JPS6338083B2 - - Google Patents

Info

Publication number
JPS6338083B2
JPS6338083B2 JP57134611A JP13461182A JPS6338083B2 JP S6338083 B2 JPS6338083 B2 JP S6338083B2 JP 57134611 A JP57134611 A JP 57134611A JP 13461182 A JP13461182 A JP 13461182A JP S6338083 B2 JPS6338083 B2 JP S6338083B2
Authority
JP
Japan
Prior art keywords
light
output
circuit
position sensor
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57134611A
Other languages
Japanese (ja)
Other versions
JPS5924202A (en
Inventor
Toshinori Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP13461182A priority Critical patent/JPS5924202A/en
Publication of JPS5924202A publication Critical patent/JPS5924202A/en
Publication of JPS6338083B2 publication Critical patent/JPS6338083B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Description

【発明の詳細な説明】 この発明は表面欠陥検出装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a surface defect detection device.

従来、シート状物体の欠陥検出方法として、ス
ポツトに絞つた光をスキヤニングして、その反射
光、透過光を光電変換して欠陥の検出を行う方法
が採られている。このデータを精度よく処理する
ためには、光を等速でスキヤンさせて、時間分割
でスキヤンラインのアドレス設定を行う必要があ
る。その方法として、ポリゴンで等速スキヤン
させる方法と、振動ミラーで等速スキヤンさせ
る方法とがある。のポリゴンで等速スキヤンさ
せる方法は、ポリゴンとFθレンズまたはFθミラ
ーで構成することにより、簡単に等速スキヤンが
できるため、ラインを分割させるためのアドレス
決めが容易ではあるが、光学的な精度が要求され
て複雑であり、非常に高価でもある。の振動ミ
ラーでの等速スキヤンの方法は、スキヤンスピー
ドを上げるには振動ミラーの応答性等でsinパル
ス振動になる。しかし、第1図のようにsin波で
実際に使用できるスキヤン幅lに限度がある。す
なわち、スキヤン幅の約半分の部分がある程度等
速に近いスピードであるため、検出用としてはこ
の部分を使用する。
Conventionally, as a method for detecting defects in sheet-like objects, a method has been adopted in which defects are detected by scanning focused light to a spot and photoelectrically converting the reflected light and transmitted light. In order to process this data with high precision, it is necessary to scan the light at a constant speed and set scan line addresses in a time-divided manner. There are two ways to do this: one is to scan at a constant velocity using a polygon, and the other is to scan at a constant velocity using a vibrating mirror. The method of performing constant-velocity scanning with polygons is simple by configuring polygons and Fθ lenses or Fθ mirrors, which makes it easy to determine the addresses for dividing lines, but optical accuracy is limited. are complex and very expensive. In the method of constant velocity scanning using a vibrating mirror, sin pulse vibration is used to increase the scan speed due to the responsiveness of the vibrating mirror. However, as shown in FIG. 1, there is a limit to the scan width l that can actually be used with sine waves. That is, since approximately half of the scan width has a speed close to constant velocity to some extent, this portion is used for detection.

したがつて、この発明の目的は、簡単な構成で
正確なアドレス設定ができ、振動ミラーの応答性
やスキヤンスピードの変動にも影響せず、スキヤ
ン幅全体を検出ラインとして使える表面欠陥検出
装置を提供することである。
Therefore, an object of the present invention is to provide a surface defect detection device that allows accurate address setting with a simple configuration, does not affect the response of the vibrating mirror or variations in scan speed, and can use the entire scan width as a detection line. It is to provide.

