness 0
.. 1-2 ton/c using a 2mm natural rubber bag
A uniform press molded body was obtained by hydrostatic pressing of m2. The density of the press-formed body was determined from the external shape and mass, but 2.
It was 5g/cm3. This is 60% of the ideal density of the sample.
reach. When performing a hydrostatic press, the bag is filled and excess air is removed using a vacuum pump, and then placed on a pipe cut in half with an inner diameter of 8 mm, and fixed with adhesive tape to create a pressed body with less bending. I was able to get it.

【0011】得られたプレス成形体は、図1のように1
550℃〜1600℃の温度に維持された縦型管状電気
炉1の中に白金ワイヤー2を用いてプーリー3に保持さ
せ、プレス成形体Mをぶら下げたまま、モータ4の駆動
により0.1mm/min〜2.0mm/minの速度
で電気炉1内に上方から挿入した。その後、6時間の保
持の後、冷却は電気炉1の入力を切り、炉冷にて行った
。得られた焼結体の密度は、アルキメデス法により測定
したが表1のように4.0g/cm3から4.1g/c
m3に達した。これは試料の理想密度の95%程度にな
り、帯溶融法によって単結晶育成を行うために充分な密
度と機械的強度をもつ。得られた焼結体は曲がることな
く、一様な焼結棒になった。
[0011] The obtained press-formed product is 1 as shown in FIG.
A vertical tubular electric furnace 1 maintained at a temperature of 550° C. to 1600° C. is held by a pulley 3 using a platinum wire 2, and the press-formed product M is suspended by a motor 4 at a distance of 0.1 mm/ It was inserted into the electric furnace 1 from above at a speed of min to 2.0 mm/min. Thereafter, after holding for 6 hours, the input to the electric furnace 1 was turned off and cooling was performed in the furnace. The density of the obtained sintered body was measured by the Archimedes method, and as shown in Table 1, it was 4.0 g/cm3 to 4.1 g/cm3.
Reached m3. This is approximately 95% of the ideal density of the sample, and has sufficient density and mechanical strength to grow a single crystal by the zone melting method. The obtained sintered body did not bend and became a uniform sintered rod.

【0012】0012

【表1】[Table 1]

【0013】(実施例2)原料粉となるプレス成形体は
実施例1と同様に行った。
(Example 2) A press-molded body to be used as raw material powder was produced in the same manner as in Example 1.

【0014】得られたプレス成形体Mは、図2のように
アルミナ製磁器のパイプ11と白金ワイヤー12を用い
てアルミナ製筒状台座13内に垂直にぶら下げて、角型
電気炉中に設置した。その後大気中にて20℃/min
以上50℃/min以下の昇温レートで加熱し、155
0℃以上1700℃以下の温度で保持することによって
焼結を行った。冷却は電気炉の入力を切って炉冷にて行
った。得られた焼結体の密度は表2のように4.0g/
cm3から4.1g/cm3に達した。これは試料の理
想密度の95%程度になり、帯溶融法によって単結晶育
成を行うために充分な密度と機械的強度をもつ。得られ
た焼結体は曲がることなく、一様な焼結棒になった。
The obtained press-formed body M is hung vertically within an alumina cylindrical pedestal 13 using an alumina porcelain pipe 11 and a platinum wire 12, as shown in FIG. 2, and placed in a rectangular electric furnace. did. After that, 20℃/min in the atmosphere
Heating at a temperature increase rate of 50°C/min or higher, 155°C
Sintering was performed by maintaining the temperature at 0° C. or higher and 1700° C. or lower. Cooling was performed by turning off the electric furnace input and using furnace cooling. The density of the obtained sintered body is 4.0g/ as shown in Table 2.
cm3 to 4.1 g/cm3. This is approximately 95% of the ideal density of the sample, and has sufficient density and mechanical strength to grow a single crystal by the zone melting method. The obtained sintered body did not bend and became a uniform sintered rod.

【0015】[0015]

【表2】[Table 2]

【0016】ここでは焼成する原料の例としてLaMg
Al11O19を選んで説明したが、希土類位置がCe
,Pr,Nd,Sm,Eu,Gdの各元素であってもま
たそれらの固溶体であってもその焼結に関する化学的性
質や物理的性質(融点,反応性,焼結製,粒度)等にほ
とんど変化はなく、まったく同じ方法を用いて緻密な焼
結棒を製造することが可能である。また、棒状プレス成
形体をぶら下げるワイヤーは、白金に限らず、白金ロジ
ウム合金であってもよい。
Here, LaMg is used as an example of the raw material to be fired.
Although Al11O19 was selected for explanation, the rare earth position is Ce.
, Pr, Nd, Sm, Eu, and Gd, as well as their solid solutions, depending on their chemical and physical properties (melting point, reactivity, sinterability, particle size), etc. There is little variation and it is possible to produce dense sintered rods using exactly the same method. Further, the wire on which the rod-shaped press-formed body is suspended is not limited to platinum, and may be a platinum-rhodium alloy.

【0017】[0017]

【発明の効果】以上詳細に説明したように、本発明によ
る焼結棒製造方法によれば、緻密で、かつ径の変動が少
ない、まっすぐなプレス棒を歩留りよく製造することが
でき、LnMgAl11O19の単結晶を帯溶融法によ
って育成する場合の原料棒を、容易に得ることができる
ためその工業に与える影響は大きい。
Effects of the Invention As explained in detail above, according to the method for manufacturing a sintered rod according to the present invention, a straight pressed rod that is dense and has little variation in diameter can be manufactured with a high yield, and the LnMgAl11O19 Since raw material rods for growing single crystals by the zone melting method can be easily obtained, this method has a great influence on the industry.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の第1の実施例に用いた装置の説明図で
ある。
FIG. 1 is an explanatory diagram of an apparatus used in a first embodiment of the present invention.

