JPS5924202A - Surface defect detector - Google Patents

Surface defect detector

Info

Publication number
JPS5924202A
JPS5924202A JP13461182A JP13461182A JPS5924202A JP S5924202 A JPS5924202 A JP S5924202A JP 13461182 A JP13461182 A JP 13461182A JP 13461182 A JP13461182 A JP 13461182A JP S5924202 A JPS5924202 A JP S5924202A
Authority
JP
Japan
Prior art keywords
light
position sensor
address
scanning
bit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13461182A
Other languages
Japanese (ja)
Other versions
JPS6338083B2 (en
Inventor
Toshinori Inoue
敏範 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP13461182A priority Critical patent/JPS5924202A/en
Publication of JPS5924202A publication Critical patent/JPS5924202A/en
Publication of JPS6338083B2 publication Critical patent/JPS6338083B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE:To enable the use of the scan width entirely for a detection line with an accurate address setting having a simple structure by arranging a light scanning means comprising an oscillation mirror and a lens for obtaining a parallel light while a position sensor is used to correct frequency in the output of a light receiving element. CONSTITUTION:A circuit comprises an A/D convertor 8, an address signal generator 9, binary coding circuit 10 and a data processing circuit 11. A spot light not of equal velocity but subjected to a scanning by a sine wave is received with a position sensor 6 and a voltage is outputted corresponding to the scanning. The voltage is converted to digital from analog and divided into 0-255 levels, for example, when an 8 bit A/D converter 8 to binary coding a signal from a photo diode 7. When a representative detection signal is provided with this address data, it is divided into 256 where it is 8 bit at an even distance with respect to the entire scan width. The address division ratio is determined by the number of bit the A/D converter 8 has.

Description

【発明の詳細な説明】 この発明は表面欠陥検出装置に関するものである。[Detailed description of the invention] The present invention relates to a surface defect detection device.

従来、シート状物体の欠陥検出方法として、スポットに
絞った光をスキャニングして、その反射光、透過光を光
電変換して欠陥の検出を行う方法が採られている。この
データを精度よく処理するためには、光を等速でスキャ
ンさせて、時間分割でスキャンラインのアドレス設定を
行う必要がある。その方法として、■ポリゴンで等速ス
キャンさせる方法と、■振動ミラーで等速スキャンさせ
る方法とがある。■のポリゴンで等速スキャンサせる方
法は、ポリゴンとFθレンズまたはFOミラーで構成す
ることによシ、簡単に等速スキャンができるため、ライ
ンを分割させるためのアドレス決めが容易ではあるが、
光学的な精度が要求されて複雑であり、非常に高価でも
ある。■の振動ミラーでの等速スキャンの方法は、スキ
ャンスピードを上げるには振動ミラーの応答性等でs1
nハルス振動になる。しかし、第1図のようにsin波
で実際に使用できるスキャン幅lに限度がある。
Conventionally, as a method for detecting defects in sheet-like objects, a method has been adopted in which defects are detected by scanning focused light into a spot and photoelectrically converting the reflected light and transmitted light. In order to process this data with high precision, it is necessary to scan the light at a constant speed and set scan line addresses in time divisions. There are two methods for doing this: 1. A method in which a polygon is scanned at a constant speed, and 2. A method in which a vibrating mirror is used to perform a constant speed scan. The method (3) of scanning polygons at a constant speed consists of polygons and Fθ lenses or FO mirrors, which allows for easy uniform speed scanning, making it easy to determine the addresses for dividing lines.
It is complex, requiring optical precision, and is also very expensive. ■The method of constant speed scanning with a vibrating mirror requires s1 to increase the scanning speed due to the responsiveness of the vibrating mirror, etc.
It becomes a Hals vibration. However, as shown in FIG. 1, there is a limit to the scan width l that can actually be used with sine waves.

すなわち、ス穴ヤン幅の約半分の部分がある程度等速に
近いスピードであるため、検出用としてはこの部分を使
用する。。
That is, since approximately half the width of the hole yang has a speed close to a constant velocity to some extent, this portion is used for detection. .

したがって、この発明の目的は、簡単な構成で正確なア
ドレス設定ができ、振動ミラーの応答性やスキャンスピ
ードの変動にも影響せず、スキャン幅全体を検出ライン
として使える表面欠陥検出装置を提供することである。
Therefore, an object of the present invention is to provide a surface defect detection device that allows accurate address setting with a simple configuration, does not affect the responsiveness of a vibrating mirror or fluctuations in scan speed, and can use the entire scan width as a detection line. That's true.

