JPH05215528A - Three-dimensional shape measuring apparatus - Google Patents

Three-dimensional shape measuring apparatus

Info

Publication number
JPH05215528A
JPH05215528A JP4060879A JP6087992A JPH05215528A JP H05215528 A JPH05215528 A JP H05215528A JP 4060879 A JP4060879 A JP 4060879A JP 6087992 A JP6087992 A JP 6087992A JP H05215528 A JPH05215528 A JP H05215528A
Authority
JP
Japan
Prior art keywords
light
spot
data
shape
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4060879A
Other languages
Japanese (ja)
Inventor
Kiyoshi Inoue
潔 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INR Kenkyusho KK
Original Assignee
INR Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INR Kenkyusho KK filed Critical INR Kenkyusho KK
Priority to JP4060879A priority Critical patent/JPH05215528A/en
Publication of JPH05215528A publication Critical patent/JPH05215528A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the errors caused by the inclination of a surface to be measured and the like and to make it possible to perform precise measurement by providing an apparatus, which uses the position of a light spot that is discriminated with an optical position detector as the data and operates a three- dimensional-shape signal. CONSTITUTION:The reflected light from the slant surface of a material to be measures repeats the reflection at the other surface. The diameter of a light spot, which is cast into an optical position detector CCD 3 becomes a<b<c. The shapes of the reflected spots from the vertical surface become approximately equal. The secondary reflected light has the long elliptical shape, and the spot diameter is increased. In an operating device, a discriminating- reference value for the spot shape to be detected is inputted as the value of (a) or less. The values (b) and (c) are removed from the data. Thus, the reflected light from the slant surface is removed, and the data are processed. In this way, the three-dimensional signal is operated based on only the detected data when the light is cast on the surface to be measured approximately vertically by the discrimination of the detected signal. Therefore, the shape can be measured in extremely high accuracy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は三次元形状測定装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional shape measuring device.

【0002】[0002]

【従来の技術】従来、光学式非接触方式で三次元形状の
測定を行うのに、三角測量法の原理により反射光のスポ
ット位置をPSD等で検出して変位を測定するものが知
られている。これは図3に示す如く、測定面Sに変位
するとPSDの検出位置が変位する。PSDの検出位置
は、前をX、後をXとする。又、PSDの長さを
L、検出位置XとI出力端との距離をXとすると、I
とIの比は I/I=X/L−X…………(1) 一方、照射レンズと受光レンズ間の距離をB、受光レン
ズとPSD間の距離をF、測定面までの距離をRとする
と R=BF/X …………(2) となり、(1)式と(2)式より、R=(1+I/I
)BF/Lとなり、割算器により電流比I/I
求めると距離Rが分かる。当然のことながら、S→S
に変化するとX→Xに変化し、I/Iが減少
するからRが増加することが検出される。しかしなが
ら、このようなアナログ電流を二つの電極から検出する
PSDセンサによると、図4に示すように、測定面が傾
斜面Sであると、他の面Sに二次反射した光が同時
にPSDの2位置X,Xに入力するようになる。即
ち、PSDの両位置X,Xで反射光が検出され、こ
のときのセンサ上の検出位置はXとXの中間位置に
あるように検出処理されるようになり、真の位置X
らずれた位置検出処理が行われてしまい、測定誤差を生
ずることになる。
2. Description of the Related Art Conventionally, there has been known an optical non-contact method for measuring a three-dimensional shape, in which the spot position of reflected light is detected by PSD or the like to measure the displacement according to the principle of triangulation. There is. As shown in FIG. 3, when the measurement surface S 1 is displaced, the PSD detection position is displaced. Detected position of the PSD, before the X 1, the following and X 2. If the PSD length is L and the distance between the detection position X and the Ib output end is X, then I
The ratio of a and I b is I a / I b = X / L-X ............ (1) On the other hand, B the distance between the illumination lens and the light receiving lens, the distance between the light receiving lens and the PSD F, the measuring surface If the distance to is R, then R = BF / X (2), and from equations (1) and (2), R = (1 + I b / I
a ) BF / L, and the distance R can be found by calculating the current ratio I a / I b with a divider. Naturally, S 1 → S
When it changes to 2, it changes from X 1 to X 2, and it is detected that R increases because I a / I b decreases. However, according to the PSD sensor that detects such an analog current from the two electrodes, when the measurement surface is the inclined surface S 3 , as shown in FIG. 4, the light secondarily reflected to the other surface S 4 is simultaneously generated. Input will be made to the two positions X 3 and X 4 of the PSD. That is, the reflected light is detected at both positions X 3 and X 4 of the PSD, and the detection position on the sensor at this time is detected so as to be at the intermediate position between X 3 and X 4 , and the true position is detected. The position detection processing deviated from X 3 is performed, which causes a measurement error.

