JPH0129401B2 - - Google Patents

Info

Publication number
JPH0129401B2
JPH0129401B2 JP11972383A JP11972383A JPH0129401B2 JP H0129401 B2 JPH0129401 B2 JP H0129401B2 JP 11972383 A JP11972383 A JP 11972383A JP 11972383 A JP11972383 A JP 11972383A JP H0129401 B2 JPH0129401 B2 JP H0129401B2
Authority
JP
Japan
Prior art keywords
sample
microscope
peak value
value
interference fringe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11972383A
Other languages
Japanese (ja)
Other versions
JPS6011106A (en
Inventor
Kenichi Matsumura
Norio Okuya
Toshitoki Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11972383A priority Critical patent/JPS6011106A/en
Publication of JPS6011106A publication Critical patent/JPS6011106A/en
Publication of JPH0129401B2 publication Critical patent/JPH0129401B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は物体の凸凹形状を干渉縞を使つて検出
する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a device for detecting the uneven shape of an object using interference fringes.

従来例の構成とその問題点 従来の形状認識装置の具体構成を第1図に示
す。1は試料で表面は円筒形状をしている、2は
試料を照明する光源、3は参照光ミラー、4はビ
ームスプリツターであり、光源2から出た光はビ
ームスプリツター4により2光束に分けられ、試
料1表面で反射した光と参照光ミラー3で反射し
た光が干渉し干渉縞を発生する。5は対物レン
ズ、6は試料1を走査するガルバノミラー、7は
試料1の実像面上に設けられたスリツト、8はス
リツト7を通過する光を検出する光電子増倍管で
ある。9は特定の周波数の光のみを通すフイルタ
ーである。ガルバノミラー6に試料1を走査した
時に光電子増倍管8により検出される干渉縞の波
形は第2図に示すようになる。第2図に示す波形
の干渉縞の1次の波、2次の波……をそれぞれ認
識すれば照明の波長とから試料の表面形状を知る
ことができるが、データ数が膨大になり信号処理
が複雑なうえに、表面形状が複雑な試料の表面凹
凸形状を認識することは困難である。
Configuration of a conventional example and its problems The specific configuration of a conventional shape recognition device is shown in FIG. 1 is a sample with a cylindrical surface; 2 is a light source that illuminates the sample; 3 is a reference light mirror; 4 is a beam splitter; the light emitted from light source 2 is split into two beams by beam splitter 4. The light reflected on the surface of the sample 1 and the light reflected on the reference beam mirror 3 interfere to generate interference fringes. 5 is an objective lens, 6 is a galvanometer mirror that scans the sample 1, 7 is a slit provided on the real image plane of the sample 1, and 8 is a photomultiplier tube that detects light passing through the slit 7. 9 is a filter that passes only light of a specific frequency. The waveform of interference fringes detected by the photomultiplier tube 8 when the sample 1 is scanned by the galvanometer mirror 6 is as shown in FIG. If the first and second waves of the interference fringes shown in Figure 2 are recognized, the surface shape of the sample can be determined from the wavelength of the illumination, but the amount of data becomes enormous and signal processing is required. In addition, it is difficult to recognize the surface unevenness of a sample with a complex surface shape.

発明の目的 本発明は上記欠点に鑑み、簡単な信号処理で試
料の凹凸形状を検出する形状検出装置を提供する
ことを目的とする。
OBJECTS OF THE INVENTION In view of the above drawbacks, an object of the present invention is to provide a shape detection device that detects the uneven shape of a sample by simple signal processing.

発明の構成 干渉縞発生手段を有する顕微鏡と、前記顕微鏡
の実像面近傍に設けた撮像装置あるいは光電変換
装置と、前記撮像装置あるいは光電変換装置より
得られる干渉縞濃淡レベルを判定する判定手段
と、試料と前記顕微鏡との相対位置を検出する検
出手段よりなり、前記試料表面の複数箇所で干渉
縞濃淡レベル値を判定し、前記判定手段の信号に
基づき各々の箇所での前記試料と前記顕微鏡との
相対位置を検出することにより簡単な信号処理で
試料の凹凸形状を検出することができる。
Structure of the Invention A microscope having an interference fringe generating means, an imaging device or a photoelectric conversion device provided in the vicinity of a real image plane of the microscope, and a determining means for determining the density level of the interference fringe obtained from the imaging device or the photoelectric conversion device. It comprises a detection means for detecting the relative position of the sample and the microscope, and determines interference fringe density level values at a plurality of locations on the surface of the sample, and detects the relationship between the sample and the microscope at each location based on the signal from the determination means. By detecting the relative position of the sample, the uneven shape of the sample can be detected with simple signal processing.