この発明の一実施例を第2図ないし第4図に示す。すな
わち、この表面欠陥検出装置は、レーザlと、sin波
駆動駆動てレーザ1からの光線’k 一定角度θの範囲
で直線状にスキャンする振動ミラー2と、この振動ミラ
ー2でスキャンされた光線を平行光とするFθレンズ3
と、このFθレンズ3から出た平行光を2分して透過光
を被測定物4に照射するハーフミラ−5と、このハーフ
ミラ−5のFθレンズ3からの反射光を検出するポジシ
ョンセンサ6と1、前記透過光の被測定物4からの反射
光をハーフミラ−5による反射を介して受光する受光素
子となるフォトダイオード7と、このフォトダイオード
7の検出出力をポジションセンサ6からの出力で周波数
補正する回路とを備えたものである。この回路は、第3
図のように、A/Dコンバータ8と、アドレス信号発生
器9と、2値化回路10と、データ処理回路11とを有
している。
An embodiment of this invention is shown in FIGS. 2 to 4. That is, this surface defect detection device consists of a laser 1, a oscillating mirror 2 that linearly scans the ray 'k from the laser 1 using a sine wave drive, and a ray scanned by the oscillating mirror 2. Fθ lens 3 that makes parallel light
A half mirror 5 divides the parallel light emitted from the Fθ lens 3 into two and irradiates the transmitted light onto the measured object 4, and a position sensor 6 detects the reflected light from the Fθ lens 3 of the half mirror 5. 1. A photodiode 7 serving as a light-receiving element that receives the reflected light from the object to be measured 4 of the transmitted light through reflection by a half mirror 5; and a correction circuit. This circuit is the third
As shown in the figure, it has an A/D converter 8, an address signal generator 9, a binarization circuit 10, and a data processing circuit 11.

このように構成したため、等速でな(sin波でスキャ
ニングされてるスポット光はポジションセンサ6でその
光を受光することKより、スキャニングの場所に対応し
た電圧を出力する。この電圧Th A/D変換すること
によシ、例えば8ビツトのA/Dコンバータ8であれば
、0から255段階で分割される(第4図)。そして、
フォトダイオード7からの信号を2値化して処理する。
Because of this configuration, the spot light being scanned at a constant velocity (sin wave) is received by the position sensor 6, and a voltage corresponding to the scanning location is output.This voltage Th A/D By converting, for example, an 8-bit A/D converter 8 is divided into 255 steps from 0 (Fig. 4).
The signal from the photodiode 7 is binarized and processed.

その代表的な検出信号に、このアドレスデータを提供ス
ることにより、全スキャン幅に対して均等な路離で8ビ
ツトの場合、256分割される。アドレス分割比はA/
Dコンバータ8のビット数によって決定される。このよ
うに、振動ミラー2の欠点である応答遅れや、sin波
スキスキャンめの位置によるスピードのばらつき等が、
ポジションセンサ6を用いることにより正確なアドレス
設定が容易となったために、問題とならなくなった。こ
のように、簡単な構成で正確なアドレス設定ができ、か
つ振動ミラー2の応答性、スキャンスピードの変動にも
影響せず、またスキャン幅全部を検出用ラインとして使
うことができる。
By providing this address data to the representative detection signal, it is divided into 256 in the case of 8 bits with equal path deviation for the entire scan width. The address division ratio is A/
It is determined by the bit number of the D converter 8. In this way, the shortcomings of the vibrating mirror 2, such as response delay and speed variations depending on the position of the sine wave scan, can be avoided.
Since the use of the position sensor 6 makes it easy to set an accurate address, this problem is no longer a problem. In this way, accurate address setting is possible with a simple configuration, and the response of the vibrating mirror 2 and fluctuations in scan speed are not affected, and the entire scan width can be used as a detection line.

第5図および第6図は、第2図のフォトダイオードの出
カフをポジションセンサ6の出力で補正する回路の変形
例を示す。第5図において、8′はA/Dコンバータ、
9′はアドレス信号発生器、12はアンプ、13は電圧
可変型バイパスフィルタ、10′は2値化回路、11′
はデータ処理回路、14は微分回路、15は絶対値回路
である。
5 and 6 show modified examples of the circuit for correcting the output cuff of the photodiode shown in FIG. 2 using the output of the position sensor 6. In FIG. In Fig. 5, 8' is an A/D converter;
9' is an address signal generator, 12 is an amplifier, 13 is a voltage variable bypass filter, 10' is a binarization circuit, 11'
1 is a data processing circuit, 14 is a differentiation circuit, and 15 is an absolute value circuit.