【0003】[0003]

【発明が解決しようとする課題】本発明は前記の形状測
定における測定面の傾斜等による影響を少なくし、測定
誤差を少なくした精密測定ができるようにすることを目
的とするものである。
SUMMARY OF THE INVENTION It is an object of the present invention to reduce the influence of the inclination of the measuring surface in the above-mentioned shape measurement and to enable the precision measurement with less measurement error.

【0004】[0004]

【課題を解決するための手段】本発明は、三角測量によ
る反射光を検出する光位置検出器の検出する光スポット
形状を弁別すると共に、その弁別した光スポット位置を
データとして、三次元形状信号を演算処理する演算処理
装置を設けて成ることを特徴とする。
SUMMARY OF THE INVENTION The present invention discriminates a light spot shape detected by an optical position detector that detects reflected light by triangulation, and uses the discriminated light spot position as data to generate a three-dimensional shape signal. Is provided with an arithmetic processing unit for arithmetically processing

【0005】[0005]

【作用】本発明は前記のように、三角測量による反射光
を検出する光位置検出器の検出信号の内のスポット形状
が所定範囲のものを弁別して、その弁別した光スポット
位置をデータとして三次元形状信号を演算処理する演算
処理装置を設けて成ることを特徴とするものであるか
ら、測定面の光照射点以外から二次元反射してくる反射
光が多く光スポット形状、即ち形状が変形したり、径が
大きくなるようなときは検出データから除外して処理
し、所定範囲の弁昨された光スポットの位置をデータと
して、三次元形状信号を演算処理するようにしたので、
誤差を少なく検出することができ、精密測定することが
できる。
As described above, the present invention discriminates among the detection signals of the optical position detector for detecting the reflected light by triangulation, the spot shape having a predetermined range is discriminated, and the discriminated optical spot position is used as the tertiary data. Since it is characterized by being provided with an arithmetic processing unit for arithmetically processing the original shape signal, a lot of reflected light is two-dimensionally reflected from points other than the light irradiation point on the measurement surface. Or, when the diameter becomes large, it is excluded from the detection data and processed, and the position of the light spot that has been valved in a predetermined range is treated as data, so that the three-dimensional shape signal is arithmetically processed.
A small error can be detected and precise measurement can be performed.

【0006】[0006]

【実施例】以下、図面の一実施例により本発明を説明す
る。図1において、1はレーザー発振する半導体レーザ
ー、2はレーザービームの照射レンズで、これらにより
照射系を構成する。3は反射光のスポット形状を測定で
きる光位置検出器で、例えばCCDが用いられる。4は
その受光レンズ、5はフィルタで、これらにより受光系
が構成され、照射系と受光系は所定の角度を有する2軸
光軸上に設けられ、全体が測定ヘッド6に収納される。
7は非接触で形状測定する被測定物でX,Y送りテーブ
ル8に固定される。9,10,11は各々、X軸、Y
軸、Z軸の駆動モータ、12は各軸モータを自動制御す
るNC制御装置、13は演算処理装置で、CCDの検出
データとNC制御装置12の位置情報により、三次元形
状信号を演算する。14は演算出力を記録するプリンタ
である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to an embodiment of the drawings. In FIG. 1, reference numeral 1 is a semiconductor laser that oscillates a laser, and 2 is a laser beam irradiation lens, which constitutes an irradiation system. Reference numeral 3 is an optical position detector capable of measuring the spot shape of the reflected light, for example, a CCD is used. Reference numeral 4 denotes the light receiving lens, and 5 denotes a filter, which constitutes a light receiving system. The irradiation system and the light receiving system are provided on a biaxial optical axis having a predetermined angle, and the whole is housed in the measuring head 6.
7 is an object to be measured whose shape is measured in a non-contact manner, and is fixed to an X, Y feed table 8. 9, 10, 11 are the X axis and Y, respectively
Axes and Z-axis drive motors, 12 is an NC controller for automatically controlling each axis motor, and 13 is an arithmetic processing unit, which calculates a three-dimensional shape signal based on CCD detection data and position information of the NC controller 12. Reference numeral 14 is a printer for recording the calculation output.

