JPS6069503A - Measuring method of shape of steel plate end part - Google Patents

Measuring method of shape of steel plate end part

Info

Publication number
JPS6069503A
JPS6069503A JP58176988A JP17698883A JPS6069503A JP S6069503 A JPS6069503 A JP S6069503A JP 58176988 A JP58176988 A JP 58176988A JP 17698883 A JP17698883 A JP 17698883A JP S6069503 A JPS6069503 A JP S6069503A
Authority
JP
Japan
Prior art keywords
steel plate
signal
light
shape
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58176988A
Other languages
Japanese (ja)
Other versions
JPH0231802B2 (en
Inventor
Hidehiko Yamada
山田 英彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP58176988A priority Critical patent/JPS6069503A/en
Publication of JPS6069503A publication Critical patent/JPS6069503A/en
Publication of JPH0231802B2 publication Critical patent/JPH0231802B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2263/00Shape of product
    • B21B2263/20End shape; fish tail; tongue

Abstract

PURPOSE:To find a scanning position by deciding that the intensity of reflected light and the phase difference of the reflected light from a laser modulating signal are within specific ranges, and also measure the two-dimensional shape of a steel plate end part by using information, etc., obtained from a movement extent signal. CONSTITUTION:The output light of a laser 4 scans breadthwise on the surface of a steel plate 1 as small spot light 8. Part of irregularly reflected laser light is converged by a parabolic mirror 6 again and guided out as a photodetected light beam 10 by a mirror 9. The photodetected light beam 10 is incident on a photoelectric converting element 13 and amplified by a high frequency amplifier 14. The amplified output signal is led to a level decision signal 18 to obtain its phase difference from the output signal of a high frequency oscillator 2 and a decision device 19 generates the presence/absence signal of a steel plate eventually by the output of a phase decision device 16. A scanning position computing element 21 performs arithmetic on the basis of the steel plate presence/ absence signal and the angle detection signal 20 of a rotary mirror 5 and a shape arithmetic circuit 23 obtain the shape measured value 24 of the final head and tail of the steel plate 1 from the output of a detector 22 for the movement extent of a roll 25 for moving the steel plate.

Description

【発明の詳細な説明】 本発明は、鋼板の先端及び尾端を含めた端部の幅方向に
おける2次元的な形状を光学的に測定する方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for optically measuring the two-dimensional shape in the width direction of the end portion of a steel plate including the leading end and tail end.

鋼板の製造に於て、例えば鋼板の先端及び尾端は一般に
山形となったりフィラン−テールと呼ばれる中央の凹ん
だ形となったりするものであるが、このような鋼板を更
に圧延する場合あるいは最終製品とする場合は、この異
常な形状の部分を切断する必要が有る。 しかしながら
、この切断を必要以上に大きくすると鋼板の歩留りが低
下するため、経済性の面から切断量は最小にしなければ
ならない。 このため、先端や尾端の形状を正確に測定
して最適な切断点を決定しなければならない訳であるが
、この目的の為に種々の形状測定方法が提案されている
。 例えば、TVカメラ等にて撮影し自動的に形状を測
定する方法、1次元のりニアアレイカメラと鋼板移動距
離信号を組合わせる方法等があるが、鋼板の異状な形状
部分の有無検出は赤熱鋼板の自発光を検出する方法ある
いは鋼板をライトで照明し反射光を検出する方法による
ものであって、安定的な検出が困難であること、非常に
長い異状な形状の測定が困難であること、あるいは鋼板
の上下動により大きな誤差が発生すること等の問題が有
った。
In the production of steel plates, for example, the tip and tail ends of the steel plate are generally chevron-shaped or have a concave shape in the center called a fillan tail, but when such a steel plate is further rolled or the final In order to make it into a product, it is necessary to cut out this abnormally shaped part. However, if this cutting is made larger than necessary, the yield of the steel plate will decrease, so the amount of cutting must be minimized from an economic standpoint. For this reason, it is necessary to accurately measure the shape of the tip and tail end to determine the optimal cutting point, and various shape measurement methods have been proposed for this purpose. For example, there are methods such as automatically measuring the shape by taking pictures with a TV camera, etc., and methods that combine a one-dimensional linear array camera and a steel plate movement distance signal. These methods are based on the method of detecting self-luminescence of the steel plate or the method of illuminating the steel plate with a light and detecting the reflected light, but stable detection is difficult, and measurement of extremely long and unusual shapes is difficult. Alternatively, there were problems such as large errors occurring due to vertical movement of the steel plate.

