JPH07286845A - Method and instrument for measuring three-dimensional shape - Google Patents

Method and instrument for measuring three-dimensional shape

Info

Publication number
JPH07286845A
JPH07286845A JP36137891A JP36137891A JPH07286845A JP H07286845 A JPH07286845 A JP H07286845A JP 36137891 A JP36137891 A JP 36137891A JP 36137891 A JP36137891 A JP 36137891A JP H07286845 A JPH07286845 A JP H07286845A
Authority
JP
Japan
Prior art keywords
angle
head
measurement
measured
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36137891A
Other languages
Japanese (ja)
Inventor
Kiyoshi Inoue
潔 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INR Kenkyusho KK
Original Assignee
INR Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INR Kenkyusho KK filed Critical INR Kenkyusho KK
Priority to JP36137891A priority Critical patent/JPH07286845A/en
Publication of JPH07286845A publication Critical patent/JPH07286845A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

PURPOSE:To precisely the measure three-dimensional shape by reducing the occurrence of measurement error resulting from the inclination, etc., of a surface to be measured. CONSTITUTION:The angle at a measuring point is determined from the reflected waves of an ultrasonic beam and, at the same time, the position of the measuring point is measured by using the reflected light of a light beam. At the time of scanning the angle at the measuring point with angle scanning devices 3 and 4 which scan the angle at the measuring point by moving both heads 1 and 2 on a spherical surface around the measuring point by providing an angle detecting head 1, a position measuring head 2 which measures the position of the measuring point by transmitting and receiving a laser beam, and the angle scanning devices 3 and 4, the position of the measuring point is detected and measured by means of the head 2 from the angle detected and measured results of the head 1. Position scanning devices 6, 7, and 8 which move the measuring point of the object 5 and an arithmetic processor 11 which calculates and outputs three-dimensional shape signal based on the moving position information of the measuring point from the devices 6, 7, and 8 and position detecting and measuring information of the head 2 from the angle detected and measured results at the measuring point obtained by the head 1, are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は三次元形状測定方法、及
びその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional shape measuring method and apparatus.

【0002】[0002]

【従来の技術】従来光学式非接触で、三次元形状の測定
を行うのに三角測量法により反射光のスポット位置をP
SDとかCCDの光位置検出器で検出して、変位を測定
する方式のものが知られている。
2. Description of the Related Art Conventionally, in order to measure a three-dimensional shape by an optical non-contact method, the spot position of reflected light is measured by a triangulation method.
There is known a system of measuring displacement by detecting with an optical position detector such as SD or CCD.

【0003】これは図8に示すごとく、反射面Sの変位
zにより光位置検出器上を反射スポットが移動aするの
で、このaを検出して変化zを測定することが三角法の
原理である。この場合、投光系と受光系とが2軸光学系
を形成しているために、反射面Sの傾き方向及び形状等
による影響が大きくなり、これが測定誤差として現れる
欠点がある。即ち、例えば図9に示すように、測定面が
傾斜するS面と水平面Sがある場合に、照射ビーム
が斜面SのP点に当たったとき反射光lは、
ラインセンサのa位置に検出されるが、このときP
点の反射光が水平面Sに当たって2次反射した光l
も強くセンサのa位置に検出される。したがって、こ
のときのセンサ上の光スポット位置は、aとaの中
間位置にあるように検出、処理されることになり、点a
からずれた位置を検出してしまうことになる。
As shown in FIG. 8, the displacement z of the reflection surface S causes the reflection spot to move on the optical position detector. Therefore, it is the principle of trigonometry to detect this a and measure the change z. is there. In this case, since the light projecting system and the light receiving system form a biaxial optical system, the influence of the tilt direction and shape of the reflecting surface S becomes large, and this has the drawback of appearing as a measurement error. That is, for example, as shown in FIG. 9, when the measurement surface has an inclined S 1 surface and a horizontal surface S 2 , when the irradiation beam l 0 hits the point P 1 of the slope S 1 , the reflected light l 1 is
It is detected at the a 1 position of the line sensor, but at this time P 1
Light l 2 of the reflected light at the point were secondary reflection strikes the horizontal surface S 2
Is strongly detected at the a 2 position of the sensor. Therefore, the light spot position on the sensor at this time is detected and processed so as to be at the intermediate position between a 1 and a 2 , and the point a
A position deviated from 1 will be detected.

【0004】[0004]

【本発明が解決しようとする課題】本発明は、前記の形
状測定における測定面の傾斜等による影響を少なくし、
測定誤差を少なくした精密測定ができるようにすること
を目的とするものである。
DISCLOSURE OF THE INVENTION The present invention reduces the influence of the inclination of the measurement surface in the above-mentioned shape measurement,
The purpose is to enable precise measurement with less measurement error.