実施例の説明 以下本発明の第1の実施例について図面を参照
にしながら説明する。第3図は本発明の第1の実
施例を示す正面図である。第3図において21は
試料、22は顕微鏡であり、顕微鏡22は光源2
3、ビームスプリツター24、参照光ミラー2
5、対物レンズ26、ガルバノミラー27、スリ
ツト28、光電子増倍管29で構成されている。
ビームスプリツター22は光源23から出た光を
2光束に分け、試料21で反射した光と、参照光
ミラー25で反射した光により干渉縞が発生す
る。スリツト28は試料21の実像面上に設けら
れ、光電子増倍管29はスリツト28の後方に設
けられており、スリツト28を通過する光を電気
信号に変換する。ガルバノミラー27は与える電
圧値によつて複数箇所で静止し、試料21X方向
の干渉縞検出位置を決定する。30は顕微鏡22
を載置し、試料21Y方向に移動するテーブルで
ある。31はモータで、出力軸には送りねじ32
が連結され、顕微鏡22を試料21Y方向に移動
させる。モータ31はスライドテーブル(図示せ
ず)に載つており、送りねじ32とともにY方向
に移動する。33は顕微鏡の位置を検出する位置
検出センサーで、位置検出センサー33の位置検
出信号により、試料21と顕微鏡22の相対位置
変化を知ることにより、試料21の凹凸を知るこ
とができる。34は制御装置であり、干渉縞検出
信号、位置検出信号が入力され、ガルバノ駆動信
号が出力されている。
DESCRIPTION OF EMBODIMENTS A first embodiment of the present invention will be described below with reference to the drawings. FIG. 3 is a front view showing the first embodiment of the present invention. In FIG. 3, 21 is a sample, 22 is a microscope, and the microscope 22 is a light source 2.
3. Beam splitter 24, reference beam mirror 2
5, an objective lens 26, a galvanometer mirror 27, a slit 28, and a photomultiplier tube 29.
The beam splitter 22 splits the light emitted from the light source 23 into two beams, and the light reflected by the sample 21 and the light reflected by the reference beam mirror 25 generate interference fringes. The slit 28 is provided on the real image plane of the sample 21, and the photomultiplier tube 29 is provided behind the slit 28 and converts the light passing through the slit 28 into an electrical signal. The galvanometer mirror 27 comes to rest at a plurality of locations depending on the applied voltage value, and determines the interference fringe detection position in the sample 21X direction. 30 is a microscope 22
This is a table on which the sample 21 is placed and moves in the Y direction. 31 is a motor, and the output shaft has a feed screw 32.
are connected to move the microscope 22 in the direction of the sample 21Y. The motor 31 is mounted on a slide table (not shown) and moves in the Y direction together with the feed screw 32. Reference numeral 33 denotes a position detection sensor that detects the position of the microscope. By detecting a change in the relative position of the sample 21 and the microscope 22 based on a position detection signal from the position detection sensor 33, it is possible to know the unevenness of the sample 21. 34 is a control device to which an interference fringe detection signal and a position detection signal are input, and a galvano drive signal is output.