そこで、本発明はこの様な問題点を解決し、安定的に高
精度で種々の異状な形状を測定することを可能としたも
のであシ、本発明によれば常温から1000℃程度の高
温までの広い範囲にわたって鋼板を測定でき、鋼板業分
野等において極めて有用な形状測定方法を提供すること
が可能であって、その目的は高周波変調されたレーザー
光を回転面鏡及び放物面鏡によって移動する鋼板の幅方
向にスキャニングさせ、該鋼板表面からの反射光を受光
装置で電気信号に変換し、反射光の強度及びレーザー変
調信号に対する反射光の位相差が所定の範囲内にあるこ
とを判定して上記鋼板の幅方向における部分的欠落の有
無を検出すると共に、上記回転面鏡の角度からビーム位
置演算装置によってレーザービームのスキャニング位置
をめ、更に上記鋼板の移動量検出器からの移動量信号に
よる情報等によって該鋼板端部の2次元的な形状を測定
するようにした鋼板端部の形状測定方法によシ達成され
る。
Therefore, the present invention solves these problems and makes it possible to measure various abnormal shapes stably and with high precision.According to the present invention, it is possible to measure various abnormal shapes with high precision. It is possible to measure steel plates over a wide range of areas, and it is possible to provide an extremely useful shape measurement method in the steel plate industry. Scanning the moving steel plate in the width direction, converting the reflected light from the surface of the steel plate into an electrical signal using a light receiving device, and checking that the intensity of the reflected light and the phase difference of the reflected light with respect to the laser modulation signal are within a predetermined range. In addition to determining the presence or absence of partial defects in the width direction of the steel plate, the scanning position of the laser beam is determined by the beam position calculation device from the angle of the rotating surface mirror, and the movement of the steel plate is determined by the movement amount detector. This is achieved by a method for measuring the shape of the edge of a steel plate in which the two-dimensional shape of the edge of the steel plate is measured using information such as a quantity signal.

以下に、本発明の詳細を添付図面に示す一実施例を参照
しながら説明する。
The invention will now be described in detail with reference to an embodiment shown in the accompanying drawings.

第1図は本発明方法を実施する装置の一例を示した全体
構成図であって、1は測定対象の鋼板でロール25の上
を移動している。 高周波発振器2の出力はレーザー変
調器3に接続され、レーザー4の出力光の強度を高周波
正弦波状に変調する。
FIG. 1 is an overall configuration diagram showing an example of an apparatus for implementing the method of the present invention, in which 1 is a steel plate to be measured, which is moving on a roll 25. The output of the high frequency oscillator 2 is connected to a laser modulator 3, which modulates the intensity of the output light of the laser 4 into a high frequency sine wave.

レーザー4は半導体レーザーが適当であるが、これはH
e −Neレーザーあるいはその他のレーザーでも使用
可能であり、このレーザー4の出力光は回転面鏡5によ
って扇形にスキャニングされ、更に放物面鏡6によって
平行スキャニングに変換され、鋼板1の表面上を小さな
スポット光8となって幅方向にスキャニングする。 鋼
板1の表面で乱反射したレーザー光の一部は再び放物面
鏡6で集光され、回転面鏡5を通ってレーザー光の光軸
と同一光軸に沿って戻るが、中心に穴9aを設けたミラ
ー9によシその反射光だけが受光光線10となって取シ
出される。 ミラー9はレーザー光源と反射による受光
光線10ヲ分離するだけのために設けであるから、これ
はハーフミラ−等の他の手段が使用可能であることは言
うまでもない。 受光光線10は干渉フィルタ11によ
って外乱光を除去した後結像レンズ12によって受光装
置(光電変換素子)13に入射し、この受光装置13の
出力信号は高周波増幅器14によって増幅される。 増
幅された出力信号は振幅検出器17によって反射光の強
度が検出され、レベル判定器18によって反射光強度が
ある一定値以上の場合に鋼板有りと判定し、以下の場合
には鋼板無しと判定する。 この反射光強度のみで鋼板
の有無が確実に検出可能な様に思われるが、実際の鋼板
では場所によって反射光の強度が大きく変化することや
、鋼板が無い場合でも他の物体からの反射が鋼板と同程
度に強かったシする場合が多く安定的な検出は困難であ
る。
A suitable semiconductor laser for the laser 4 is H
An e-Ne laser or other lasers can also be used, and the output light of this laser 4 is scanned in a fan shape by a rotating mirror 5, and further converted into parallel scanning by a parabolic mirror 6, so that it scans over the surface of the steel plate 1. It becomes a small spot light 8 and scans in the width direction. A part of the laser beam that is diffusely reflected on the surface of the steel plate 1 is again focused by the parabolic mirror 6 and returns along the same optical axis as the laser beam through the rotating mirror 5, but there is a hole 9a in the center. Only the reflected light is taken out as a received light beam 10 by the mirror 9 provided with the light beam. Since the mirror 9 is provided only to separate the laser light source and the reflected received light beam 10, it goes without saying that other means such as a half mirror can be used. After the received light beam 10 removes disturbance light through an interference filter 11, it enters a light receiving device (photoelectric conversion element) 13 through an imaging lens 12, and the output signal of this light receiving device 13 is amplified by a high frequency amplifier 14. The intensity of the reflected light of the amplified output signal is detected by the amplitude detector 17, and the level determiner 18 determines that a steel plate is present when the reflected light intensity is above a certain value, and determines that there is no steel plate in the following cases. do. It seems that the presence or absence of a steel plate can be reliably detected using only the intensity of this reflected light, but in actual steel plates, the intensity of the reflected light varies greatly depending on the location, and even when there is no steel plate, reflection from other objects can occur. In many cases, it is as strong as a steel plate, making stable detection difficult.