【0005】[0005]

【課題を解決するための手段】超音波ビームの反射波に
より、測定点の傾斜角度判定を行うと共に、光ビームの
反射波により前記測定点の位置測定をすることを特徴と
する。
A tilt angle of a measuring point is determined by a reflected wave of an ultrasonic beam, and a position of the measuring point is measured by a reflected wave of a light beam.

【0006】又、超音波ビームの送受信による角度検出
ヘッドと、レーザービームの送受光による位置測定ヘッ
ドと、前記両ヘッドを被測定体の測定点を中心とする球
面上に走査させる角度走査装置とを設け、該角度走査装
置による角度走査において、前記測定点の角度検出ヘッ
ドによる傾斜角度の検出判定結果から、それが一定の範
囲内にある時のみ、前記位置検出ヘッドによる位置の検
出測定を行うようにしたことを特徴とする。
An angle detecting head for transmitting and receiving an ultrasonic beam, a position measuring head for transmitting and receiving a laser beam, and an angle scanning device for scanning both of the heads on a spherical surface centered on a measurement point of the object to be measured. In the angle scanning by the angle scanning device, the position detection head performs the position detection measurement only when it is within a certain range from the detection determination result of the inclination angle by the angle detection head of the measurement point. It is characterized by doing so.

【0007】又、前記の装置に於て、前記被測定体の測
定点を移動させる位置走査装置と、前記測定点の角度検
出ヘッドによる傾斜角度の検出判定結果から、それが一
定の範囲内にある時のみ、前記位置走査装置による測定
点の移動位置情報と前記位置測定ヘッドによる位置の検
出測定情報とにより、三次元形状信号を演算出力する演
算処理装置とを設けたことを特徴とする。
Further, in the above-mentioned device, the position scanning device for moving the measurement point of the object to be measured and the inclination angle detection judgment result by the angle detection head of the measurement point indicate that it is within a certain range. An arithmetic processing unit for arithmetically outputting a three-dimensional shape signal based on the movement position information of the measuring point by the position scanning device and the position detection and measurement information by the position measuring head is provided only at a certain time.

【0008】[0008]

【作用】本発明は前記のように、超音波ビームの反射波
により測定点の傾斜角度判定をすると共に、光ビームの
反射波により前記測定点の位置測定をするようにしたか
ら、超音波反射波の角度特性、即ち指向特性が高いこと
を利用して測定点の傾斜角度判定を高精密に判定するこ
とができ、この判定結果に基づいて光ビームが測定面に
ほぼ垂直に当たるような角度範囲にある時のみ、測定点
の位置判定をすることができ、光の乱反射による測定誤
差を少なくして測定精度を向上させることができる。位
置測定はレーザー等の光ビームを利用するから微小スポ
ットに集束することが容易にでき、前記散乱光を排除す
ることによって位置(距離)の測定が高精度にできる効
果がある。
As described above, according to the present invention, the tilt angle of the measuring point is determined by the reflected wave of the ultrasonic beam, and the position of the measuring point is measured by the reflected wave of the light beam. The inclination angle of the measurement point can be determined with high precision by utilizing the high angle characteristic of the wave, that is, the directional characteristic, and the angle range in which the light beam strikes the measurement surface almost perpendicularly based on this determination result. It is possible to determine the position of the measurement point only when there is, and it is possible to reduce the measurement error due to irregular reflection of light and improve the measurement accuracy. Since the position measurement uses a light beam such as a laser, it can be easily focused on a minute spot, and by eliminating the scattered light, the position (distance) can be measured with high accuracy.

【0009】又、本発明は角度検出ヘッドと位置測定ヘ
ッドとを被測定体の測定点を中心とする球面上に走査さ
せる角度走査装置を設け、該角度走査装置による角度走
査において、前記測定点の角度検出ヘッドによる傾斜角
度の検出判定結果から、それが一定の範囲内にある時の
み、前記位置測定ヘッドによる位置の検出測定を行うよ
うにしたから、位置測定ヘッドを被測定体の測定点に対
して、常に一定の角度範囲、即ちほぼ垂直に指向対向し
て位置測定をすることができ、精密測定をすることがで
きる。
Further, according to the present invention, an angle scanning device for scanning the angle detecting head and the position measuring head on a spherical surface centering on the measuring point of the object to be measured is provided, and in the angle scanning by the angle scanning device, the measuring point is measured. From the determination result of the inclination angle detected by the angle detection head, the position measurement head is used to detect and measure the position only when it is within a certain range. On the other hand, the position can always be measured in a fixed angle range, that is, in a substantially vertical direction so as to face each other, and precise measurement can be performed.