制御装置34の構成の一例を第4図によつて説
明する。35は第5図に示す干渉縞1周期の濃淡
レベルのピーク値P1,P2,P3を検出するピーク
値検出回路である。ピーク値検出回路35からは
保持回路36と比較回路37に濃淡レベルのピー
ク値を出力している。保持回路36はピーク値検
出回路35から入力される濃淡レベルのピーク値
を保持し、一周期前のピーク値を比較回路37に
出力する。比較回路37はピーク値検出回路35
から入力される濃淡レベルピーク値と保持回路3
6より入力される一周期前の濃淡レベルピーク値
とを比較する。38は比較回路37にピーク値検
出回路35から入力される濃淡レベルのピーク値
が保持回路36から入力される濃淡レベルのピー
ク値より大きくなる方向にモータ31の回転方向
を制御するモータ制御回路であり、39はモータ
31を駆動するモータ駆動回路である。40はガ
ルバノミラー27を複数箇所に静止させるガルバ
ノ駆動回路である。41はサンプリング回路であ
り、一周期前の濃淡レベルのピーク値が最大とな
つた時に比較回路37からサンプリング信号が入
力され、その時ガルバノ駆動回路40からガルバ
ノ駆動信号を読みとり、位置検出センサー33か
ら位置検出信号を読み取り、両者の値から試料2
1の凹凸形状を検出する。
An example of the configuration of the control device 34 will be explained with reference to FIG. Reference numeral 35 denotes a peak value detection circuit for detecting the peak values P 1 , P 2 , and P 3 of the density levels of one cycle of the interference fringes shown in FIG. The peak value detection circuit 35 outputs the peak value of the gray level to the holding circuit 36 and the comparison circuit 37. The holding circuit 36 holds the peak value of the gray level inputted from the peak value detection circuit 35, and outputs the peak value of one cycle before to the comparison circuit 37. The comparison circuit 37 is the peak value detection circuit 35
The gray level peak value input from the holding circuit 3
6 is compared with the gray level peak value input one cycle before. Reference numeral 38 denotes a motor control circuit that controls the rotational direction of the motor 31 in a direction such that the peak value of the gray level input from the peak value detection circuit 35 to the comparison circuit 37 is greater than the peak value of the gray level input from the holding circuit 36. 39 is a motor drive circuit that drives the motor 31. 40 is a galvano drive circuit that makes the galvano mirror 27 stand still at a plurality of locations. Reference numeral 41 denotes a sampling circuit, which receives a sampling signal from the comparator circuit 37 when the peak value of the gray level one cycle before reaches its maximum, reads the galvano drive signal from the galvano drive circuit 40 at that time, and detects the position from the position detection sensor 33. Read the detection signal and select sample 2 from both values.
Detect the uneven shape of 1.

次に第3図、第4図のように構成された凸凹形
状検出装置において、第6図を参照にしながら試
料21表面のY方向の位置検出原理について説明
する。
Next, the principle of detecting the position of the surface of the sample 21 in the Y direction in the uneven shape detection apparatus configured as shown in FIGS. 3 and 4 will be explained with reference to FIG.

第3図に示す光源23がハロゲン電球のような
インコヒーレント光の場合には可干渉範囲はレー
ザー光のようなコヒーレント光に比べせまく、干
渉縞の濃淡レベルは光源23から試料21までの
距離と、光源23から参照光ミラー25までの距
離が等しい時、すなわち光源を同時に出た光が干
渉する時に最大となる。よつて試料21と顕微鏡
22の相対距離を変化させると、第6図aに示す
ように干渉縞は除々に鮮明になり、光源23から
参照光ミラー25までの距離と、光源23から試
料21までの距離が等しくなる位置Bで干渉縞は
最も鮮明となり、位置Bを通過すると干渉縞は
除々に不鮮明となつてゆく。この干渉縞の濃端レ
ベルの変化を、スリツト28を通過する光量の変
化により光電子増倍管29で検出するとその検出
信号は第6図bに示すような波形となる。よつて
この干渉縞の濃淡レベルが最大となる時の試料2
1と顕微鏡22との相対距離を試料21X方向の
複数箇所について検出すれば試料21のX方向の
凸凹形状を知ることができる。
When the light source 23 shown in FIG. 3 is an incoherent light such as a halogen light bulb, the coherent range is narrower than that of a coherent light such as a laser beam, and the density level of the interference fringes varies depending on the distance from the light source 23 to the sample 21. , becomes maximum when the distances from the light source 23 to the reference beam mirror 25 are equal, that is, when the lights emitted from the light sources at the same time interfere. Therefore, when the relative distance between the sample 21 and the microscope 22 is changed, the interference fringes become gradually clearer as shown in FIG. The interference fringes are the clearest at position B, where the distances are equal, and after passing through position B, the interference fringes gradually become unclear. When a change in the dark edge level of this interference fringe is detected by a photomultiplier tube 29 based on a change in the amount of light passing through the slit 28, the detection signal has a waveform as shown in FIG. 6b. Therefore, sample 2 when the density level of this interference fringe is maximum
1 and the microscope 22 at a plurality of locations in the X direction of the sample 21, the uneven shape of the sample 21 in the X direction can be known.