そこで、本発明方法においては更に、高周波増幅器14
の出力信号と高周波発振器2の出力信号との間の位相差
を位相検出回路15によって測定し、この位相差が特定
の範囲にあることを位相判定器16によって判牙」シ、
この特に鋼板有シと判定する。
Therefore, in the method of the present invention, the high frequency amplifier 14
The phase difference between the output signal of
In particular, it is determined that there is a steel plate.

レベル判定器18および位相判定器16の双方の出力信
号よシ、鋼板有無判定器19によって最終的に鋼板の有
無信号を発生させる。 この鋼板有無信号と回転1面鏡
5の角度検出信号20をもとにスキャニング位置演算器
21で演算し、鋼板1上のレーザービームスポットの幅
方向位置信号と鋼板移動用ロール25の移動量検出器(
回転角検出器)22の出力である鋼板移動量信号とから
形状演算回路23によって鋼板lの最終的な先端及び尾
端の形状測定値Uを得る。 この形状演算の方法を第2
図によって説明すると、同図(イ)は先端が丸い場合で
あシ、この場合は板幅Wに対して一定幅狭いWになる位
置と先端までの長さり、がめられる。 また、同図(ロ
)は先端の中央部が凹んだ形状の場合であり、上記(イ
)と同様に一定幅W′になる位置と先端1での長さり、
の他に、中央の凹んだ谷の位置と先端までの長さL2が
められる。 この様にして移動中の鋼板1の先端及び尾
端の形状が測定されることになる。
Based on the output signals of both the level determiner 18 and the phase determiner 16, a steel plate presence/absence signal is finally generated by a steel plate presence/absence judge 19. Based on this steel plate presence/absence signal and the angle detection signal 20 of the single rotating mirror 5, the scanning position calculator 21 calculates the position signal in the width direction of the laser beam spot on the steel plate 1 and the amount of movement of the steel plate moving roll 25. vessel(
A final shape measurement value U of the tip and tail end of the steel plate l is obtained by the shape calculation circuit 23 from the steel plate movement amount signal which is the output of the rotation angle detector) 22. This shape calculation method is used as a second method.
To explain with a figure, the figure (A) shows the case where the tip is rounded, and in this case, the position where W is a certain width narrower than the plate width W and the length to the tip can be seen. In addition, the same figure (b) shows the case where the center part of the tip is concave, and as in (a) above, the position where the width becomes constant W' and the length at the tip 1,
In addition, the position of the central concave valley and the length L2 to the tip can be determined. In this way, the shapes of the tip and tail ends of the moving steel plate 1 are measured.

次に、鋼板1の上下方向の位置検出について説明する。Next, detection of the vertical position of the steel plate 1 will be explained.

 レーザー光は高周波で変調されているため、その反射
光を受光するまでの光路長に従って高周波変調信号は位
相遅れが生じる訳であるが、第3図に示すような鋼板1
の位置で丁度位相差が90になるように距離及び電子回
路内の遅れを調節したとする。 この時、位相差検出器
の出力電圧は第4図に示すように丁度Oとなっている。
Since laser light is modulated with high frequency, the high frequency modulated signal has a phase delay depending on the optical path length until the reflected light is received.
Assume that the distance and the delay in the electronic circuit are adjusted so that the phase difference is exactly 90 at the position. At this time, the output voltage of the phase difference detector is exactly O as shown in FIG.

