JPS5938198B2 - Manufacturing method of semiconductor strontium titanate single crystal - Google Patents

Manufacturing method of semiconductor strontium titanate single crystal

Info

Publication number
JPS5938198B2
JPS5938198B2 JP56138195A JP13819581A JPS5938198B2 JP S5938198 B2 JPS5938198 B2 JP S5938198B2 JP 56138195 A JP56138195 A JP 56138195A JP 13819581 A JP13819581 A JP 13819581A JP S5938198 B2 JPS5938198 B2 JP S5938198B2
Authority
JP
Japan
Prior art keywords
single crystal
raw material
material rod
pentoxide
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56138195A
Other languages
Japanese (ja)
Other versions
JPS5841800A (en
Inventor
英典 坂内
正之 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Original Assignee
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO filed Critical KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority to JP56138195A priority Critical patent/JPS5938198B2/en
Publication of JPS5841800A publication Critical patent/JPS5841800A/en
Publication of JPS5938198B2 publication Critical patent/JPS5938198B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/32Titanates; Germanates; Molybdates; Tungstates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 本発明は半導体化したチタン酸ストロンチウム単結晶の
製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a semiconductor strontium titanate single crystal.

一般にペロブスカイト型化合物ABO3においては、A
サイトまたはBサイトに価数の異なる微量不純物を固溶
させることによるか、またはさらに強制還元を併用して
電子をトラップした酸素欠陥を発生させることによって
半導体化させている。
Generally, in the perovskite type compound ABO3, A
Semiconductorization is achieved by dissolving a small amount of impurity with a different valence in the site or B site, or by further using forced reduction in combination to generate oxygen defects that trap electrons.

従来、チタン酸ストロンチウム単結晶の製造法は,ベル
ヌーイ法、フラックス法によって製造されていた。
Conventionally, strontium titanate single crystals have been produced by the Bernoulli method or the flux method.

これらの方法で半導体化した単結晶を得るには、単結晶
育成後に強制還元を行わなければならなく、また酸化ニ
オブまたは酸化タンタルを均質に固溶させることが困難
であるため、良質な半導体を得ることができなかった。
To obtain a semiconductor single crystal using these methods, forced reduction must be performed after growing the single crystal, and it is difficult to homogeneously dissolve niobium oxide or tantalum oxide, so it is difficult to obtain a high-quality semiconductor. I couldn't get it.

本発明はこの欠点を解消し、チタン酸ストロンチウムの
単結晶の育成と同時に酸化ニオブまたは酸化タンタルを
均質に固溶させて半導体化したチタン酸ストロンチウム
単結晶を製造する方法を提供するにある。
The present invention eliminates this drawback and provides a method for producing a semiconductor strontium titanate single crystal by homogeneously solid-dissolving niobium oxide or tantalum oxide while growing the strontium titanate single crystal.

本発明者らは前記目的を達成すべく研究の結果、フロー
ティング法により、原料棒として、酸化チタンTiO2
と酸化ストロンチウムSrOと、五酸化ニオブNb2O
5または五酸化クンタルTa205とからなる組成のも
のを使用し、チタン酸ストロンチウムの単結晶を育成す
る際、その雰囲気の酸素分圧を調整して、酸化チタンと
酸化ニオブまたは酸化クンタルの価数を下げ、酸化ニオ
ブまたは酸化メンタルの成分が単結晶中に均質に固溶さ
れ、半導体化したチタン酸ストロンチウム単結晶が容易
に得られることを知見し、この知見に基づいて本発明を
完成した。
As a result of research to achieve the above object, the present inventors found that titanium oxide TiO2 was used as a raw material rod by a floating method.
and strontium oxide SrO and niobium pentoxide Nb2O
When growing a single crystal of strontium titanate using a composition consisting of niobium oxide or niobium pentoxide Ta205, the valence of titanium oxide and niobium oxide or kuntal oxide is adjusted by adjusting the oxygen partial pressure of the atmosphere. The present inventors have found that niobium oxide or mental oxide components can be homogeneously dissolved in a single crystal to easily obtain a semiconductor strontium titanate single crystal, and based on this knowledge, the present invention has been completed.