次に本実施例の動作について説明する。 Next, the operation of this embodiment will be explained.

ガルバノミラー27にはガルバノ駆動信号が与
えられ、所定の角度だけ振れて静止しており、モ
ータ制御回路38はモータ駆動回路39を介して
モータ31を一方向に駆動する。この時試料21
を反射する光と参照光ミラー25を反射する光に
よつて生ずる干渉縞の濃淡レベルを光電子増倍管
29により光電変換し、ピーク値検出回路35で
干渉縞一周期の濃淡レベルピーク値を検出する。
ピーク値検出回路35から濃淡レベルピーク値が
保持回路36と比較回路37に出力される。保持
回路36からは比較回路37に一周期前の濃淡レ
ベルのピーク値が出力され、比較回路37で両者
の値を比較する。保持回路36の濃淡レベルピー
ク値は比較回路37での比較が終了すれば更新さ
れる。比較回路37にピーク値検出回路35より
入力される濃淡レベルピーク値が保持回路36よ
り入力される干渉縞一周期前の濃淡レベルピーク
値より大きい時にはモータ制御回路38はモータ
31を同方向に回転させ続ける。次に保持回路3
6より入力される干渉縞一周期前のピーク値の方
が、ピーク値検出回路35より入力される濃淡レ
ベルピーク値より大きくなつた時、すなわち保持
回路36に干渉縞濃淡レベルピーク値の最大値が
保持されている時、比較回路36はサンプリング
回路41にサンプリング信号を出力する。サンプ
リング回路41にサンプリング信号が入力される
と、ガルバノ駆動回路40からガルバノ駆動信号
を読み取り試料21のX方向の位置を検出し、さ
らに位置検出センサー33の位置検出信号を読み
取り、試料21表面のY方向の顕微鏡22との相
対位置を検出する。以上の動作をガルバノミラー
27へ与えるガルバノ駆動信号すなわちガルバノ
の駆動電圧を変えることにより試料21X方向の
複数箇所で繰り返し、試料21表面の凹凸形状を
検出する。
A galvanometer drive signal is applied to the galvanometer mirror 27, which swings by a predetermined angle and remains stationary, and a motor control circuit 38 drives the motor 31 in one direction via a motor drive circuit 39. At this time, sample 21
A photomultiplier tube 29 photoelectrically converts the density level of interference fringes caused by the light reflected from the reference beam mirror 25 and the light reflected by the reference beam mirror 25, and the peak value of the density level of one period of the interference fringe is detected by a peak value detection circuit 35. do.
The peak value detection circuit 35 outputs the gray level peak value to the holding circuit 36 and the comparison circuit 37. The holding circuit 36 outputs the peak value of the gray level one cycle before to the comparison circuit 37, and the comparison circuit 37 compares the two values. The gray level peak value of the holding circuit 36 is updated when the comparison circuit 37 completes the comparison. When the gray level peak value input from the peak value detection circuit 35 to the comparison circuit 37 is larger than the gray level peak value input from the holding circuit 36 one period before the interference fringe, the motor control circuit 38 rotates the motor 31 in the same direction. keep letting it happen. Next, holding circuit 3
When the peak value of the interference fringe one cycle ago inputted from 6 becomes larger than the gray level peak value inputted from the peak value detection circuit 35, that is, when the peak value of the interference fringe gray level peak value inputted from the holding circuit 36 becomes the maximum value of the interference fringe gray level peak value. is held, the comparator circuit 36 outputs a sampling signal to the sampling circuit 41. When the sampling signal is input to the sampling circuit 41, the galvano drive signal is read from the galvano drive circuit 40, the position of the sample 21 in the X direction is detected, and the position detection signal of the position detection sensor 33 is read, and the Y The relative position of the direction with respect to the microscope 22 is detected. The above operation is repeated at a plurality of locations in the direction of the sample 21X by changing the galvano drive signal applied to the galvanometer mirror 27, that is, the galvano drive voltage, to detect the uneven shape on the surface of the sample 21.