この発明の一実施例を第2図ないし第4図に示
す。すなわち、この表面欠陥検出装置は、レーザ
1と、sin波駆動されてレーザ1からの光線を一
定角度θの範囲で直線状にスキヤンする振動ミラ
ー2と、この振動ミラー2でスキヤンされた光線
を平行光とするFθレンズ3と、このFθレンズ3
から出た平行光を2分して透過光を被測定物4に
照射するハーフミラー5と、このハーフミラー5
のFθレンズ3からの反射光を検出するポジシヨ
ンセンサ6と、前記透過光の被測定物4からの反
射光をハーフミラー5による反射を介して受光す
る受光素子となるフオトダイオード7と、このフ
オトダイオード7の検出出力をポジシヨンセンサ
6からの出力で周波数補正する回路とを備えたも
のである。この回路を第3図に示す。同図におい
て、8′はA/Dコンバータ、9′はアドレス信号
発生器、12はアンプ、13は電圧可変型ハイパ
スフイルタ、10′は2値化回路、11′はデータ
処理回路、14は微分回路、15は絶対値回路で
ある。
An embodiment of this invention is shown in FIGS. 2 to 4. That is, this surface defect detection device consists of a laser 1, a vibrating mirror 2 that is driven by a sine wave and linearly scans the beam from the laser 1 within a certain angle θ, and a vibrating mirror 2 that scans the beam scanned by the vibrating mirror 2. Fθ lens 3 for parallel light and this Fθ lens 3
a half mirror 5 that divides the parallel light emitted from the
a position sensor 6 that detects the reflected light from the Fθ lens 3; a photodiode 7 that serves as a light receiving element that receives the reflected light from the object to be measured 4 of the transmitted light through reflection by the half mirror 5; A circuit for correcting the frequency of the detection output of the photodiode 7 using the output from the position sensor 6 is provided. This circuit is shown in FIG. In the figure, 8' is an A/D converter, 9' is an address signal generator, 12 is an amplifier, 13 is a voltage variable high-pass filter, 10' is a binarization circuit, 11' is a data processing circuit, and 14 is a differential circuit. The circuit 15 is an absolute value circuit.

動作につき説明する。等速ではなくsin波でス
キヤニングされてくるスポツト光はポジシヨンセ
ンサ6でその光を受光することにより、スキヤニ
ングの場所に対応した電圧を出力する。この電圧
をA/D変換することにより、例えば8ビツトの
A/Dコンバータであれば、0から255段階で分
割される。そしてフオトダイオード7からの信号
を2値化して処理する。その代表的な検出信号
に、このアドレス信号を提供することにより、全
スキヤン幅に対して均等な距離で8ビツトの場
合、256分割される。アドレス分割比はA/Dコ
ンバータ8′のビツト数によつて決定される。フ
オトダイオード7の出力は、2値化する前にスキ
ヤン速度で補正する。すなわち、ポジシヨンセン
サ6からの出力をA/D変換してアドレス信号と
して使用するものと、微分してVpsinθのポジシ
ヨンセンサ出力信号をVpcosθの速度に変換する
ものとに分ける。そして、スキヤンスピードに変
換された電圧を絶対値回路15に入れ、第4図B
に示すような信号に変換する。被測定物4から反
射してくる光信号をフオトダイオード7で電気信
号に変換してアンプ12で増幅する。増幅した信
号を外部電圧によるカツトオフ周波数が変わるハ
イパスフイルタ13に送る。ハイパスフイルタ1
3では第4図Bの信号を受けてカツトオフ周波数
が第4図Cで示すように、fcminからfcmaxまで
可変する。フオトダイオード7からの出力信号
で、同一欠陥であつても欠陥の発生の場所によ
り、スキヤンスピードの影響で変化する生信号の
周波数成分が変わるのに対して、ハイパスフイル
タ13の定数をスキヤンスピードに合わせて変え
ることにより、場所による検出の差はなくなる。
このように、振動ミラー2の欠点である応答遅れ
や、sin波スキヤンのための位置によるスピード
のばらつきなどが、ポジシヨンセンサ6を用いて
正確なアドレス設定を行うとともに、スキヤン速
度に応じてフオトダイオード7の出力を補正する
ことより、問題とならなくなつた。このように、
簡単な構成で正確なアドレス設定ができ、かつ振
動ミラー2の応答性、スキヤンスピードの変動に
も影響せず、またスキヤン幅全部を検出用ライン
として使うことができる。
The operation will be explained. The spot light that is scanned not at a constant velocity but at a sine wave is received by the position sensor 6 and outputs a voltage corresponding to the scanning location. By A/D converting this voltage, for example, in the case of an 8-bit A/D converter, the voltage is divided into 255 steps from 0. The signal from the photodiode 7 is then binarized and processed. By providing this address signal to its representative detection signal, it is divided by 256 in the case of 8 bits at equal distances over the entire scan width. The address division ratio is determined by the number of bits of the A/D converter 8'. The output of the photodiode 7 is corrected by the scan speed before being binarized. That is, the output from the position sensor 6 is A/D converted and used as an address signal, and the output from the position sensor 6 is differentiated to convert the position sensor output signal of V p sin θ to a velocity of V p cos θ. Then, the voltage converted to the scan speed is inputted into the absolute value circuit 15, and the
Convert to the signal shown in . An optical signal reflected from the object to be measured 4 is converted into an electrical signal by a photodiode 7 and amplified by an amplifier 12. The amplified signal is sent to a high-pass filter 13 whose cutoff frequency is changed by an external voltage. high pass filter 1
3, in response to the signal shown in FIG. 4B, the cutoff frequency varies from f c min to f c max as shown in FIG. 4 c. In the output signal from the photodiode 7, the frequency component of the raw signal varies depending on the scan speed even if the defect is the same, depending on the location of the defect, whereas the constant of the high-pass filter 13 is set to the scan speed. By changing them together, there will be no difference in detection depending on location.
In this way, the shortcomings of the vibrating mirror 2, such as response delay and speed variations due to position due to sine wave scanning, can be avoided by using the position sensor 6 to set accurate addresses and by adjusting the photo speed according to the scanning speed. By correcting the output of diode 7, this became no longer a problem. in this way,
Accurate address setting is possible with a simple configuration, and the response of the vibrating mirror 2 and fluctuations in scan speed are not affected, and the entire scan width can be used as a detection line.

