JPS63274696A - Production of cupric acid-lanthanum single crystal - Google Patents

Production of cupric acid-lanthanum single crystal

Info

Publication number
JPS63274696A
JPS63274696A JP62109518A JP10951887A JPS63274696A JP S63274696 A JPS63274696 A JP S63274696A JP 62109518 A JP62109518 A JP 62109518A JP 10951887 A JP10951887 A JP 10951887A JP S63274696 A JPS63274696 A JP S63274696A
Authority
JP
Japan
Prior art keywords
single crystal
la2cuo4
crystal
cuo
lanthanum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62109518A
Other languages
Japanese (ja)
Other versions
JPH0471876B2 (en
Inventor
Kunihiko Oka
邦彦 岡
Hiromi Unoki
鵜木 博海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP62109518A priority Critical patent/JPS63274696A/en
Priority to US07/168,021 priority patent/US4956334A/en
Priority to EP88104090A priority patent/EP0288709B1/en
Priority to DE8888104090T priority patent/DE3872922T2/en
Publication of JPS63274696A publication Critical patent/JPS63274696A/en
Priority to US07/521,624 priority patent/US5057492A/en
Publication of JPH0471876B2 publication Critical patent/JPH0471876B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/225Complex oxides based on rare earth copper oxides, e.g. high T-superconductors
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • H10N60/855Ceramic materials
    • H10N60/857Ceramic materials comprising copper oxide

Abstract

PURPOSE:To produce an La2CuO4 single crystal having an optional size and satisfactory quality in a short time by mixing La2O3 or/and La2(CO3)3 with CuO, melting the mixture by heating, elevating the temp. of the melt thereafter, thus depositing crystallites on a seed crystal, and allowing the crystallites to cause growth. CONSTITUTION:A phase equilibrium diagram of La2O3-CuO system is prepd. from results of differential thermal analysis and rapid cooling and heating method. A raw material having a compositional ratio between a liquidus A-B, namely, 28.9-7.1mol.% La2O3 and 7.1-92.9mol.% CuO, is melted at about 1,330-1,040 deg.C. The compsn. of the melt is shifted toward CuO side along the liquidus A-B by cooling the obtd. metal slowly to cause thus deposition of La2CuO4 as solid phase. The La2CuO4 crystal is further deposited on the same La2CuO4 or same laminar perovskite type seed crystal, and the La2CuO4 single crystal is obtd. by pulling the deposited crystal.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は溶液ひきあげ法による銅酸ランタン(La2
Cu04)単結晶の製造方法に関するものである。
[Detailed description of the invention] [Industrial application field] This invention is a method for producing lanthanum cuprate (La2) by a solution drawing method.
The present invention relates to a method for manufacturing a Cu04) single crystal.

[従来の技術] 1a2cu04は層状ペロブスカイト型結晶構造をもつ
酸化物で、La原子の位置を少量S「やBa原子で置き
換えると30〜40にの低温で超伝導を示す、極低温素
子としてこれからの応用が考えられ、そのためには大型
の良質な単結晶が必要となり、その製造方法の開発が望
まれている。
[Prior art] 1a2cu04 is an oxide with a layered perovskite crystal structure, and when the La atoms are replaced with a small amount of S or Ba atoms, it exhibits superconductivity at a low temperature of 30 to 40 degrees. Applications are considered, and for this purpose large, high-quality single crystals are required, and the development of a manufacturing method is desired.

従来高温で分解溶融し、通常のひきあげ法で単結晶を育
成できない包晶反応する物質の単結晶を得る手段として
は、通常、目的物質を溶剤中に混合し、その混合溶液を
降温することによってその混合溶液を過飽和濃度以上の
状態にし、目的物質を融液から単結晶として析出させて
得るフラックス法が用いられる。 La2CuO4は高
温にしてゆくと1050℃付近で分解溶融するため、単
結晶と同−組成の原料から単結晶を製造することができ
ない。
Conventionally, the method of obtaining a single crystal of a substance that undergoes a peritectic reaction, which decomposes and melts at high temperatures and cannot be grown as a single crystal by ordinary pulling methods, is usually by mixing the target substance in a solvent and cooling the mixed solution. A flux method is used in which the mixed solution is made to have a supersaturation concentration or higher, and the target substance is precipitated as a single crystal from the melt. Since La2CuO4 decomposes and melts at around 1050 DEG C. when the temperature is increased, a single crystal cannot be produced from a raw material having the same composition as a single crystal.