本発明は、原料棒の一端を溶融させ、形成された融帯な
移動させて原料棒の溶融、固相の析出を継続させるフロ
ーティングシー巧去による単結晶育成法において、原料
棒として酸化チタンTiO2と酸化ストロンチウムSr
Oと五酸化ニオブまたは五酸化クンタルとからなる組成
のものを使用し、育成雰囲気として酸素分圧が10−0
°5気圧以下の還元性雰囲気を使用して単結晶を育成し
、原料中に含まれる五酸化ニオブまたは五酸化クンタル
の価数を調整して固溶させることを特徴とする半導体化
したチタン酸ストロンチウム哨結晶の製造法にある。
The present invention uses titanium oxide TiO2 as a raw material rod in a single crystal growth method by floating sea movement in which one end of a raw material rod is melted and the formed melt zone is moved to continue melting of the raw material rod and precipitation of a solid phase. and strontium oxide Sr
A composition consisting of O and niobium pentoxide or quintal pentoxide is used, and the oxygen partial pressure is 10-0 as the growth atmosphere.
Semiconducting titanic acid characterized by growing a single crystal using a reducing atmosphere of 5 atmospheres or less and adjusting the valence of niobium pentoxide or quintal pentoxide contained in the raw material to form a solid solution. It is in the manufacturing method of strontium sentry crystals.

本発明に利用するフローティングゾーン法とは。What is the floating zone method used in the present invention?

例えば原料棒を上に種結晶を下にモットし、両者の間に
溶媒の溶融帯を成形せしめこれを表面張力で保持する。
For example, a raw material rod is placed on top and a seed crystal is placed on the bottom, and a molten zone of solvent is formed between the two and held by surface tension.

次に溶融帯をゆっくりと下側に移動させると、溶融帯の
上側では原料棒の溶は込みが生じ、下側では結晶の析出
が生ずる。
Next, when the molten zone is slowly moved downward, melt penetration of the raw material rod occurs on the upper side of the molten zone, and crystal precipitation occurs on the lower side.

この時原料棒、種結晶にそれぞれに互いに逆方向に適当
な速度で回転を与え、溶融帯に攪拌効果を与える。
At this time, the raw material rod and the seed crystal are rotated at appropriate speeds in opposite directions to give a stirring effect to the molten zone.

このようにして溶融帯を仲介として結合せしめ、原料棒
と種結晶以外溶融帯への支持がない状態で、溶融帯をゆ
っくりと移動させて単結晶を育成する方法である。
In this way, the molten zone is used as an intermediary to connect the materials, and the molten zone is slowly moved with no support other than the raw material rod and the seed crystal to grow a single crystal.

原料棒としては、ストロンチウム、チタン、ニオブまた
はクンタルの成分割合がモル比で、l:(1−x):x
(ただし、X二0.002〜0.01)であることが好
ましい。
As for the raw material rod, the component ratio of strontium, titanium, niobium or kuntal is molar ratio: l:(1-x):x
(However, it is preferable that X2 is 0.002 to 0.01).

溶媒はストロンチウム、チタン、ニオブまたはクンタル
の成分割合が、モル比でほぼ1:(1−Y):Y(Y=
o、ool〜0.01)でその融点が原料棒の融点より
低いものを使用する。
The solvent has a molar ratio of strontium, titanium, niobium or kuntal of approximately 1:(1-Y):Y(Y=
o, ool~0.01) and whose melting point is lower than the melting point of the raw material rod.

Nb2O5またはTa205の成分が多くなるとその融
点が変化するので、原料棒の組成に応じて溶媒中のNb
2O5またはTa205の量を調整すればよい。
As the Nb2O5 or Ta205 component increases, its melting point changes, so depending on the composition of the raw material rod, the Nb in the solvent
The amount of 2O5 or Ta205 may be adjusted.