以上のように、この発明の表面欠陥検出装置
は、振動ミラーと平行光線を得るレンズとによる
光スキヤニング手段を作り、ポジシヨンセンサを
用いてその微分した速度信号により受光素子の出
力を補正するようにしたものであるから、簡単な
構成で正確なアドレス設定ができ、振動ミラーの
応答性やスキヤンスピードの変動に影響せず、し
かもスキヤン幅全部を検出ラインとして使えると
いう効果がある。
As described above, the surface defect detection device of the present invention creates a light scanning means using a vibrating mirror and a lens for obtaining parallel light beams, and uses a position sensor to correct the output of the light receiving element using the differentiated velocity signal. This has the advantage of allowing accurate address setting with a simple configuration, without affecting the response of the vibrating mirror or fluctuations in scan speed, and allowing the entire scan width to be used as a detection line.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のsin波駆動の問題を示す説明図、
第2図はこの発明の一実施例の斜視図、第3図は
その回路ブロツク図、第4図は同じくその動作説
明図である。 1…レーザ、2…振動ミラー、3…Fθレンズ、
4…被測定物、6…ポジシヨンセンサ、7…フオ
トダイオード(受光素子)、8…A/Dコンバー
タ、9…アドレス信号発生器、10…2値化回
路、11,11′…データ処理回路。
Figure 1 is an explanatory diagram showing the problem of conventional sine wave drive.
FIG. 2 is a perspective view of an embodiment of the present invention, FIG. 3 is a circuit block diagram thereof, and FIG. 4 is an explanatory diagram of its operation. 1...Laser, 2...Vibration mirror, 3...Fθ lens,
4...Object to be measured, 6...Position sensor, 7...Photodiode (light receiving element), 8...A/D converter, 9...Address signal generator, 10...Binarization circuit, 11, 11'...Data processing circuit .

Claims (1)