そのためチョクラルスキー法が適用でとない、そのため
通常フラックス法が適用されるが最大で8x8x2ma
+のものができているにすぎない。
Therefore, the Czochralski method cannot be applied, so the flux method is usually applied, but the maximum is 8x8x2ma.
It's just a result of +.

[発明が解決しようとする問題点〕 上述したようにフラックス法において育成される単結晶
はあまり大ぎいとはいえない。しかも結晶育成に3〜7
日と長時間を要する欠点がある。
[Problems to be Solved by the Invention] As mentioned above, the single crystal grown by the flux method cannot be said to be very large. Moreover, 3-7 for crystal growth
It has the disadvantage of requiring many days and long hours.

また結晶育成後に溶剤だけを薬品で取り去るか、徐冷中
にるつぼを炉から取り出して固化していない溶剤を捨て
去るか溶液表面に浮んでいる単結晶をすくい取るという
操作をしなければ単結晶の分離はできないという問題点
があった。
In addition, single crystals cannot be separated unless the solvent is removed using chemicals after crystal growth, the crucible is removed from the furnace during slow cooling, and the unsolidified solvent is discarded, or the single crystals floating on the surface of the solution are scooped out. The problem was that it couldn't be done.

[問題点を解決するための手段] この発明はこのような点に鑑みなされたもので、目的物
であるLa2CuO4を析出させ得る組成範囲内に酸化
ランタンおよび炭酸ランタンのうちの少なくとも一種と
酸化鋼を混合し、その融液を降温させることにより融液
中に析出してくるLa2CuO4微結晶を融液に接触さ
せた種結晶上に結晶化させ、これを溶液ひきあげ法によ
ってLa2CuO4−Q’結晶を製造する方法であり、
フラックス法とは異なり種子結晶によって望みの方向に
任意の大ぎさの良質な単結晶が短時間に製造で診るよう
にしたものである。
[Means for Solving the Problems] The present invention was made in view of the above points, and includes at least one of lanthanum oxide and lanthanum carbonate and oxidized steel within a composition range that can precipitate the target product, La2CuO4. By mixing and cooling the melt, the La2CuO4 microcrystals precipitated in the melt are crystallized on seed crystals in contact with the melt, and then La2CuO4-Q' crystals are formed by a solution pulling method. It is a method of manufacturing
Unlike the flux method, this method uses seed crystals to produce high-quality single crystals of any size in a desired direction in a short time.

[作 用] まず、この発明の原理について述べる。第1図は示差熱
分析と急冷加熱法の結果から作図したLa203−Cu
O系の相平衡図である。図中、黒点で示すのは測定結果
である。例えばLa、0.が50モル%、 CuOが5
0モル%の組成からなるLa2CuO4を加熱昇温させ
ると1050℃付近で分解溶融してしまう、そのため融
液と同一組成の結晶をひきあげるチョクラルスキー法は
適用できない。次に液相線式−B間の組成比、すなわち
La、03の211.9〜7.1モル%、CuOの71
.1〜92.9モル%の範囲に混合した原料を約133
0〜1040℃において加熱融解したのち、融液を徐々
に降温させると、融液の組成は液相線^−Bに沿って図
のCuO側へずれてゆき、La2Cub4が固相となっ
て析出してくる。
[Operation] First, the principle of this invention will be described. Figure 1 shows La203-Cu plotted from the results of differential thermal analysis and rapid cooling/heating method.
It is a phase equilibrium diagram of O system. In the figure, the black dots indicate the measurement results. For example, La, 0. is 50 mol%, CuO is 5
When La2CuO4 having a composition of 0 mol% is heated to an elevated temperature, it decomposes and melts at around 1050°C. Therefore, the Czochralski method of pulling up crystals having the same composition as the melt cannot be applied. Next, the composition ratio between the liquidus equation -B, that is, La, 211.9 to 7.1 mol% of 03, 71% of CuO
.. Approximately 133% of raw materials mixed in a range of 1 to 92.9 mol%
After heating and melting at 0 to 1040°C, when the temperature of the melt is gradually lowered, the composition of the melt shifts toward the CuO side in the figure along the liquidus line^-B, and La2Cub4 becomes a solid phase and precipitates. I'll come.