【0007】以上において、CCD3は多数の画素を一
定のピッチで縦横二次元に配列した光センサで、画素番
号により光の入力位置を判断することができる。半導体
レーザー1によって発振するレーザービームは照射レン
ズ2によって絞られ、被測定物7の1点に集光する。こ
の光照射により被測定物7で反射した光のうち照射軸と
異なる所要の角度に設けた受光軸方向の反射光は、レン
ズ4で集束されてCCD3に光スポットを入射する。C
CD3は前記のように二次元の面で検出することがで
き、光スポットの形状を検出することができる。
In the above, the CCD 3 is an optical sensor in which a large number of pixels are arranged two-dimensionally in the vertical and horizontal directions at a fixed pitch, and the light input position can be determined by the pixel number. The laser beam oscillated by the semiconductor laser 1 is focused by the irradiation lens 2 and focused on one point of the DUT 7. Of the light reflected by the object to be measured 7 by this light irradiation, the reflected light in the direction of the light receiving axis provided at a required angle different from the irradiation axis is focused by the lens 4 and is incident on the CCD 3 as a light spot. C
The CD3 can be detected on the two-dimensional surface as described above, and the shape of the light spot can be detected.

【0008】例えば図2に示すように、被測定面が傾斜
している場合、その傾斜面で反射した光は他の面に当っ
て反射を繰返し、その二次、三次反射した光が受光レン
ズ4で捕らえられるから、CCD検出面に入射する光ス
ポット径はa<b<cのように増大する。この場合、垂
直面から反射する光スポット形状は、ほぼ同形である
が、二次反射した光は長楕円形になり、スポット径が増
大する。そこで、演算処理装置13には検出するスポッ
ト形状の弁別基準値が入力してあり、例えばスポット径
がa以下のもののみを弁別するようにしておけば、b及
びcはデータから除外するので、傾斜面からの反射光を
除外してデータ処理することができる。このように検出
信号の弁別処理によって被測定面にほぼ垂直に光照射さ
れたときの検出データのみによって三次元形状信号が演
算されるから、極めて高精度の形状測定をすることがで
きる。
For example, as shown in FIG. 2, when the surface to be measured is tilted, the light reflected by the tilted surface hits another surface and is repeatedly reflected, and the light reflected secondarily and thirdly is received by the light receiving lens. Since it is captured by 4, the light spot diameter incident on the CCD detection surface increases as a <b <c. In this case, the shape of the light spot reflected from the vertical surface is almost the same, but the light secondary-reflected becomes an elliptical shape, and the spot diameter increases. Therefore, the discrimination reference value of the spot shape to be detected is input to the arithmetic processing device 13, and for example, if only spot diameters of a or less are discriminated, b and c are excluded from the data. Data processing can be performed by excluding the reflected light from the inclined surface. As described above, the three-dimensional shape signal is calculated only by the detection data when the surface to be measured is irradiated with light substantially perpendicularly by the discrimination processing of the detection signal, and thus the shape measurement can be performed with extremely high accuracy.

【0009】そして、CCD3で検出された信号は光ス
ポット形状の弁別が行われると共に、弁別によってOK
された信号はCCD3上の光スポット位置がデータとし
て読み込まれ、演算処理装置13によるデータ処理が行
われる。演算処理装置13は、CCD3の検出信号をA
−D変換したデジタル信号をCPUでリニア補正や平均
処理などを行い、この処理されたデータをメモリすると
共に前記NC制御装置12からの測定点のX,Y平面上
の位置情報とともに三次元形状信号を演算処理する。こ
の演算出力はプリンタ14によってプリントアウトされ
る。
Then, the signal detected by the CCD 3 is discriminated in the form of a light spot, and the discrimination is OK.
The light spot position on the CCD 3 is read as data from the generated signal, and data processing is performed by the arithmetic processing unit 13. The arithmetic processing unit 13 outputs the detection signal of the CCD 3 to A
-The D-converted digital signal is subjected to linear correction and averaging by the CPU, and the processed data is stored in the memory and the three-dimensional shape signal is stored together with the position information on the X and Y planes of the measurement points from the NC controller 12. Is calculated. The calculation output is printed out by the printer 14.