以上のように干渉縞発生手段を有する顕微鏡
と、光電変換器と、干渉縞の濃淡レベルピーク値
検出回路と、濃淡レベルピーク値を保持し一周期
前のピーク値を出力する保持回路と、ピーク値検
出回路の出力と保持回路の出力を比較する比較回
路と、試料と顕微鏡との相互位置を検出する位置
検出手段を設け、干渉縞濃淡レベル周期毎のピー
ク値の最大値近傍での試料と顕微鏡と相対位置を
試料表面の複数箇所で検出することにより、簡単
な信号処理で試料の凹凸形状を精度良く知ること
ができる。
As described above, there is provided a microscope having an interference fringe generating means, a photoelectric converter, an interference fringe gray level peak value detection circuit, a holding circuit that holds the gray level peak value and outputs the peak value of one cycle before, and the peak value of the interference fringe. A comparison circuit that compares the output of the value detection circuit and the output of the holding circuit and a position detection means that detects the mutual position of the sample and the microscope are provided, and the sample and the sample near the maximum value of the peak value for each interference fringe density level cycle are provided. By detecting the position relative to the microscope at multiple locations on the sample surface, the uneven shape of the sample can be determined with high accuracy through simple signal processing.

以下本発明第2の実施例について説明する。 A second embodiment of the present invention will be described below.

第7図は第2の実施例における制御装置の一例
を示すブロツク図である。制御装置以外の構成は
第1の実施例第3図と同様である。第7図におい
て42は干渉縞濃淡レベルを検出する検出回路で
あり、43は検出回路42の出力値とあらかじめ
定められた干渉縞濃淡レベルの所定値とを比較す
る比較回路である。44はモータ制御回路であ
り、45はモータ駆動回路である。47はサンプ
リング回路であり、検出回路42の出力値が干渉
縞濃淡レベルの所定値以上になつた時、比較回路
43よりサンプリング信号が入力され、ガルバノ
駆動回路46よりガルバノ駆動信号を読みとり、
位置検出センサー33から位置検出信号を読みと
り、試料21の形状信号を出力する。
FIG. 7 is a block diagram showing an example of a control device in the second embodiment. The configuration other than the control device is the same as that of the first embodiment shown in FIG. 3. In FIG. 7, 42 is a detection circuit that detects the interference fringe density level, and 43 is a comparison circuit that compares the output value of the detection circuit 42 with a predetermined value of the interference fringe density level. 44 is a motor control circuit, and 45 is a motor drive circuit. 47 is a sampling circuit, and when the output value of the detection circuit 42 exceeds a predetermined value of the interference fringe density level, a sampling signal is inputted from the comparison circuit 43, and the galvano drive signal is read from the galvano drive circuit 46.
A position detection signal is read from the position detection sensor 33 and a shape signal of the sample 21 is output.

以上のように構成された形状検出装置について
以下その動作を説明する。
The operation of the shape detection device configured as described above will be explained below.

ガルバノミラー27にはガルバノ駆動信号が与
えられ、所定の角度だけ振れて静止し、モータ制
御回路44はモータ31を一方向に回転させ、顕
微鏡22を一方向に移動する。この時干渉縞濃淡
レベルを光電子増倍管29により光電変換し、検
出回路42により検出する。比較回路43には検
出回路42より干渉縞濃淡レベルの値が入力さ
れ、あらかじめ定められた値を超えれば、比較回
路43よりサンプリング信号がサンプリング回路
47に出力される。サンプリング回路47にサン
プリング信号が入力されると、ガルバノ駆動回路
46からガルバノ駆動信号を読み取り試料21の
X方向の位置を検出し、位置検出センサー33よ
り位置検出信号を読み取り試料21のY方向の顕
微鏡との相対位置を検出する。
A galvanometer drive signal is applied to the galvanometer mirror 27, which swings by a predetermined angle and then comes to rest.The motor control circuit 44 rotates the motor 31 in one direction, and moves the microscope 22 in one direction. At this time, the interference fringe density level is photoelectrically converted by the photomultiplier tube 29 and detected by the detection circuit 42. The value of the interference fringe density level is input from the detection circuit 42 to the comparison circuit 43, and if it exceeds a predetermined value, the comparison circuit 43 outputs a sampling signal to the sampling circuit 47. When the sampling signal is input to the sampling circuit 47, the galvano drive signal is read from the galvano drive circuit 46 and the position of the sample 21 in the X direction is detected.The position detection signal is read from the position detection sensor 33 and the microscope detects the position of the sample 21 in the Y direction. Detects the relative position with.