ra 液の組成が共晶点BよりCuO側であれば、冷却
時にまずCuOが析出し、融液の組成がA点よりLa2
O2側であれば、冷却時にまずLa20.側の結晶が析
出し、いずれもLa2Cub、が析出成長することがで
きない。この相平衡図においてLa原子およびCu原子
位置に何らかの異種元素を少量混合したときに相平衡図
が特性的に変わらない場合には同じLa2CuO4固溶
体が固相となって析出してくる。この発明ではこれらの
結晶を同一のLa2CuO,またはおなし層状ペロブス
カイト型種子結晶上に析出してぎたLa、Cub41結
晶を育成させてひぎあげる。
ra If the composition of the liquid is closer to CuO than the eutectic point B, CuO will first precipitate during cooling, and the composition of the melt will be closer to La2 than point A.
If it is on the O2 side, La20. Crystals on the sides precipitate, and La2Cub cannot precipitate and grow in either case. In this phase equilibrium diagram, when a small amount of some kind of different element is mixed at the La atom and Cu atom positions, if the phase equilibrium diagram does not change in characteristics, the same La2CuO4 solid solution will precipitate as a solid phase. In this invention, these crystals are grown by growing La and Cub41 crystals precipitated on the same La2CuO or layered perovskite seed crystal.

[実施例] 以下に実施例によって本発明の詳細な説明する。[Example] The present invention will be explained in detail below by way of examples.

及胤■ユ 1a2cUO4単結晶を溶液引きあげ法によって製造し
た。
A 1a2cUO4 single crystal was produced by a solution pulling method.

第2図に使用した単結晶引きあげ装置を示す。Figure 2 shows the single crystal pulling device used.

図において、lは水冷シャフト、2は白金シャフト、3
は保温材、4は高周波加熱コイル、5は熱電対、6はる
つぼ支持物、7は種結晶、8は成長した単結晶、9は出
発原料、lOは白金るつぼである。
In the figure, l is a water-cooled shaft, 2 is a platinum shaft, and 3 is a water-cooled shaft.
4 is a heat insulating material, 4 is a high-frequency heating coil, 5 is a thermocouple, 6 is a crucible support, 7 is a seed crystal, 8 is a grown single crystal, 9 is a starting material, and 1O is a platinum crucible.

L、a20sとCuOをモル比にして15 : 85に
混合し、その混合物200gを、口径5hm、高さ35
01の発熱体を兼ねた白金るつぼIOに入れ、高周波加
熱コイル4による話導加熱方式により約1200℃まで
加熱し溶融させた後、種結晶であるLa2Cu(14単
結晶7を融液表面に接触させる。融液を徐々に降温させ
ると、融液中で最も温度の低い種結晶と接触している融
液の界面にLa2CuO4微結晶が少しずつ析出してき
て種結晶7上に結晶化し成長する。このようにして成長
した単結晶8を融液から徐々にひとあげる。すなわち、
融液を降温しながら、育成された単結晶のひ幹あげを同
時におこなってゆくのである。このときの製造条件とし
てはLa2CuOx ’L結晶8のひきあげ速度は0.
3〜1 is/hr 、融液降温速度2〜lO℃/hr
 、結晶回転数LO〜30rpm 、雰囲気は空気中で
ある。La2CuO4単結晶成長を完了するまでに要す
る時間は大きさ9X7X4al111.重さ1gの単結
晶を得るのに9〜IO時間要しただけであった。酸素雰
囲気中でも単結晶の成長は可能である。
L, a20s and CuO were mixed at a molar ratio of 15:85, and 200 g of the mixture was placed into a tube with a diameter of 5 hm and a height of 35 mm.
01 is placed in a platinum crucible IO that also serves as a heating element, and heated to approximately 1200°C by a conduction heating method using a high-frequency heating coil 4 to melt it. When the temperature of the melt is gradually lowered, La2CuO4 microcrystals are gradually precipitated at the interface of the melt that is in contact with the seed crystal having the lowest temperature in the melt, and crystallize and grow on the seed crystal 7. Gradually lift the single crystal 8 grown in this way from the melt. That is,
While cooling the melt, the grown single crystal is simultaneously raised. As for the manufacturing conditions at this time, the pulling speed of La2CuOx 'L crystal 8 is 0.
3-1 is/hr, melt cooling rate 2-10°C/hr
, the crystal rotation speed was LO ~ 30 rpm, and the atmosphere was air. The time required to complete the growth of a La2CuO4 single crystal is 9X7X4al111. It took only 9-IO hours to obtain a single crystal weighing 1 g. Single crystal growth is possible even in an oxygen atmosphere.