溶媒は使用しなくても単結晶を析出し得られるが、これ
を使用しないと、最初に生成してくる結晶の組成が目的
としたものよりずれてくるので、妻止りが悪くなる。
Although it is possible to precipitate a single crystal without using a solvent, if this is not used, the composition of the initially formed crystal will deviate from the intended one, resulting in poor retention.

また種結晶がないと、始め多結晶体が生成するので、そ
れだけ無駄になるという欠点を生ずる。
In addition, if there is no seed crystal, polycrystals will initially be produced, resulting in a disadvantage that the process is wasted.

原料棒及び溶媒の原料の酸化チタン、酸化ストロンチウ
ム、酸化ニオブあるいは酸化タンタルはいずれも通常の
試薬特級程度のものをそのまま使用してもよいが、相互
の化学反応をすみやかに進行せしめるためには、粒径が
小さい程好ましい。
Titanium oxide, strontium oxide, niobium oxide, or tantalum oxide as raw materials for the raw material rod and the solvent may be used as they are at ordinary reagent grade, but in order to allow the mutual chemical reaction to proceed quickly, The smaller the particle size, the more preferable.

これら原料の混合はできるだけ均一に混合することが必
要である。
It is necessary to mix these raw materials as uniformly as possible.

そのためにはアルコール類、アtトン等の有機試薬とと
もに十分乳鉢中で混合するか、あるいはボールミル等を
使用して混合すればよい。
For this purpose, it may be sufficiently mixed with alcohols, organic reagents such as Atton in a mortar, or by using a ball mill or the like.

これらの混合原料粉末は加圧成形する。These mixed raw material powders are press-molded.

加圧成形は金型を用いた一方向もしくは二方向圧縮によ
る成型法を用いてもよいが、加熱時の曲がりを防ぐため
に等方的に加圧が行なわれるラバープレス法を利用する
ことが好ましい。
For pressure molding, a molding method using one-way or two-way compression using a mold may be used, but it is preferable to use a rubber press method in which pressure is applied isotropically to prevent bending during heating. .

ラバープレスとは、原料粉末をゴムに入れ両端を密封し
、密閉液圧式圧力容器中で高い液圧で加圧する方法であ
る。
Rubber press is a method in which raw material powder is placed in rubber, sealed at both ends, and then pressurized with high hydraulic pressure in a closed hydraulic pressure vessel.

液圧は500 K7/cvfJJ、上ならばどんな圧力
でもよいが、1〜2ton/cvi が好ましい。
The hydraulic pressure is 500 K7/cvfJJ, and any pressure above this may be used, but 1 to 2 ton/cvi is preferable.

加圧時間は5秒以上、好ましくは1分間である。The pressurization time is 5 seconds or more, preferably 1 minute.

加圧が十分でない成形物は壊れやすい。加圧成形物は細
く長いものであればよいが、円柱状のものが好ましい。
Molded products that are not sufficiently pressurized are likely to break. The pressure-molded product may be thin and long, but a cylindrical one is preferred.

その大きさは例えば、径1rrrIn〜10crn、長
さ1 mm〜5 m、好ましくは径3mm〜3cm、長
さ5閣〜30crnである。
The size thereof is, for example, a diameter of 1 rrrIn to 10 crn, a length of 1 mm to 5 m, preferably a diameter of 3 mm to 3 cm, and a length of 5 m to 30 crn.

加圧成形物は仮焼する。The press-molded product is calcined.

この仮焼は横型の炉の中でルツボに保持して加熱しても
よいが、不純物の混入と仮焼時の曲がりを防ぐためにた
て型の炉中で吊り下げた状態で加熱することが好ましい
This calcination can be heated by holding it in a crucible in a horizontal furnace, but to prevent the contamination of impurities and bending during calcination, it is recommended to heat it while suspended in a vertical furnace. preferable.

加圧成形物の加熱温度は原料棒の場合は、1500℃〜
2000℃、溶媒の場合は1400℃〜1800℃が好
ましい。
The heating temperature of the press-molded product is 1500°C ~ in the case of raw material rods.
2000°C, preferably 1400°C to 1800°C in the case of a solvent.

その加熱時間は長い程よい。The longer the heating time, the better.