【0010】このようにレーザービームによる位置測定
は、測定点に対してほぼ垂直にレーザー照射が行われた
ときの検出信号のみが演算処理装置13によってデータ
処理されるので、傾斜面に鋭角をもってレーザー照射し
位置測定することによる二次、三次反射等の乱反射によ
る測定誤差を少なくして極めて高精度な測定が行えるよ
うになる。測定点は、X軸モータ9、Y軸モータ10の
駆動により被測定物7の測定点を順次移動走査しながら
測定を繰返し、被測定物7の測定点のZ軸方向深さが変
化するとCCD3面上の光スポット位置が変化すること
によって三角測量法の原理によりZ軸位置が検出され、
これとX軸及びY軸平面の走査位置との開連で三次元形
状信号が演算出力できるものである。又、被測定物7の
測定点の移動走査を行いながら前記測定走査を繰返し、
反射スポット形状の弁別により、それが一定の範囲内に
あるとき、即ち、測定面にほぼ垂直に光照射してその反
射波が検出されたときを有効としてデータ処理し、この
測定制御を被測定物7の全面に亘って行い、有効データ
の演算処理によって三次元形状を精密に測定することが
できる。
As described above, in the position measurement by the laser beam, since only the detection signal when the laser irradiation is performed substantially perpendicular to the measurement point is processed by the arithmetic processing unit 13, the laser beam having an acute angle on the inclined surface is used. It is possible to perform measurement with extremely high accuracy by reducing the measurement error due to irregular reflection such as secondary and tertiary reflection due to irradiation and position measurement. At the measurement point, the X-axis motor 9 and the Y-axis motor 10 are driven to sequentially move and scan the measurement point of the DUT 7, and the measurement is repeated. When the depth of the measurement point of the DUT 7 in the Z-axis direction changes, the CCD 3 By changing the light spot position on the surface, the Z-axis position is detected by the principle of triangulation,
The three-dimensional shape signal can be calculated and output by opening the line and the scanning positions on the X-axis and Y-axis planes. Further, while the moving scanning of the measuring point of the DUT 7 is performed, the measuring scanning is repeated,
By distinguishing the reflection spot shape, when it is within a certain range, that is, when the reflected wave is detected by irradiating light almost perpendicular to the measurement surface, data processing is performed as effective, and this measurement control is measured. The three-dimensional shape can be precisely measured by performing the operation processing of the effective data over the entire surface of the object 7.

【0011】尚、CCD3の光スポット形状の弁別基準
は、高精度を要する場合はこの値を小さく設定し、逆の
場合は大きく設定すればよく、弁別して除外された傾斜
面、壁面、エッジ等の部分は、一通りの走査測定後に光
照射軸方向を変えながら再度精密測定するようにすれば
全面を高精度に測定することができる。又、フィルタ5
は一定強度以上の光を通過させ、CCD3に検出させる
もので、散乱光による光スポットの外周縁をカットし
て、所定の強度範囲の光のみを検出しデータ処理するこ
とによって測定精度を向上させることができる。フィル
タにはLC膜を用いて制御し、スポット径を制御するこ
とができる。又、スポット制御には絞り機構を利用する
ことができ、絞り制御しながら検出することによって測
定精度を高めることができる。又、反射光を検出する光
位置検出器にはCCDの二次元形状の面を検出するもの
以外に、PSDのようなライン上で検出する検出器を用
いることもでき、ライン上のスポットの長さを弁別する
ことによりデータの選択をすることができる。
The discrimination criterion of the light spot shape of the CCD 3 may be set to a small value when high accuracy is required, and may be set to a large value in the opposite case. For example, an inclined surface, a wall surface or an edge excluded by discrimination. For the part (1), the entire surface can be measured with high accuracy by performing the precise measurement again while changing the direction of the light irradiation axis after one scanning measurement. Also, filter 5
Is to allow light of a certain intensity or more to pass through and to be detected by the CCD 3. The outer peripheral edge of the light spot due to scattered light is cut, and only light in a predetermined intensity range is detected and data processing is performed to improve measurement accuracy. be able to. The spot diameter can be controlled by using an LC film for the filter. Further, a diaphragm mechanism can be used for spot control, and detection accuracy can be improved by performing detection while controlling the diaphragm. Further, as the light position detector for detecting the reflected light, a detector for detecting on the line such as PSD can be used in addition to the one for detecting the two-dimensional surface of CCD, and the length of the spot on the line can be used. The data can be selected by discriminating between the two.