【0010】又、本発明は更に、前記被測定体の測定点
を移動させる位置走査装置と、前記測定点の角度検出ヘ
ッドによる傾斜角度の検出判定結果から、それが一定の
範囲内にあると時のみ、前記位置走査装置による測定点
の移動位置情報と、前記位置測定ヘッドによる位置の検
出測定情報とにより、三次元形状信号を演算出力する演
算処理装置とを設けたから、三次元形状の精密測定が自
動的にできる効果が得られる。
Further, according to the present invention, the position scanning device for moving the measuring point of the object to be measured and the inclination angle detection judgment result of the angle detecting head for the measuring point indicate that it is within a certain range. Only at the time, an arithmetic processing unit that arithmetically outputs a three-dimensional shape signal is provided based on the moving position information of the measurement point by the position scanning device and the position detection measurement information by the position measuring head. The effect that measurement can be performed automatically is obtained.

【0011】[0011]

【実施例】以下、図面の一実施例により本発明を説明す
る。図1において、1は超音波ビームの反射波による角
度検出ヘッドで、凹面振動子により超音波ビームを集束
し、指向特性を高めて測定面に照射し、その反射波を受
波するセンサより成る。2はレーザービームの反射波に
よる位置測定ヘッドで、これは図2に示すように半導体
レーザー21及びレンズ22の照射系とラインセンサ2
3とレンズ24の受光系が所要の角度を有する2軸
,l上に設けられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to an embodiment of the drawings. In FIG. 1, reference numeral 1 denotes an angle detection head based on a reflected wave of an ultrasonic wave beam, which is composed of a sensor that focuses the ultrasonic wave beam by a concave vibrator, irradiates a measurement surface with improved directional characteristics, and receives the reflected wave. . Reference numeral 2 denotes a position measuring head based on a reflected wave of a laser beam, which is an irradiation system of a semiconductor laser 21 and a lens 22 and a line sensor 2 as shown in FIG.
A light receiving system for the lens 3 and the lens 24 is provided on two axes l 0 and l 1 having a required angle.

【0012】3は前記両ヘッド1,2を支持するアーム
で、このアームの基点を中心にモータ4により回転する
ことによって、両ヘッド1,2を照射点を中心とする円
弧を回動させるもので、被測定体の測定点を中心とする
球面上にヘッド1,2を移動させる角度走査装置を構成
する。5は被測定体でx、y駆動テーブル6に固定さ
れ、x軸駆動モータ7及びy軸駆動モータ8により、被
測定体の測定点を移動させる測定位置走査装置を構成す
る。9はテーブルの上下z軸位置の制御用駆動モータ、
10は各モータ4,7,8,9の自動制御を行うNC制
御装置である。
Reference numeral 3 denotes an arm for supporting both the heads 1 and 2, which is rotated by a motor 4 about a base point of the arm to rotate an arc centering the both heads 1 and 2 at an irradiation point. Then, an angle scanning device for moving the heads 1 and 2 on a spherical surface centered on the measurement point of the object to be measured is constructed. An object to be measured 5 is fixed to the x and y drive table 6, and a measuring position scanning device for moving the measuring point of the object to be measured is constituted by the x-axis drive motor 7 and the y-axis drive motor 8. 9 is a drive motor for controlling the vertical z-axis position of the table,
Reference numeral 10 is an NC control device for automatically controlling each of the motors 4, 7, 8 and 9.

【0013】11は演算処理装置で、NC制御装置10
から測定位置の情報が、又、角度検出ヘッド1及び、位
置測定ヘッド2から各々の検出信号が演算情報として供
給され、測定点の傾斜角度検出により測定結果から、そ
れが一定の範囲内にある時のみ、測定点の移動位置情報
と測定ヘッド2の位置測定情報とにより三次元形状信号
を演算出力する。12は演算装置11の演算出力をテー
プ等にプリントアウトするプリンターである。
Reference numeral 11 denotes an arithmetic processing unit, which is an NC control unit 10.
Is supplied from the angle detection head 1 and the position measurement head 2 as calculation information, and from the measurement result by detecting the inclination angle of the measurement point, it is within a certain range. Only at this time, the three-dimensional shape signal is calculated and output based on the moving position information of the measuring point and the position measuring information of the measuring head 2. A printer 12 prints out the arithmetic output of the arithmetic unit 11 on a tape or the like.