 変る。 いまλ= 6 m (50MHz )とすれ
ば、2275mでθ−90となり充分検出可能なことが
理解できる。 θの限界を適当に選べば、任意のtで反
射位置力避りの範囲にある時のみ鋼板布シと判定するこ
とが可能となる。 第3図において、aは背景物体を示
す。
Change. If we now assume that λ=6 m (50 MHz), it will be θ-90 at 2275 m, and it can be understood that sufficient detection is possible. If the limit of θ is appropriately selected, it becomes possible to determine that it is a steel plate cloth only when the reflected positional force is within the range of avoidance at any t. In FIG. 3, a indicates a background object.

また、回転面鏡5の位置を放物面鏡6の焦点よシ内側に
配して扇形スキャニングにすれば、鋼板1の上下動に対
して誤差が発生する問題はあるが、放物面鏡6の幅を鋼
板1のそれよシ小さくする事ができる。 更に、放物面
鏡6をなくして、回転面鏡5あるいは振動ミラーのみで
レーザー光を扇形にスキャニングすることも可能である
。 この二つの例で見られる扇形にスキャニングする方
法の場合は、鋼板の上下動によって鋼板幅方向のエツジ
位置検出精度に誤差が発生するが、鋼板の変位が小さい
場合は問題にならないこともある。
Furthermore, if the position of the rotary mirror 5 is placed inside the focal point of the parabolic mirror 6 for fan-shaped scanning, there is a problem that errors occur due to the vertical movement of the steel plate 1, but the parabolic mirror The width of steel plate 6 can be made smaller than that of steel plate 1. Furthermore, it is also possible to omit the parabolic mirror 6 and scan the laser beam in a fan shape using only the rotating mirror 5 or the vibrating mirror. In the case of the fan-shaped scanning method shown in these two examples, errors occur in the edge position detection accuracy in the width direction of the steel plate due to the vertical movement of the steel plate, but this may not be a problem if the displacement of the steel plate is small.

また、上下方向変位の検出信号によって、上記エツジ位
置検出精度の誤差を補正することも可能である。
Further, it is also possible to correct the error in the edge position detection accuracy using the detection signal of the vertical displacement.

本発明は上記の如くであって、光源に高周波変調のレー
ザーを使用するため、鋼板が赤熱状態でも外乱光が多い
場合でも鋼板端部における2次元形状を安定にかつ高精
度に測定することが可能となシ、鋼板端部の切断精度を
向上させ、鋼板製造に於けるロスを大巾に減少すること
ができるもので、その経済性乃至は鋼板の品質を高める
上に極めて有用な測定方法を提供できる。
As described above, the present invention uses a high-frequency modulated laser as a light source, so it is possible to stably and accurately measure the two-dimensional shape at the edge of a steel plate even when the steel plate is red-hot and there is a lot of disturbance light. This is a measurement method that is extremely useful in improving the cutting accuracy of the edges of steel sheets and greatly reducing losses in steel sheet manufacturing, and improving its economic efficiency and quality of steel sheets. can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施するための装置の一例を示す
構成図、第2図(イ)及び(ロ)は鋼板端部の形状を演
算する方法を示す説明図、第3図は鋼板とレーザー光反
射位置の関係説明図、第4図は位相差検出器の特性線図
である。 特許出願人 山田英彦 第3図 第4図
Figure 1 is a block diagram showing an example of an apparatus for carrying out the method of the present invention, Figures 2 (a) and (b) are explanatory diagrams showing a method for calculating the shape of the edge of a steel plate, and Figure 3 is a diagram showing a method for calculating the shape of the edge of a steel plate. FIG. 4 is a characteristic diagram of the phase difference detector. Patent applicant Hidehiko Yamada Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 高周波変調されたレーザー光を回転面鏡及び放物面鏡に
よって移動する鋼板の幅方向にスキャニングさせ、該鋼
板表面からの反射光を受光装置で電気信号に変換し、反
射光の強度及びレーザー変調信号に対する反射光の位相
差が所定の範囲内にあることを判定して上記鋼板の幅方
向における部 。 公的欠落の有無を検出すると共に、上記回転面鏡の角度
からビーム位置演算装置によってレーザービームのスキ
ャニング位置をめ、更に上記鋼板の移動量検出器からの
移動量信号による情報等によって該鋼板端部の2次元的
な形状を測定することを特徴とする鋼板端部分の形状測
定方法。
[Claims] A high-frequency modulated laser beam is scanned in the width direction of a moving steel plate by a rotating mirror and a parabolic mirror, and the reflected light from the surface of the steel plate is converted into an electrical signal by a light receiving device, and the reflected light is reflected. A section in the width direction of the steel plate by determining that the intensity of the light and the phase difference of the reflected light with respect to the laser modulation signal are within a predetermined range. In addition to detecting the presence or absence of formal defects, the scanning position of the laser beam is determined from the angle of the rotating surface mirror by the beam position calculating device, and the edge of the steel plate is determined based on information from the movement amount signal from the steel plate movement amount detector. A method for measuring the shape of an end portion of a steel plate, the method comprising measuring the two-dimensional shape of the end portion of a steel plate.
JP58176988A 1983-09-27 1983-09-27 Measuring method of shape of steel plate end part Granted JPS6069503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58176988A JPS6069503A (en) 1983-09-27 1983-09-27 Measuring method of shape of steel plate end part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58176988A JPS6069503A (en) 1983-09-27 1983-09-27 Measuring method of shape of steel plate end part