特に原料棒の場合は焼結後のかさ密度が真の密度の80
係以上になるように十分に長時間加熱することが好まし
い。
Especially in the case of raw material rods, the bulk density after sintering is 80% of the true density.
It is preferable to heat for a sufficiently long time so that

溶媒は原料棒の下もしくは種結晶の上に融着さゼておく
のがよい。
The solvent is preferably fused under the raw material rod or on top of the seed crystal.

溶媒の量は原料棒と同じ直径をもつ半球が最も好ましい
The amount of solvent is most preferably a hemisphere having the same diameter as the raw material rod.

種結晶としては、高温に耐え溶媒と化学反応を起こさな
い固形物であればよいが、原料棒と同じ単結晶を用いる
ことが好ましい。
The seed crystal may be any solid material that can withstand high temperatures and does not cause a chemical reaction with the solvent, but it is preferable to use the same single crystal as the raw material rod.

フローティングゾーン法による溶媒の融解は、例えば高
温の光源からの光を鏡またはレンズを用いて集光させた
集光熱方式により、上下3〜30關に亘って融解温度以
上に加熱する。
To melt the solvent by the floating zone method, for example, a condensing heat method in which light from a high-temperature light source is condensed using a mirror or lens is used to heat the solvent to a temperature above the melting temperature over 3 to 30 degrees above and below.

結晶の育成速度は原料棒と種結晶の下方への送り速度に
等しく、その送り速度は少なくとも毎時0、1 rrv
nを保つことが好ましい。
The crystal growth rate is equal to the downward feeding rate of the raw material rod and the seed crystal, and the feeding rate is at least 0.1 rrv per hour.
It is preferable to maintain n.

特に好ましい速度は毎時1〜1ONである。A particularly preferred speed is 1 to 1 ON per hour.

加熱固溶させる雰囲気は酸素分圧が10−5〜10
’ であることが最もよい。
The atmosphere for heating solid solution has an oxygen partial pressure of 10-5 to 10
' is best.

このためには、空気、窒素ガス、炭酸ガス等を適宜混和
する等により、その酸素分圧に調整すればよい。
For this purpose, the oxygen partial pressure may be adjusted to the desired oxygen partial pressure by appropriately mixing air, nitrogen gas, carbon dioxide gas, or the like.

この雰囲気により原料棒に含まれている五酸化ニオブ、
五酸化タンタルの価数は四価に下がり、容易にチタン酸
ストロンチウム原料棒に固溶されて半導体化される。
Due to this atmosphere, the niobium pentoxide contained in the raw material rod,
The valence of tantalum pentoxide is lowered to tetravalent, and it is easily dissolved in a strontium titanate raw material rod and converted into a semiconductor.

このようにして得られた単結晶を原料棒として使用し、
同様な単結晶の育成を行うとよりよい半導体化したチタ
ン酸ストロンチウム単結晶が得られる。
The single crystal thus obtained is used as a raw material rod,
If a similar single crystal is grown, a strontium titanate single crystal with better semiconductor properties can be obtained.

本発明の方法によると、従来法のベルヌーイ法、フラッ
クス法によるチタン酸ストロンチウム単結晶育成法では
、単結晶の育成後、強制還元により半導体化する必要が
あったが、チタン酸ストロンチウム単結晶育成時に、そ
の雰囲気の調整により容易に半導体化し得らワ、シかも
従来のものより優れた半導体が得られる優れた効果を有
する。
According to the method of the present invention, in the conventional Bernoulli method and flux method for growing strontium titanate single crystals, it was necessary to convert the single crystal into a semiconductor by forced reduction after growing the single crystal, but when growing strontium titanate single crystals, However, it can be easily converted into a semiconductor by adjusting the atmosphere, and has an excellent effect of producing a semiconductor superior to conventional ones.