【0014】以上において、角度検出ヘッド1から照射
する超音波は、例えば500kHzのパルスを用い、測
定点Pまでの距離、即ち設定距離を例えば150〜20
0mm程度にモータ9駆動により設定すると、図3の特
性図によりスポット半径をr=2〜2.5mm程に絞る
ことができる。又、図4は角度特性を示すもので、前記
設定距離150〜200mmにおいて、反射波の検出角
度は約4°〜3°である。即ちこれは図5に説明するよ
うに、照射点Pの傾斜角度θが4°以内であればP点か
らの反射波が検出できるが、4°以上になると検出でき
なくなる。ヘッド1の検出信号は演算処理装置11に供
給され、信号の判別によってそれが所定以下であるとP
点の傾斜角θが4°以上であり、検出信号が所定値以上
であると角度θが4°以内であることが判定される。
In the above, the ultrasonic wave emitted from the angle detecting head 1 is, for example, a pulse of 500 kHz, and the distance to the measuring point P, that is, the set distance is, for example, 150 to 20.
When the motor 9 is set to about 0 mm, the spot radius can be narrowed to r = 2 to 2.5 mm according to the characteristic diagram of FIG. Further, FIG. 4 shows the angle characteristic, and the detection angle of the reflected wave is about 4 ° to 3 ° at the set distance of 150 to 200 mm. That is, as described with reference to FIG. 5, if the tilt angle θ of the irradiation point P is within 4 °, the reflected wave from the point P can be detected, but if it is 4 ° or more, it cannot be detected. The detection signal of the head 1 is supplied to the arithmetic processing unit 11, and if it is below a predetermined value by the discrimination of the signal, P
If the inclination angle θ of the point is 4 ° or more and the detection signal is a predetermined value or more, it is determined that the angle θ is within 4 °.

【0015】前記演算処理装置11の判別結果がθ>4
°であれば、装置11からNC装置10に信号が加えら
れ、モータ4を駆動してヘッド1,2を、測定点Pを中
心とした円弧回動を行わせ、θ>4°である間は、超音
波の照射角度を変更制御する。この回動による角度制御
によって、検出ヘッド1の信号判別の結果θ<4°を判
別したとき、このときはP点に照射する超音波ビームの
照射角度が面に対してほぼ垂直に当たっていることを判
定したわけであり、このときは装置11からNC装置1
0に回動停止信号を送ってモータ4の回転を停止する。
The determination result of the arithmetic processing unit 11 is θ> 4.
If the angle is °, a signal is applied from the device 11 to the NC device 10, and the motor 4 is driven to cause the heads 1 and 2 to perform circular arc rotation around the measurement point P, while θ> 4 °. Controls the irradiation angle of ultrasonic waves. When the result of the signal discrimination of the detection head 1 is θ <4 ° is discriminated by the angle control by this rotation, at this time, it is confirmed that the irradiation angle of the ultrasonic beam for irradiating point P is almost perpendicular to the surface. It was decided, and at this time, from the device 11 to the NC device 1
A rotation stop signal is sent to 0 to stop the rotation of the motor 4.

【0016】以上の角度制御により、ヘッド1のP点の
対向照射方向がほぼ垂直になった位置で固定し、このと
きはレーザーの位置測定ヘッド2もP点に対してほぼ垂
直な対向をし、図2の発振器21のレーザービームl
は面Sの測定点Pにほぼ垂直に当たり、その反射波をレ
ンズ24を通してラインセンサ23上で検出するので、
図8で説明したように反射面Sの変位zによりラインセ
ンサ23の光スポット位置aが移動し、三角測量法の原
理により位置aを検出して変位zを測定することができ
る。即ち、演算処理装置11はラインセンサ23の検出
信号をA−D変換して入力し、そのデジタル信号を複数
のCPUでリニア補正や平均処理などのデータ処理す
る。データ処理された測定結果は、一旦メモリされると
共に、前記NC制御装置10からの測定点Pのx、y平
面上の位置情報と共に、三次元形状信号を演算出力し、
プリンタ12によりプリントアウトする。
By the above angle control, the head 1 is fixed at a position where the facing irradiation direction of the point P is substantially vertical, and at this time, the laser position measuring head 2 is also facing substantially perpendicular to the point P. , The laser beam l 0 of the oscillator 21 of FIG.
Is almost perpendicular to the measurement point P on the surface S, and its reflected wave is detected on the line sensor 23 through the lens 24.
As described with reference to FIG. 8, the displacement z of the reflection surface S moves the light spot position a of the line sensor 23, and the displacement a can be measured by detecting the position a by the principle of the triangulation method. That is, the arithmetic processing unit 11 A-D converts the detection signal of the line sensor 23 and inputs it, and the digital signal is subjected to data processing such as linear correction and averaging by a plurality of CPUs. The data-processed measurement result is temporarily stored in memory, and the three-dimensional shape signal is calculated and output together with the position information on the x and y planes of the measurement point P from the NC controller 10.
The printer 12 prints out.