動作につき説明する。ポジションセンサ6からの出力を
A/D変換してアドレス信号として使用するものと、微
分してvp8inθのポジションセンサ出力信号をv、
、cosθの速度に変換するものとに分ける。
The operation will be explained. The output from the position sensor 6 is A/D converted to be used as an address signal, and the position sensor output signal of vp8inθ is differentiated to v,
, and one that converts to a velocity of cos θ.

そして、スキャンスピードに変換された電圧を絶対値回
路15に入れ、第6図(8)に示すような信号に変換す
る。被測定物4から反射してくる光信号をフォトダイオ
ード7で電気に変換しアンプ12で増幅する。増幅した
信号を外部電圧によるカットオフ周波数が変わるバイパ
スフィルタ13に送(5) る。バイパスフィルタ13では第6図(B)の信号を受
けてカットオフ周波数が第6図(C)で示すように、f
ominからf。maxまで可変する。フォトダイオー
ド7からの出力信号で、同一欠陥であっても欠陥の発生
の場所により、スキャンスピードの影響で変化する生信
号の周波数成分が変わるのに対して、バイパスフィルタ
13の定数をスキャンスピードに合わせて変えることに
より、場所による検出の差はなくなる。その他は第1の
実施例と同様である。
Then, the voltage converted to the scan speed is input to the absolute value circuit 15 and converted into a signal as shown in FIG. 6(8). An optical signal reflected from the object to be measured 4 is converted into electricity by a photodiode 7 and amplified by an amplifier 12. The amplified signal is sent to a bypass filter 13 whose cutoff frequency is changed by an external voltage (5). The bypass filter 13 receives the signal shown in FIG. 6(B) and changes its cutoff frequency to f as shown in FIG. 6(C).
omin to f. Variable up to max. In the output signal from the photodiode 7, the frequency component of the raw signal changes depending on the scan speed depending on the location of the defect even if it is the same defect, whereas the constant of the bypass filter 13 is set to the scan speed. By changing them together, there will be no difference in detection depending on location. The rest is the same as the first embodiment.

以上のように、この発明の表面欠陥検出装置は、振動ミ
ラーと平行光線を得るレンズとによる光スキヤニング手
段を作り、ポジションセンサe用いて受光素子の出力を
周波数補正するようにしたものであるから、簡単な構成
で正確なアドレス設定ができ、振動ミラーの応答性やス
キャンスピードの変動に影響せず、しかもスキャン幅全
部を検出ラインとして使えるという効果がある。
As described above, the surface defect detection device of the present invention has a light scanning means made up of a vibrating mirror and a lens for obtaining parallel light beams, and uses a position sensor e to correct the frequency of the output of the light receiving element. This has the advantage of allowing accurate address setting with a simple configuration, without affecting the response of the vibrating mirror or fluctuations in scan speed, and allowing the entire scan width to be used as a detection line.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のsin波駆動駆動題を示す説明図、(6
) 第2図はこの発明の一実施例の斜視図、第3図はその回
路ブロック図、第4図は同じくその動作説明図、第5図
は他の実施例の回路ブロック図、第6図(イ)〜(F)
はその動作説明図である。 1・・レーザ、2・・・振動ミラー、3・・・Fθレン
ズ、4・・・M 測定物、6・・・ポジションセンザ、
7・・・フォトダイオード(受光素子)、8.8’・・
・A/Dコンバータ、9・・・アドレス信号発生器、1
0.10’・・・2値化回路、11 、11’・・・デ
ータ処理回路(7)
FIG. 1 is an explanatory diagram showing the conventional sine wave drive problem, (6
) FIG. 2 is a perspective view of one embodiment of the present invention, FIG. 3 is a circuit block diagram thereof, FIG. 4 is an explanatory diagram of its operation, FIG. 5 is a circuit block diagram of another embodiment, and FIG. 6 (A) ~ (F)
is an explanatory diagram of its operation. 1...Laser, 2...Vibration mirror, 3...Fθ lens, 4...M measurement object, 6...Position sensor,
7... Photodiode (light receiving element), 8.8'...
・A/D converter, 9...address signal generator, 1
0.10'... Binarization circuit, 11, 11'... Data processing circuit (7)

Claims (1)