実施例 1 純度99.9%以上の二酸化チタン粉末及び純度99.
9%以上の炭酸ストロンチウム粉末と純度99.9%以
上の五酸化ニオブ粉末とを原料棒原料については、スト
ロンチウム、チタン、ニオブのモル比で1.000:0
1998:0.002に秤量し、乳鉢中でエチルアルコ
ールを加えて充分に混合しアルミナルツボで1100℃
で炭酸ストロンチウムの炭酸を充分に飛ばした後、乳鉢
で粉砕し、平均粒径1μmの微粉末の混合物を得た。
Example 1 Titanium dioxide powder with a purity of 99.9% or more and a purity of 99.9%.
For raw material rods, strontium carbonate powder with a purity of 9% or more and niobium pentoxide powder with a purity of 99.9% or more are used in a molar ratio of strontium, titanium, and niobium of 1.000:0.
1998: Weighed 0.002, added ethyl alcohol in a mortar, mixed thoroughly, and heated to 1100℃ in an aluminium crucible.
After sufficiently removing the carbonic acid from the strontium carbonate, the mixture was ground in a mortar to obtain a fine powder mixture with an average particle size of 1 μm.

該混合物12fを内径11mmの肉厚のゴム管中に投入
し、両端を密封して内径11.5mmの金わくに挿入し
、油圧式静水圧発生装置中にて1 ton 、/crA
の圧力で約1分間加圧成形した。
The mixture 12f was put into a thick-walled rubber tube with an inner diameter of 11 mm, both ends were sealed, the mixture was inserted into a metal ring with an inner diameter of 11.5 mm, and the mixture was heated at 1 ton/crA in a hydraulic hydrostatic pressure generator.
Pressure molding was carried out for about 1 minute at a pressure of .

上記操作により得られた外形約9rIr1n、長さ約8
0rIr1nの丸棒状試料を1800℃に保持したたて
型の電気炉へ挿入し仮焼した。
The outer shape obtained by the above operation is about 9rIr1n and the length is about 8
A round bar-shaped sample of 0rIr1n was inserted into a vertical electric furnace maintained at 1800°C and calcined.

炉の挿入、炉からの引き出しはそれぞれ1時間費し、急
熱及び急冷による試料の破壊を防いだ、雰囲気は酸素と
した。
Insertion into the furnace and withdrawal from the furnace took one hour each, and the atmosphere was oxygen to prevent destruction of the sample due to rapid heating and cooling.

上記操作により得られた外形約7.5rran、長さ約
70rranのチタン酸ストロンチウム原料棒を赤外線
集中加熱方式を採用したフローティングゾーン法単結晶
製造装置の上側試料回転軸に固定し、上記装置の下側種
結晶回転軸に固定したベルヌーイ法によって育成したチ
タン酸ストロンチウム単結晶を種結晶として、加熱を開
始した。
The strontium titanate raw material rod with an outer diameter of about 7.5 rran and a length of about 70 rran obtained by the above operation was fixed to the upper sample rotating shaft of a floating zone method single crystal production device that adopted an infrared concentrated heating method, and the rod was placed at the bottom of the above device. Heating was started using a strontium titanate single crystal grown by the Bernoulli method fixed on the side seed crystal rotation axis as a seed crystal.

雰囲気は空気で行った。The atmosphere was atmospheric.

上記単結晶製造装置中で最も温度が高くなる部分に原料
棒の先端がくるように調節し、この先端が加熱により融
解すると同時に加熱を一定にして温度を固定し、下側よ
りチタン酸ストロンチウム種結晶を上方に移動させて溶
融部を仲介として種結晶を結合させ、両枠を互いに逆の
方向に毎分330回転の速度で回転させた。
Adjust the tip of the raw material rod so that it is at the highest temperature point in the single crystal production equipment, and at the same time as this tip melts by heating, the temperature is fixed by constant heating, and the strontium titanate is seeded from the bottom. The crystals were moved upward to bond the seed crystals through the molten zone, and both frames were rotated in opposite directions at a speed of 330 revolutions per minute.

回転は結晶育成終了まで続げた。Rotation continued until the end of crystal growth.