【0010】[0010]

【発明の効果】以上のように本発明は、三角測量による
反射光を検出する光位置検出器を設け、該光位置検出器
の検出する光スポット形状を弁別すると共に、その弁別
した光スポット位置をデータとして三次元形状信号を演
算処理する演算処理装置を設けて成るものであるから、
光位置検出器の検出する検出信号の内のスポット形状が
所定範囲のもの以外を除去することができ、即ち、測定
面の光照射点以外から二次、三次反射してくる反射光に
より光スポット形状が変形したり、径が大きくなるよう
なときは検出データから除外して処理し、所定範囲の弁
別された光スポットのみを取り出し、このスポット位置
をデータとして三次元形状信号を演算処理することがで
き、したがって被測定面の光照射点が傾斜したり、エッ
ジ部分であったりするときは検出測定のデータとして処
理しないで、測定点に照射光がほぼ垂直に当ったときの
データのみを測定することによって、測定誤差を少なく
精密測定することができる効果が得られる。
As described above, the present invention is provided with an optical position detector for detecting the reflected light by triangulation, discriminates the optical spot shape detected by the optical position detector, and discriminates the discriminated optical spot position. Is provided as an arithmetic processing device for arithmetically processing a three-dimensional shape signal,
Of the detection signals detected by the optical position detector, it is possible to remove spots other than those with a spot shape within a predetermined range, that is, light spots due to secondary and tertiary reflections from points other than the light irradiation point on the measurement surface. When the shape is deformed or the diameter becomes large, it is processed by excluding it from the detection data, and only the discriminated light spot in the predetermined range is taken out, and the three-dimensional shape signal is calculated using this spot position as data. Therefore, when the light irradiation point on the surface to be measured is tilted or at the edge part, it is not processed as detection measurement data, but only the data when the irradiation light hits the measurement point almost vertically is measured. By doing so, it is possible to obtain the effect that the measurement error can be reduced and the precise measurement can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例構成図。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】本発明の説明図。FIG. 2 is an explanatory diagram of the present invention.

【図3】従来装置の構成図。FIG. 3 is a block diagram of a conventional device.

【図4】従来の説明図。FIG. 4 is a conventional explanatory view.

【符号の説明】[Explanation of symbols]