Publications (2)

Publication Number Publication Date
JPS6069503A true JPS6069503A (en) 1985-04-20
JPH0231802B2 JPH0231802B2 (en) 1990-07-17

Family

ID=16023218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58176988A Granted JPS6069503A (en) 1983-09-27 1983-09-27 Measuring method of shape of steel plate end part

Country Status (1)

Country Link
JP (1) JPS6069503A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5900686A (en) * 1902-09-09 1999-05-04 Seiko Epson Corporation Electric motor vehicle
WO2012140285A1 (en) * 2011-04-15 2012-10-18 Albiasa Collector Trough, S.L. Method for checking the geometry of cylinder-parabolic solar collectors and system for carrying out said method
CN114260316A (en) * 2020-09-16 2022-04-01 宝山钢铁股份有限公司 Driven roller shape of second intermediate roller of sendzimir mill

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59206706A (en) * 1983-05-11 1984-11-22 Yoji Wada Object measuring device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59206706A (en) * 1983-05-11 1984-11-22 Yoji Wada Object measuring device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5900686A (en) * 1902-09-09 1999-05-04 Seiko Epson Corporation Electric motor vehicle
WO2012140285A1 (en) * 2011-04-15 2012-10-18 Albiasa Collector Trough, S.L. Method for checking the geometry of cylinder-parabolic solar collectors and system for carrying out said method
CN114260316A (en) * 2020-09-16 2022-04-01 宝山钢铁股份有限公司 Driven roller shape of second intermediate roller of sendzimir mill
CN114260316B (en) * 2020-09-16 2024-04-05 宝山钢铁股份有限公司 Driven roller of second intermediate roller of Sendzimir mill

Also Published As

Publication number Publication date
JPH0231802B2 (en) 1990-07-17

Similar Documents

Publication Publication Date Title
US4650330A (en) Surface condition measurement apparatus
US4240745A (en) Imagery with constant range lines
US5737085A (en) Precision optical displacement measurement system
US4897536A (en) Optical axis displacement sensor with cylindrical lens means
KR850007039A (en) Welder measuring head
US3853406A (en) Differential optical noncontacting diameter gauge utilizing a pair of linearly scanning light beams sequentially scanning the test piece
US4679941A (en) Micro-dimensional measurement apparatus
JPS6069503A (en) Measuring method of shape of steel plate end part
EP0401909A1 (en) Method of and device for determining the position of a surface
EP0211654A2 (en) Sheet coating thickness measuring apparatus
US4994990A (en) Micro-dimensional measurement apparatus
GB2146116A (en) Surface condition measurement apparatus
JP6808859B2 (en) Speedometer and article manufacturing method
RU1783300C (en) Method and device for measuring belt thickness
JPS633212A (en) Measuring instrument
Shudong Optical FM heterodyne interferometry for range and displacement measurements
SU534646A1 (en) The method of contactless control profile curvilinear surfaces of objects
SU968604A2 (en) Photoelectric device for measuring linear dimensions
JPH0136897B2 (en)
JPS6338083B2 (en)
JP2944441B2 (en) Apparatus and method for transient motion detection from scattering surfaces
JPS61191908A (en) Measurement of shape
EP0159800A2 (en) Micro-dimensional measurement apparatus
SU1597545A2 (en) Device for checking rectilinearity
JPS5826325Y2 (en) position detection device