【特許請求の範囲】[Claims] 1 レーザと、sin波駆動されて前記レーザから
の光線を一定角度範囲で直線状にスキヤンする振
動ミラーと、この振動ミラーでスキヤンされた光
線を平行光とするレンズと、このレンズから出た
平行光を2分して透過光を被測定物に照射するハ
ーフミラーと、このハーフミラーの前記レンズか
らの反射板を検出するポジシヨンセンサと、前記
透過光の被測定物からの反射光を前記ハーフミラ
ーによる反射を介して受光する受光素子と、前記
ポジシヨンセンサの出力からA/D変換回路を介
してアドレス信号を得るアドレス信号発生回路
と、前記受光素子の出力が入力され制御電圧によ
りカツトオフ周波数が変わる電圧可変型のハイパ
スフイルタと、このハイパスフイルタの出力を2
値化する2値化回路と、前記ポジシヨンセンサの
出力を微分して速度信号とする微分回路と、この
速度信号の絶対値を得て前記ハイパスフイルタの
制御電圧とする絶対値回路と、前記2値化信号と
前記アドレス信号とから被測定物の欠陥の存在と
位置を判定するデータ処理回路とを備えた表面欠
陥検出装置。
1. A laser, a vibrating mirror that is driven by a sine wave and linearly scans the light beam from the laser over a certain angle range, a lens that converts the beam scanned by the vibrating mirror into parallel light, and a parallel beam emitted from this lens. a half mirror that divides the light into two and irradiates the transmitted light onto the measured object; a position sensor that detects the reflection plate from the lens of the half mirror; and a position sensor that detects the reflection plate of the transmitted light from the measured object. a light receiving element that receives light through reflection by a half mirror; an address signal generation circuit that obtains an address signal from the output of the position sensor via an A/D conversion circuit; the output of the light receiving element is inputted and cut off by a control voltage; A variable voltage high pass filter that changes frequency and the output of this high pass filter are
a binarization circuit that converts the output into a value; a differentiation circuit that differentiates the output of the position sensor to obtain a speed signal; an absolute value circuit that obtains the absolute value of this speed signal and uses it as a control voltage for the high-pass filter; A surface defect detection device comprising a data processing circuit that determines the presence and position of a defect on an object to be measured from a binary signal and the address signal.
JP13461182A 1982-07-30 1982-07-30 Surface defect detector Granted JPS5924202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13461182A JPS5924202A (en) 1982-07-30 1982-07-30 Surface defect detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13461182A JPS5924202A (en) 1982-07-30 1982-07-30 Surface defect detector

Publications (2)

Publication Number Publication Date
JPS5924202A JPS5924202A (en) 1984-02-07
JPS6338083B2 true JPS6338083B2 (en) 1988-07-28

Family

ID=15132437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13461182A Granted JPS5924202A (en) 1982-07-30 1982-07-30 Surface defect detector

Country Status (1)

Country Link
JP (1) JPS5924202A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62137504A (en) * 1985-12-10 1987-06-20 Sumitomo Special Metals Co Ltd Width measuring apparatus and surface defect detector for partially clad material
JPS63177040A (en) * 1987-01-19 1988-07-21 Nagoya Denki Kogyo Kk Apparatus for automatically inspecting mounted printed circuit board
JPH0641164Y2 (en) * 1987-01-19 1994-10-26 名古屋電機工業株式会社 Mounted printed circuit board automatic inspection device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4974815A (en) * 1972-11-20 1974-07-19
JPS54124784A (en) * 1978-03-20 1979-09-27 Ricoh Co Ltd Laser flaw inspector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4974815A (en) * 1972-11-20 1974-07-19
JPS54124784A (en) * 1978-03-20 1979-09-27 Ricoh Co Ltd Laser flaw inspector

Also Published As

Publication number Publication date
JPS5924202A (en) 1984-02-07

Similar Documents

Publication Publication Date Title
JP2546885B2 (en) Method and apparatus for determining surface shape information
US4983827A (en) Linescan apparatus for detecting salient pattern of a product
EP0869384A1 (en) Mirror angle detector and detection method
JPS6338083B2 (en)
US3506839A (en) Contactless probe system
JPH04279846A (en) Optical inspection instrument
JPH05264719A (en) Laser rader apparatus
JPH0434503Y2 (en)
CN102346384A (en) Method for regulating optimum focal plane for silicon chip and exposure device thereof
JPH05215528A (en) Three-dimensional shape measuring apparatus
JP2540193B2 (en) Non-contact displacement meter
JPS6048015B2 (en) Light beam scanning device
JPH02157613A (en) Distance measuring instrument
JPS6361152A (en) Laser beam inspecting method
JPS54133395A (en) Detecting method and apparatus for carck on substrate
JPS6069503A (en) Measuring method of shape of steel plate end part
JPH0129401B2 (en)
JPS61191908A (en) Measurement of shape
JPS5826325Y2 (en) position detection device
JPH0642930A (en) Method and apparatus for measuring height of lead
JPH0349522U (en)
JPS62259191A (en) Scan pattern reader
JPH08201036A (en) Scanning-type laser displacement meter
JPS60149018A (en) Scanning device of laser beam
JPH0658723A (en) Scanning type laser displacement meter