去101ス (Lao、 gBaa、 +)zcu04なる組成につ
いて溶液ひきあげ法により固溶体単結晶を製造した。9
0モル%La20.、 + 10モル%2BaCO,な
る組成の混合物とCuOをモル比にして+5 : 85
に混合し、実施例1と同様の操作により同様の経過を経
て8X7X3mm+の(Lao、 eBao、 1)z
cuo4固溶体単結晶を得た。この発明の製造方法では
結晶中のLa原子の位置をBaで置き換えても第1図の
La203−CuO系の相平衡図が木質的に変わらない
ため(Lao、 Jao、 +)2cuoa !結晶が
製造できた。
A solid solution single crystal of the composition 101st (Lao, gBaa, +)zcu04 was produced by the solution pull-up method. 9
0 mol% La20. , +10 mol% 2BaCO, and CuO in a molar ratio of +5:85.
8X7X3mm+ (Lao, eBao, 1)z
A cuo4 solid solution single crystal was obtained. In the production method of the present invention, even if the position of the La atom in the crystal is replaced with Ba, the phase equilibrium diagram of the La203-CuO system in Figure 1 does not change in a woody manner (Lao, Jao, +)2cuoa! Crystals have been produced.

同様に結晶中のLa原子およびCu原子の位置に何らか
の異種元素を少量混合したとぎに相平衡図が定性的に変
わらない場合は上記と全く同一の方法、条件によってこ
の異種元素を混入したLa2CuO4固溶体単結晶を製
造することも可能である。
Similarly, if the phase equilibrium diagram does not qualitatively change after mixing a small amount of some kind of different element at the position of La and Cu atoms in the crystal, a La2CuO4 solid solution containing this different kind of element can be obtained using exactly the same method and conditions as above. It is also possible to produce single crystals.

La2Cub4.!1.結晶の作製に際し、酸化ランタ
ン(LazO*)でなく、炭酸ランタン(La2(CO
3) 3)を出発物質として用いることもでざる。La
z (CO3) sは加熱中に Law(CO3)t =La203 + 3 CO2↑
なる反応を起こし、La20*に変化する。従って出発
物質としてLa2 (CO3) sとCuOを用いても
、結果として第1図と全く同様の相平衡図が得られ、前
述した各実施例と同様の操作によってLa2CuO,単
結晶およびLaの一部を88またはSrで置換した単結
晶を得ることかできた。
La2Cub4. ! 1. When producing crystals, lanthanum carbonate (La2(CO
3) It is also not possible to use 3) as a starting material. La
z (CO3) s during heating Law (CO3)t = La203 + 3 CO2↑
A reaction occurs and it changes to La20*. Therefore, even if La2(CO3)s and CuO are used as starting materials, a phase equilibrium diagram exactly the same as that shown in FIG. It was possible to obtain a single crystal in which moieties were substituted with 88 or Sr.

[発明の効果] 以上説明したように、この発明によればLa2CuO4
単結晶を引きあげ法によって製造することができる。ま
た、BaおよびS「を少量混合した単結晶を作製するこ
とができる。このように本発明によって30〜40にで
超伝導を示す酸化物超伝導単結晶も製造することが可能
となった。
[Effect of the invention] As explained above, according to this invention, La2CuO4
Single crystals can be produced by the pulling method. Furthermore, it is possible to produce a single crystal containing a small amount of Ba and S. In this way, the present invention has made it possible to produce an oxide superconducting single crystal exhibiting superconductivity at 30 to 40 nm.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の詳細な説明するためのLaJi−C
uO系の相平衡図、 第2図はこの発明の一実施例を説明するためのLa2C
uOa !結晶製造装置の構成図である。 1・・・水冷シャフト、 2・・・白金シャフト。 3・・・保温材、 4・・・高周波加熱コイル、 5・・・熱電対、 6・・・るつぼ支持物、 7− La2CuO41m結晶、 8 = La、Cub、単結晶、 9・・・出発原料、 10・・・白金るつぼ。 第1図
FIG. 1 shows LaJi-C for detailed explanation of this invention.
Figure 2 is a phase equilibrium diagram of the uO system.
uOa! FIG. 1 is a configuration diagram of a crystal manufacturing apparatus. 1...Water cooling shaft, 2...Platinum shaft. 3... Heat insulating material, 4... High frequency heating coil, 5... Thermocouple, 6... Crucible support, 7- La2CuO41m crystal, 8 = La, Cub, single crystal, 9... Starting material , 10... Platinum Crucible. Figure 1

Claims (1)