以上の動作をガルバノミラー27に与えるガル
バノ駆動信号を変えることにより試料21X方向
の複数箇所で繰り返し、試料21表面の凹凸形状
を検出する。
The above operation is repeated at a plurality of locations in the direction of the sample 21X by changing the galvanometer drive signal applied to the galvanometer mirror 27, and the uneven shape of the surface of the sample 21 is detected.

以上のように干渉縞の濃淡レベルを検出する検
出回路と検出回路で検出した干渉縞濃淡レベルを
所定の値と比較する比較回路を設け、干渉縞濃淡
レベルが所定の値を超えた時の試料と顕微鏡の相
対位置を試料表面の複数箇所で検出することによ
り、簡単な信号処理でしかも高速に試料の凹凸形
状を知ることができる。
As described above, a detection circuit that detects the density level of interference fringes and a comparison circuit that compares the density level of interference fringes detected by the detection circuit with a predetermined value are provided, and when the density level of interference fringes exceeds a predetermined value, the sample By detecting the relative position of the sample and the microscope at multiple locations on the sample surface, the uneven shape of the sample can be determined quickly and with simple signal processing.

なお第1の実施例、第2の実施例では光電子増
倍管を干渉縞の検出手段として使用しているが、
ITVカメラを使用しても、あるいはダイオード
アレイの光電変換素子を使用しても本発明に含ま
れるものである。
Note that in the first embodiment and the second embodiment, a photomultiplier tube is used as a means for detecting interference fringes.
The present invention also includes the use of an ITV camera or the use of a diode array photoelectric conversion element.

また第1、第2の実施例において、ガルバノミ
ラーによつて試料を走査しているが、試料を移動
させても、あるいはスリツトを移動させても効果
は同じである。
Further, in the first and second embodiments, the sample is scanned by a galvanometer mirror, but the effect is the same even if the sample is moved or the slit is moved.

発明の効果 干渉縞発生手段を有する顕微鏡と、前記顕微鏡
の実像面近傍に設けた撮像装置あるいは光電変換
装置と、前記撮像装置あるいは光電変換装置より
得られる干渉縞濃淡レベル値を判定する判定手段
と、試料と前記顕微鏡との相対位置を検出する位
置検出手段よりなり、前記試料表面の複数箇所で
干渉縞濃淡レベル値を判定し、前記判定手段の信
号に基づき前記試料表面と前記顕微鏡との相対位
置を検出して試料の凹凸形状を検出することによ
り簡単な信号処理で、精度よく試料の凹凸形状を
知ることができる。
Effects of the Invention A microscope having an interference fringe generating means, an imaging device or a photoelectric conversion device provided near the real image plane of the microscope, and a determination device for determining an interference fringe density level value obtained from the imaging device or the photoelectric conversion device. , comprising position detection means for detecting the relative position of the sample and the microscope, which determines interference fringe density level values at a plurality of locations on the sample surface, and determines the relative position of the sample surface and the microscope based on the signal from the determination means. By detecting the position and detecting the uneven shape of the sample, the uneven shape of the sample can be known with high accuracy through simple signal processing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例の構成を示す説明図、第2図は
干渉縞の波形を示す説明図、第3図は本発明の形
状検出装置の実施例を示す説明図、第4図は本発
明の第1の実施例における制御装置を示すブロツ
ク図、第5図は干渉縞の濃淡レベルを示す説明
図、第6図a,bは干渉縞の濃淡レベルの変化を
示す説明図、第7図は本発明の第2の実施例の制
御装置を示すブロツク図である。 21……試料、22……顕微鏡、23……光
源、24……ビームスプリツタ、25……参照光
ミラー、26……対物レンズ、27……ガルバノ
ミラー、28……スリツト、29……光電子増倍
管。
Fig. 1 is an explanatory diagram showing the configuration of a conventional example, Fig. 2 is an explanatory diagram showing the waveform of interference fringes, Fig. 3 is an explanatory diagram showing an embodiment of the shape detection device of the present invention, and Fig. 4 is an explanatory diagram showing the embodiment of the shape detection device of the present invention. FIG. 5 is an explanatory diagram showing the shading level of interference fringes, FIGS. 6 a and b are explanatory diagrams showing changes in the shading level of interference fringes, and FIG. FIG. 2 is a block diagram showing a control device according to a second embodiment of the present invention. 21... Sample, 22... Microscope, 23... Light source, 24... Beam splitter, 25... Reference light mirror, 26... Objective lens, 27... Galvano mirror, 28... Slit, 29... Photoelectron Multiplier tube.