【図2】本発明の第2の実施例に用いた装置の説明図で
ある。
FIG. 2 is an explanatory diagram of an apparatus used in a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1  電気炉 2  白金ワイヤー 3  プーリー 4  モータ 11  パイプ 12  白金ワイヤー 13  筒状台座 M  プレス成形体 1 Electric furnace 2 Platinum wire 3 Pulley 4 Motor 11 Pipe 12 Platinum wire 13 Cylindrical pedestal M Press molded body

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  原料粉末の棒状プレス成形体をワイヤ
ーでぶら下げて電気炉中で焼成し、LnMgAl11O
19単結晶(Lnは、La,Ce,Pr,Nd,Sm,
Eu,Gdの各ランタノイド元素及びそれらの固溶体を
示す)の原料用焼成棒を製造する焼結棒の製造方法であ
って、プレス成形体の加熱速度を制御して焼成を行うも
のであり、加熱速度の制御は、電気炉の昇温レート若し
くは、電気炉中へのプレス成形体の挿入速度を制御して
選択的に行われ、昇温レート制御においては、20℃/
min以上50℃/min以下に設定して最終温度15
50℃以上1700℃以下に保持するものであり、プレ
ス成形体の挿入速度制御においては、1550℃以上1
700℃以下の温度に保たれた電気炉中に、上部から0
.1cm/min以上2cm/min以下の速度に設定
するものであることを特徴とする焼結棒の製造方法。
Claim 1: A rod-shaped press-molded body of raw material powder is suspended by a wire and fired in an electric furnace to produce LnMgAl11O.
19 single crystal (Ln is La, Ce, Pr, Nd, Sm,
A method for producing a sintered rod for producing a raw material sintered rod for each lanthanide element Eu, Gd and their solid solution, in which firing is performed by controlling the heating rate of a press-formed body, and the heating The speed is selectively controlled by controlling the heating rate of the electric furnace or the insertion speed of the press molded body into the electric furnace.
Set the final temperature to 15°C/min or more and 50°C/min or less.
It is maintained at a temperature of 50°C or more and 1700°C or less, and in order to control the insertion speed of the press molded body, it is maintained at a temperature of 1550°C or more and 1
In an electric furnace kept at a temperature below 700℃,
.. A method for manufacturing a sintered rod, characterized in that the speed is set to 1 cm/min or more and 2 cm/min or less.
JP3138441A 1991-05-14 1991-05-14 Production of sintered rod Pending JPH04338167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3138441A JPH04338167A (en) 1991-05-14 1991-05-14 Production of sintered rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3138441A JPH04338167A (en) 1991-05-14 1991-05-14 Production of sintered rod

Publications (1)

Publication Number Publication Date
JPH04338167A true JPH04338167A (en) 1992-11-25

Family

ID=15222070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3138441A Pending JPH04338167A (en) 1991-05-14 1991-05-14 Production of sintered rod

Country Status (1)

Country Link
JP (1) JPH04338167A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6602814B1 (en) * 1998-02-20 2003-08-05 Mtu Aero Engines Gmbh Thermal insulating material and method of producing same
CN113387699A (en) * 2021-07-20 2021-09-14 北京理工大学 High-entropy REMGAL11O19 ceramic and preparation method and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6602814B1 (en) * 1998-02-20 2003-08-05 Mtu Aero Engines Gmbh Thermal insulating material and method of producing same
US6998064B2 (en) 1998-02-20 2006-02-14 Mtu Aero Engines Gmbh Thermal insulating material and method of producing same
CN113387699A (en) * 2021-07-20 2021-09-14 北京理工大学 High-entropy REMGAL11O19 ceramic and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP5493092B2 (en) Method for producing gallium oxide single crystal and gallium oxide single crystal
CN104962994B (en) The method that EFG technique grows the rear-earth-doped serial crystal containing Ga garnet of specific dimensions
CN106521625B (en) Mix tetravalence chromium gallium oxide crystal and preparation method and application
JP2007145611A (en) Method for producing sapphire single crystal and producing device therefor
CN105951171A (en) Preparation method of electron compound C12A7:e<-> single crystal
JPH04338167A (en) Production of sintered rod
CN108546131B (en) Preparation method of silicon nitride porous ceramic
JPH07187760A (en) Production of sintered artificial jewel
JP2016121264A (en) Phosphor and method for producing the same
JPH04338191A (en) Production of single crystal
JPS6052117B2 (en) Beryl single crystal manufacturing method
CN115386956B (en) Method for growing gadolinium gallium garnet crystal by moving flux floating zone method
CN114645326B (en) Preparation method of InTeI single crystal
JP5968198B2 (en) Single crystal manufacturing method
JPH0253397B2 (en)
WO1985000392A1 (en) Chrysoberyl single crystal showing iridescent effect and process for its preparation
CN116497449A (en) Aluminum scandium co-doped gallium ferrite monocrystal, preparation method thereof and application thereof in temperature sensor
JPH05294722A (en) Production of polycrystalline transparent yag ceramics for solid state laser
JPH05235462A (en) Fabrication of polycrystalline transparent yag ceramic for solid laser
JPH0339999B2 (en)
CN103436960A (en) Technology for growth of rare earth element-doped Ta2O5 crystals through optical floating zone method
JPS60176985A (en) Preparation of raw material for growing single crystal
JP2002234798A (en) Method of producing langasite single crystal and langasite single crystal
JPS5812240B2 (en) Method for producing hafnium carbide crystals
JPH0477397A (en) Lanthanum boride base single crystal and its growing method