上記溶媒部が大きすぎもセす、小さすぎもしl(い状態
を温度及び両枠相互間の間隔を微細に調節して得た後、
両枠を同一速度で下方へ毎時3mmの速度で移動させ、
溶媒棒上ヘチタン酸ストロンチウムの結晶を析出させた
After finely adjusting the temperature and the distance between the two frames to obtain a state in which the solvent part is too large or too small,
Move both frames downward at the same speed at a speed of 3 mm/hour,
Crystals of strontium hetitanate were deposited on the solvent bar.

種結晶に単結晶を用いたため、析出結晶は初めから単結
晶であった。
Since a single crystal was used as a seed crystal, the precipitated crystal was a single crystal from the beginning.

チタン酸ストロンチウム原料棒がほぼ消費しつ(された
とき、成長した単結晶と該原料棒とを切離し、冷却の径
径6.5mm、長さ60rrrrnの丸棒状のチタン酸
ストロンチウム単結晶を得た。
When the strontium titanate raw material rod was almost consumed, the grown single crystal and the raw material rod were separated to obtain a round rod-shaped strontium titanate single crystal with a diameter of 6.5 mm and a length of 60 rrrrn. .

得られた単結晶は導電率0キ10 ” ohm
ffl ” を示し、半導体であった。
The obtained single crystal has a conductivity of 0 x 10” ohm
ffl” and was a semiconductor.

Claims (1)

【特許請求の範囲】 1 原料棒の一端を溶融させ、形成された融帯な移動さ
せて原料棒の溶融、固相の析出を継続させるフローティ
ングゾーン法による単結晶育成法において、原料棒とし
で二酸化チタンTiO2と酸化ストロンチウムSrOと
五酸化ニオブNb2O5または五酸化タンタルTa20
5とからなる組成のものを使用し、育成雰囲気として、
酸素分圧が10−0°5気圧以下の還元性雰囲気を使用
して単結晶を育成し、原料棒中に含まれる五酸化ニオブ
又は五酸化タンタルの価数を調整して固溶させることを
特徴とする半導体化したチタン酸ストロンチウム単結晶
の製造法。 2 フローティングゾーン法が、原料棒の下に溶媒を、
さらに溶媒の下に種結晶を設け、この溶融部分を溶解す
るように加熱すると共に融帯な移動させる方法である特
許請求の範囲第1項記載の方法。 3 原料棒は酸化ストロンチウムSrO、二酸化チタニ
ウムTiO2,及び五酸化ニオブNb2O5又は五酸化
タンタルTa2O,成 (1−X):X(但しx=0.002〜0.01)であ
り、溶媒は酸化ストロンチウム、二酸化チタン及び五酸
化ニオブ又は五酸化タンタル成分のモル比が1:(1−
y):y(但しy=0.001〜0、01)であるもの
からなる特許請求の範囲第1項記載の方法。 4 原料棒の一端を溶融させ,形成された融帯を移動さ
せて、原料棒の溶解、固相の析出を継続させるフローテ
ィングゾーン法による単結晶育成法において、原料棒と
して酸化ストロンチウム、二酸化チタニウム、及び五酸
化ニオブ又は五酸化タンタルとからなる組成のものを使
用し、単結晶育成雰囲気を酸素分圧が10−0°5気圧
以下の還元性雰囲気に保って育成し、得られた単結晶を
原料棒として再び同様な単結晶の育成を繰返すことを特
徴とする半導体化したチタン酸ストロンチウム単結晶の
製造法。
[Claims] 1. In a single crystal growth method using a floating zone method in which one end of a raw material rod is melted and moved in the formed melt zone to continue melting of the raw material rod and precipitation of a solid phase, Titanium dioxide TiO2, strontium oxide SrO, niobium pentoxide Nb2O5 or tantalum pentoxide Ta20
5 was used as the growth atmosphere,
A single crystal is grown using a reducing atmosphere with an oxygen partial pressure of 10-0°5 atm or less, and the valence of niobium pentoxide or tantalum pentoxide contained in the raw material rod is adjusted to form a solid solution. Characteristic method for manufacturing strontium titanate single crystal semiconductor. 2 The floating zone method places the solvent under the raw material rod,
2. The method according to claim 1, wherein a seed crystal is further provided under the solvent, and the molten portion is heated to melt and moved in a melting zone. 3 The raw material rods are strontium oxide SrO, titanium dioxide TiO2, and niobium pentoxide Nb2O5 or tantalum pentoxide Ta2O, composed of (1-X):X (however, x = 0.002 to 0.01), and the solvent is strontium oxide. , the molar ratio of titanium dioxide and niobium pentoxide or tantalum pentoxide components is 1:(1-
y): y (where y=0.001 to 0.01). 4 In a single crystal growth method using a floating zone method in which one end of a raw material rod is melted and the formed melt zone is moved to continue melting of the raw material rod and precipitation of a solid phase, strontium oxide, titanium dioxide, and niobium pentoxide or tantalum pentoxide, and grow the single crystal by keeping the single crystal growth atmosphere in a reducing atmosphere with an oxygen partial pressure of 10-0°5 atm or less, and grow the single crystal obtained. A method for producing a semiconductor strontium titanate single crystal characterized by repeating the same single crystal growth as a raw material rod.
JP56138195A 1981-09-02 1981-09-02 Manufacturing method of semiconductor strontium titanate single crystal Expired JPS5938198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56138195A JPS5938198B2 (en) 1981-09-02 1981-09-02 Manufacturing method of semiconductor strontium titanate single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56138195A JPS5938198B2 (en) 1981-09-02 1981-09-02 Manufacturing method of semiconductor strontium titanate single crystal