1 レーザー発振器 2,4 レンズ 3 光位置検出器 5 フィルタ 6 ヘッド 7 被測定物 8 テーブル 9,10,11 モータ 12 NC制御装置 13 演算処理装置 1 Laser Oscillator 2, 4 Lens 3 Optical Position Detector 5 Filter 6 Head 7 Object to be Measured 8 Table 9, 10, 11 Motor 12 NC Control Device 13 Arithmetic Processing Device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 三次元形状をレーザー等の光ビーム照射
したときの反射光を三角測量法を利用して検出測定する
装置に於て、前記三角測量による反射光のスポット形状
が測定できる光位置検出器を設け、該光位置検出器の検
出する光スポット形状を弁別すると共にその弁別した光
スポット位置をデータとして、三次元形状信号を演算処
理する演算処理装置を設けて成ることを特徴とする三次
元形状測定装置。
1. An apparatus for detecting and measuring the reflected light when a three-dimensional shape is irradiated with a light beam such as a laser by using a triangulation method, and a light position where the spot shape of the reflected light by the triangulation can be measured. A detector is provided, and a light spot shape detected by the light position detector is discriminated and an arithmetic processing unit for arithmetically processing a three-dimensional shape signal is provided with the discriminated light spot position as data. Three-dimensional shape measuring device.
【請求項2】 前記請求項1に於て、光位置検出器の検
出する光スポット形状と光量を弁別すると共に、その弁
別した光スポット位置をデータとして三次元形状信号を
演算処理する演算処理装置を設けたことを特徴とする三
次元形状測定装置。
2. An arithmetic processing unit according to claim 1, which discriminates a light spot shape and a light amount detected by an optical position detector, and arithmetically processes a three-dimensional shape signal using the discriminated light spot position as data. A three-dimensional shape measuring device characterized by being provided with.
JP4060879A 1992-01-31 1992-01-31 Three-dimensional shape measuring apparatus Pending JPH05215528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4060879A JPH05215528A (en) 1992-01-31 1992-01-31 Three-dimensional shape measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4060879A JPH05215528A (en) 1992-01-31 1992-01-31 Three-dimensional shape measuring apparatus

Publications (1)

Publication Number Publication Date
JPH05215528A true JPH05215528A (en) 1993-08-24

Family

ID=13155106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4060879A Pending JPH05215528A (en) 1992-01-31 1992-01-31 Three-dimensional shape measuring apparatus

Country Status (1)

Country Link
JP (1) JPH05215528A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2418486A (en) * 2004-09-28 2006-03-29 Hewlett Packard Development Co Automatic image plane detection system and method
JP2009150862A (en) * 2007-11-30 2009-07-09 Nissan Motor Co Ltd Distance measuring device, process for measuring distance and vehicle
JP2012145445A (en) * 2011-01-12 2012-08-02 Sharp Corp Distance measurement device
JP2014202683A (en) * 2013-04-09 2014-10-27 Jfeスチール株式会社 Method and apparatus for measuring outer surface shape of electric resistance welded steel pipe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2418486A (en) * 2004-09-28 2006-03-29 Hewlett Packard Development Co Automatic image plane detection system and method
US7253427B2 (en) 2004-09-28 2007-08-07 Hewlett-Packard Development Company, L.P. Automatic object plane detection system and method
JP2009150862A (en) * 2007-11-30 2009-07-09 Nissan Motor Co Ltd Distance measuring device, process for measuring distance and vehicle
JP2012145445A (en) * 2011-01-12 2012-08-02 Sharp Corp Distance measurement device
JP2014202683A (en) * 2013-04-09 2014-10-27 Jfeスチール株式会社 Method and apparatus for measuring outer surface shape of electric resistance welded steel pipe

Similar Documents

Publication Publication Date Title
EP1062478B8 (en) Apparatus and method for optically measuring an object surface contour
US4502785A (en) Surface profiling technique
JPH05215528A (en) Three-dimensional shape measuring apparatus
JPS60117102A (en) Welding-seam profile-detecting apparatus
JP2987540B2 (en) 3D scanner
KR0131526B1 (en) Optical measuring device and its measuring method
JPS6355642B2 (en)
JPH04221705A (en) Visual inspection device
KR100240259B1 (en) Apparatus for measuring three dimension using spherical lens and laser scanner
JPH07286845A (en) Method and instrument for measuring three-dimensional shape
JPS62168007A (en) Shape recognizing device
JP3112537B2 (en) Optical three-dimensional shape measuring method and measuring device
JP3018887B2 (en) 3D shape measuring device
JP2787928B2 (en) Image signal processing method
JPH09113234A (en) Sensor for measuring two-dimensional shape
JPH02276908A (en) Three-dimensional position recognizing device
JPH03291509A (en) Shape measuring method for ultrasonic flaw detection
JPH03111707A (en) Detecting method of shape of object
JPH06347227A (en) Apparatus and method for measuring surface shape
JPH07318454A (en) Laser beam scanning accuracy measuring method and measuring device
JPH052424B2 (en)
JPS5826325Y2 (en) position detection device
JPS62804A (en) Method and instrument for measuring surface shape
JPH10281732A (en) Dimension measuring equipment
JPH10111107A (en) Method and device for measuring distance