Claims (1)

【特許請求の範囲】 1 干渉縞発生手段を有する顕微鏡と、前記顕微
鏡の実像面近傍に設けた撮像装置あるいは光電変
換装置と、前記撮像装置あるいは光電変換装置よ
り得られる干渉縞濃淡レベル値を判定する判定手
段と、試料と前記顕微鏡との相対位置を検出する
位置検出手段よりなり、前記試料表面の複数箇所
で、干渉縞濃淡レベル値を判定し、前記判定手段
の信号に基づき前記試料と前記顕微鏡との相対位
置を検出する形状検出装置。 2 前記判定手段が、干渉縞濃淡レベル値の周期
毎のピーク値を検出し、前記濃淡レベル値の周期
毎のピーク値が最大値となる周期近傍での前記試
料と前記顕微鏡との相対位置を検出する特許請求
の範囲第1項記載の形状検出装置。 3 前記判定手段が、前記干渉縞濃淡レベル値の
周期毎のピーク値を検出するピーク値検出回路と
前記ピーク値検出回路によつて検出されたピーク
値を保持し、一周期前のピーク値を出力する保持
回路と、前記ピーク値検出回路より出力される濃
淡レベルピーク値と前記保持回路より出力される
一周期前のピークとを比較する比較回路よりな
り、前記ピーク値検出回路から出力されるピーク
値が前記保持回路から出力される一周期前のピー
ク値より小さくなつた時の前記試料と前記顕微鏡
との相対位置を検出する特許請求の範囲第1項記
載の形状検出装置。 4 前記判定手段が、前記干渉縞濃淡レベル値が
所定のレベル値以上になつた時の前記試料と前記
顕微鏡との相対位置を検出する特許請求の範囲第
1項記載の形状検出装置。 5 前記判定手段が前記干渉縞濃淡レベル値を検
出する検出回路と、前記検出回路の出力値と所定
の値とを比較する比較回路よりなり、前記干渉縞
濃淡レベル値が所定の値以上になつたことを示す
前記比較回路の信号により前記試料と前記顕微鏡
との相対位置を検出する特許請求の範囲第1項記
載の形状検出装置。
[Scope of Claims] 1. A microscope having an interference fringe generating means, an imaging device or a photoelectric conversion device provided near the real image plane of the microscope, and determining an interference fringe density level value obtained from the imaging device or the photoelectric conversion device. and a position detection means for detecting the relative positions of the sample and the microscope, and the apparatus includes a determination means for determining the relative position of the sample and the microscope, and determines interference fringe density level values at a plurality of locations on the surface of the sample, and determines the relative position of the sample and the microscope based on the signal from the determination means. A shape detection device that detects the relative position to the microscope. 2. The determination means detects the peak value of the interference fringe density level value for each cycle, and determines the relative position of the sample and the microscope in the vicinity of the cycle in which the peak value of the density level value for each cycle becomes the maximum value. A shape detection device according to claim 1, which detects a shape. 3. The determination means retains a peak value detection circuit that detects the peak value of the interference fringe density level value for each cycle and the peak value detected by the peak value detection circuit, and determines the peak value of one cycle before. It consists of a holding circuit that outputs, and a comparison circuit that compares the gray level peak value that is output from the peak value detection circuit and the peak one cycle before that is output from the holding circuit, and the peak value is output from the peak value detection circuit. 2. The shape detection device according to claim 1, which detects the relative position between the sample and the microscope when the peak value becomes smaller than the peak value output from the holding circuit one cycle before. 4. The shape detection device according to claim 1, wherein the determining means detects the relative position of the sample and the microscope when the interference fringe density level value exceeds a predetermined level value. 5. The determining means includes a detection circuit that detects the interference fringe density level value and a comparison circuit that compares the output value of the detection circuit with a predetermined value, and the determination means comprises a detection circuit that detects the interference fringe density level value and a comparison circuit that compares the output value of the detection circuit with a predetermined value, and the determination means is configured such that the interference fringe density level value exceeds the predetermined value. 2. The shape detecting device according to claim 1, wherein the relative position between the sample and the microscope is detected by a signal from the comparison circuit indicating that the sample and the microscope are different from each other.
JP11972383A 1983-06-30 1983-06-30 Shape detecting device Granted JPS6011106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11972383A JPS6011106A (en) 1983-06-30 1983-06-30 Shape detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11972383A JPS6011106A (en) 1983-06-30 1983-06-30 Shape detecting device