【特許請求の範囲】 1)酸化ランタンおよび炭酸ランタンのうちの少なくと
も一種と酸化銅を混合して加熱融解したのち、融液を降
温させ、一般式La_2CuO_4で表わされる微結晶
を種結晶上に析出、成長させることを特徴とする銅酸ラ
ンタン単結晶の製造方法。 2)前記酸化ランタンおよび炭酸ランタンのうちの少な
くとも一種と前記酸化銅の混合比が28.9〜7.1モ
ル%対71.1〜92.9モル%であることを特徴とす
る特許請求の範囲第1項記載の銅酸ランタン単結晶の製
造方法。 3)前記銅酸ランタンが少量の異種元素を含むことを特
徴とする特許請求の範囲第1項記載の銅酸ランタン単結
晶の製造方法。
[Claims] 1) After mixing copper oxide with at least one of lanthanum oxide and lanthanum carbonate and heating and melting the mixture, the temperature of the melt is lowered, and microcrystals represented by the general formula La_2CuO_4 are precipitated on the seed crystal. A method for producing a lanthanum cuprate single crystal, the method comprising growing a lanthanum cuprate single crystal. 2) The mixing ratio of at least one of the lanthanum oxide and lanthanum carbonate and the copper oxide is 28.9 to 7.1 mol% to 71.1 to 92.9 mol%. A method for producing a lanthanum cuprate single crystal according to scope 1. 3) The method for producing a lanthanum cuprate single crystal according to claim 1, wherein the lanthanum cuprate contains a small amount of a different element.
JP62109518A 1987-05-01 1987-05-01 Production of cupric acid-lanthanum single crystal Granted JPS63274696A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62109518A JPS63274696A (en) 1987-05-01 1987-05-01 Production of cupric acid-lanthanum single crystal
US07/168,021 US4956334A (en) 1987-05-01 1988-03-14 Method for preparing a single crystal of lanthanum cuprate
EP88104090A EP0288709B1 (en) 1987-05-01 1988-03-15 method for preparing a single crystal of lanthanum cuprate
DE8888104090T DE3872922T2 (en) 1987-05-01 1988-03-15 METHOD FOR THE PRODUCTION OF LANTHANE SUPER SINGLE CRYSTAL.
US07/521,624 US5057492A (en) 1987-05-01 1990-05-10 Method for preparing a single crystal of lanthanum cuprate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62109518A JPS63274696A (en) 1987-05-01 1987-05-01 Production of cupric acid-lanthanum single crystal

Publications (2)

Publication Number Publication Date
JPS63274696A true JPS63274696A (en) 1988-11-11
JPH0471876B2 JPH0471876B2 (en) 1992-11-16

Family

ID=14512294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62109518A Granted JPS63274696A (en) 1987-05-01 1987-05-01 Production of cupric acid-lanthanum single crystal

Country Status (1)

Country Link
JP (1) JPS63274696A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001063021A1 (en) * 2000-02-23 2001-08-30 Ceracomp Co., Ltd. Method for single crystal growth of perovskite oxides

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001063021A1 (en) * 2000-02-23 2001-08-30 Ceracomp Co., Ltd. Method for single crystal growth of perovskite oxides

Also Published As

Publication number Publication date
JPH0471876B2 (en) 1992-11-16

Similar Documents

Publication Publication Date Title
EP0288709B1 (en) method for preparing a single crystal of lanthanum cuprate
JPS6345198A (en) Production of crystal of multiple system
JP2740427B2 (en) Preparation method of oxide crystal
JPS63274696A (en) Production of cupric acid-lanthanum single crystal
JP2684432B2 (en) Superconducting oxide single crystal and method for producing the same
JPS6156200B2 (en)
JP3548910B2 (en) Method for producing ZnO single crystal
JPH0243717B2 (en) BAPBO3KEISANKABUTSUCHODENDOTAITANKETSUSHONOYOEKIHIKIAGEHONYORUSEIZOHOHO
JPS63274695A (en) Production of cupric acid-lanthanum single crystal
JP2672533B2 (en) Method for producing oxide superconductor crystal
JPS63274697A (en) Production of cupric acid-lanthanum single crystal
JP2557882B2 (en) Method for growing superconducting oxide single crystal
JP2733197B2 (en) Method for producing rare earth element-containing single crystal
JPH01249691A (en) Production of superconducting thin film
JPH01157499A (en) Production of single crystal of oxide superconductor
JP3613424B2 (en) Manufacturing method of oxide superconductor
JPH01148795A (en) Production of oxide superconductor crystal
JP2852405B2 (en) Bi (2) (Sr, Ca) (3) Cu (2) O (8) Single crystal production method by solution pulling method
JP3000137B2 (en) Method for producing superconductor PrBa2Cu3Oy single crystal
JP3205646B2 (en) Method for producing Sm-based 123 crystal
JPH01148794A (en) Production of oxide superconductor crystal
JPH0512317B2 (en)
JPH0269393A (en) Method of growing superconducting oxide single crystal
JP2004091222A (en) Method for manufacturing oxide semiconductor single crystal
JPH02229787A (en) Production of oxide superconductor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term