Publications (2)

Publication Number Publication Date
JPS5841800A JPS5841800A (en) 1983-03-11
JPS5938198B2 true JPS5938198B2 (en) 1984-09-14

Family

ID=15216298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56138195A Expired JPS5938198B2 (en) 1981-09-02 1981-09-02 Manufacturing method of semiconductor strontium titanate single crystal

Country Status (1)

Country Link
JP (1) JPS5938198B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5293504A (en) * 1992-09-23 1994-03-08 International Business Machines Corporation Multilayer ceramic substrate with capped vias
JP2012166958A (en) * 2011-02-09 2012-09-06 Ohara Inc Method for producing oxide single crystal

Also Published As

Publication number Publication date
JPS5841800A (en) 1983-03-11

Similar Documents

Publication Publication Date Title
EP0000720B1 (en) Process for producing single crystal of yttrium-iron garnet solid solution
EP0267941A1 (en) Process for preparing single crystal binary metal oxides of improved purity.
JPS5938198B2 (en) Manufacturing method of semiconductor strontium titanate single crystal
JPH06122588A (en) Preparation of oxide crystal
JP2822451B2 (en) Superconductor manufacturing method
JPS5938193B2 (en) Manufacturing method of corundum single crystal that emits starry colors
US3933990A (en) Synthesization method of ternary chalcogenides
JPS5938192B2 (en) Manufacturing method of corundum single crystal that emits starry colors
JP2672597B2 (en) Method for producing barium titanate single crystal
JPS6052117B2 (en) Beryl single crystal manufacturing method
JPS5938195B2 (en) Production method of brilliant chrysoberine single crystal
JP2000335999A (en) Production of barium titanate single crystal
JP2624799B2 (en) Method for producing barium titanate raw material rod
JP2733197B2 (en) Method for producing rare earth element-containing single crystal
JP2794245B2 (en) Method for producing Bi-based oxide superconductor single crystal
JPS63274697A (en) Production of cupric acid-lanthanum single crystal
JPS5938194B2 (en) Production method of brilliant chrysoberine single crystal
JP2555734B2 (en) Production method of superconducting material
JPS6027677A (en) Production of solid solution single crystal by floating zone melting method
JPH027919B2 (en)
RU2051210C1 (en) High-temperature super-conducting material and method for production thereof
JP2833639B2 (en) Preparation method of oxide crystal
WO2005049497A1 (en) The synthesis of ordered zirconium titanate
JPH0575713B2 (en)
RU2249063C1 (en) Method for production of batch for wurtzite-structure single crystal growth