【特許請求の範囲】[Claims] レーザと、sin波駆動駆動て前記レーザからの光線を
一定角度範囲で直線状にスキャンする振動ミラーと、こ
の振動ミラーでスキャンされた光線を平行光とするレン
ズと、このレンズから出た平行光を2分して透過光を被
測定物に照射するハーフミラ−と、このハーフミラ−の
前記レンズからの反射光を検出するポジションセンサと
、前記透過光の被測定物からの反射光を前記ハーフミラ
−による反射を介して受光する受光素子と、この受光素
子の検出出力を前記ポジションセンサからの出力で周波
数補正する回路とを備えた表面欠陥検出装置。
A laser, a vibrating mirror that is driven by a sine wave and linearly scans the light beam from the laser within a certain angle range, a lens that converts the light beam scanned by the vibrating mirror into parallel light, and the parallel light emitted from this lens. a half mirror that divides the transmitted light into two and irradiates the measured object with transmitted light; a position sensor that detects the reflected light from the lens of the half mirror; and a position sensor that detects the reflected light of the transmitted light from the measured object. A surface defect detection device comprising: a light receiving element that receives light through reflection by a light receiving element; and a circuit that corrects the frequency of the detection output of the light receiving element using the output from the position sensor.
JP13461182A 1982-07-30 1982-07-30 Surface defect detector Granted JPS5924202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13461182A JPS5924202A (en) 1982-07-30 1982-07-30 Surface defect detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13461182A JPS5924202A (en) 1982-07-30 1982-07-30 Surface defect detector

Publications (2)

Publication Number Publication Date
JPS5924202A true JPS5924202A (en) 1984-02-07
JPS6338083B2 JPS6338083B2 (en) 1988-07-28

Family

ID=15132437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13461182A Granted JPS5924202A (en) 1982-07-30 1982-07-30 Surface defect detector

Country Status (1)

Country Link
JP (1) JPS5924202A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62137504A (en) * 1985-12-10 1987-06-20 Sumitomo Special Metals Co Ltd Width measuring apparatus and surface defect detector for partially clad material
JPS63177040A (en) * 1987-01-19 1988-07-21 Nagoya Denki Kogyo Kk Apparatus for automatically inspecting mounted printed circuit board
JPS63113949U (en) * 1987-01-19 1988-07-22

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4974815A (en) * 1972-11-20 1974-07-19
JPS54124784A (en) * 1978-03-20 1979-09-27 Ricoh Co Ltd Laser flaw inspector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4974815A (en) * 1972-11-20 1974-07-19
JPS54124784A (en) * 1978-03-20 1979-09-27 Ricoh Co Ltd Laser flaw inspector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62137504A (en) * 1985-12-10 1987-06-20 Sumitomo Special Metals Co Ltd Width measuring apparatus and surface defect detector for partially clad material
JPH0415882B2 (en) * 1985-12-10 1992-03-19 Sumitomo Spec Metals
JPS63177040A (en) * 1987-01-19 1988-07-21 Nagoya Denki Kogyo Kk Apparatus for automatically inspecting mounted printed circuit board
JPS63113949U (en) * 1987-01-19 1988-07-22

Also Published As

Publication number Publication date
JPS6338083B2 (en) 1988-07-28

Similar Documents

Publication Publication Date Title
JP2546885B2 (en) Method and apparatus for determining surface shape information
US4778271A (en) Photoeletric type measuring method and device
JPS5924202A (en) Surface defect detector
JPH04279846A (en) Optical inspection instrument
JPS6022614A (en) Optical device for measuring shape
JPS59231403A (en) Non-contact type three-dimensional measuring device
JP3107026B2 (en) Transmission part shape inspection device
SU838323A1 (en) Device for contactless measuring of surface geometric parameters
JP2540193B2 (en) Non-contact displacement meter
JPS61223603A (en) Mark detecting machine
JPH0552702A (en) Light detecting apparatus
JPH02157613A (en) Distance measuring instrument
JPH03261808A (en) Minute shape measuring apparatus
JPS6361152A (en) Laser beam inspecting method
JPS62259191A (en) Scan pattern reader
JPS6069503A (en) Measuring method of shape of steel plate end part
JPS63285512A (en) Detector for surface tilt of optical deflector
JPH07334597A (en) Optical sign reader
SU1716324A1 (en) Optical and electronic noise-immune measuring device
JPS59226802A (en) Edge detector of optical measuring equipment
JPS60189724A (en) Photoscanner
JPS6014106A (en) Method and device for measuring dimension
JPH07243820A (en) Measuring apparatus of surface shape
JPH02204712A (en) Instrument for measuring face inclination
JPH0568142A (en) Image scanner