Publications (2)

Publication Number Publication Date
JPS6011106A JPS6011106A (en) 1985-01-21
JPH0129401B2 true JPH0129401B2 (en) 1989-06-09

Family

ID=14768523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11972383A Granted JPS6011106A (en) 1983-06-30 1983-06-30 Shape detecting device

Country Status (1)

Country Link
JP (1) JPS6011106A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4485238A (en) * 1981-12-16 1984-11-27 The Dow Chemical Company Preparation of ((6-substituted phenoxy-2-pyridinyl)-methyl)-3-(2,2-bis(trifluoromethyl)-1-ethenyl)-2,2-dimethylcyclopropane carboxylates
US4681451A (en) * 1986-02-28 1987-07-21 Polaroid Corporation Optical proximity imaging method and apparatus
JPH061167B2 (en) * 1988-05-17 1994-01-05 日本鋼管株式会社 Measuring method and device for three-dimensional curved surface shape

Also Published As

Publication number Publication date
JPS6011106A (en) 1985-01-21

Similar Documents

Publication Publication Date Title
US6172349B1 (en) Autofocusing apparatus and method for high resolution microscope system
EP0181553B1 (en) 3-d active vision sensor
KR960038659A (en) Method and system for describing surface contour of object using large equivalent wavelength
US4983827A (en) Linescan apparatus for detecting salient pattern of a product
WO1996012981A1 (en) Autofocusing apparatus and method for high resolution microscope system
JP3105702B2 (en) Optical defect inspection equipment
NL1006378C2 (en) Method and device for inspecting an object with respect to disturbances.
UST102104I4 (en) Scanning optical system adapted for linewidth measurement in semiconductor devices
JPH0129401B2 (en)
JPH059723B2 (en)
US5061860A (en) Deformation measuring method and device using comb-type photosensitive element array
JP2633718B2 (en) Shape recognition device
SU1370456A1 (en) Method of fixing position of object outlines
US6894271B2 (en) Method for operating a positioning apparatus, and scanning microscope
JP2987540B2 (en) 3D scanner
JP2626611B2 (en) Object shape measurement method
EP0235941B1 (en) Surface measurement
JPH0560529A (en) Height measuring device
US5631738A (en) Laser ranging system having reduced sensitivity to surface defects
JPS6280507A (en) Measuring method for cracking on road surface
US4039843A (en) Complementary mask image digitizer method and apparatus
US4601581A (en) Method and apparatus of determining the true edge length of a body
JP2913855B2 (en) Semiconductor device alignment error analyzer
SU792271A1 (en) Method of determining pattern contour of plated layer on dielectric or semiconductor support
SU1156102A1 (en) Device for determining the roughness of surface of cylindrical object being in translational motion