【0017】このようにレーザービームによる位置測定
は、P点に対してほぼ垂直にレーザ照射が行われたとき
の測定ヘッド2による検出信号のみが演算処理装置11
によってデータ処理されるので、傾斜面に鋭角をもって
レーザー照射し、位置測定することによる2次、3次反
射等の乱反射による測定誤差を少なくして極めて高精度
な測定が行えるようになる。測定点Pの測定が終えた
ら、x軸モータ7、又はy軸モータ8の駆動により被測
定体5の測定点を順次移動し、変更して前記測定操作を
繰り返し、角度検出ヘッド1による測定点の傾斜角度判
定によりそれが一定の範囲内、即ち測定面にほぼ垂直に
対向するときの位置測定ヘッド2により、レーザービー
ムを照射し、測定点からの反射波を利用した位置の検出
測定値を有効とし、この測定制御を被測定体5の全表面
に亘って行い、有効データの演算処理によって三次元形
状を精密に測定することができる。
As described above, in the position measurement using the laser beam, only the detection signal from the measuring head 2 when the laser irradiation is performed substantially perpendicular to the point P is performed by the arithmetic processing unit 11.
Since the data is processed by the method, it is possible to perform measurement with extremely high accuracy by reducing the measurement error due to irregular reflection such as secondary and tertiary reflection caused by irradiating the inclined surface with a laser at an acute angle and measuring the position. When the measurement of the measurement point P is completed, the measurement points of the object 5 to be measured are sequentially moved by driving the x-axis motor 7 or the y-axis motor 8 and changed to repeat the measurement operation, and the measurement points of the angle detection head 1 are measured. According to the inclination angle determination of the position, the laser beam is irradiated by the position measuring head 2 when it is facing within a certain range, that is, when the position is almost perpendicular to the measurement surface, and the position detection measurement value using the reflected wave from the measurement point is obtained. It is effective, and this measurement control is performed over the entire surface of the measured object 5, and the three-dimensional shape can be precisely measured by the arithmetic processing of the effective data.

【0018】図6は被測定体5の上面の測定走査形状の
実施例で、測定点をStart位置からスタートし、矢
印のようにx軸を左方向に移動し、被測定体5端部で所
定単位長さy軸に移動して折り返し、x軸を右方向に移
動させるよう、これを繰り返してStop位置まで全面
走査する。この走査はNC装置10によるx軸モータ7
及びy軸モータ8の駆動によって行い、この走査中、被
測定体5の凹部51,52、凸部53,54に移動した
ときはモータ4の駆動によって、照射角度の制御によっ
て測定点の面が垂直になる角度からの測定をすることに
より精度向上を計る。勿論、x、y走査により被測定体
5の全面走査して、予め凹凸部51〜54の位置をメモ
リしておき、その後凹凸部51〜54だけを角度制御し
ながら測定するようにしてもよい。尚、前記角度走査装
置は実施例以外の球面上の移動装置を利用することがで
き、又、被測定体側を回動させる構成にしてもよい。
又、測定位置走査装置はヘッド1,2側を移動させるも
のでもよい。
FIG. 6 shows an embodiment of the measurement scanning shape of the upper surface of the object 5 to be measured. The measuring point is started from the Start position, the x-axis is moved leftward as indicated by the arrow, and at the end of the object 5 to be measured. The entire surface is scanned up to the Stop position by repeating this so that the predetermined unit length is moved to the y-axis and turned back, and the x-axis is moved to the right. This scanning is performed by the NC device 10 for the x-axis motor 7
And the y-axis motor 8 is driven, and when the measurement target 5 is moved to the concave portions 51 and 52 and the convex portions 53 and 54 during the scanning, the motor 4 is driven to control the irradiation angle so that the surface of the measurement point is changed. Accuracy is improved by measuring from a vertical angle. Of course, the entire surface of the measured object 5 may be scanned by x, y scanning, the positions of the uneven portions 51 to 54 may be stored in advance, and then only the uneven portions 51 to 54 may be measured while controlling the angle. . The angle scanning device may use a moving device on a spherical surface other than that of the embodiment, and may be configured to rotate the measured object side.
Further, the measuring position scanning device may move the heads 1 and 2 side.

【0019】図7は中心対称体13の測定をする実施例
で、14は対称軸中心に回転するモータ、15は上下z
軸移動制御するモータである。角度検出ヘッド1及び位
置測定ヘッド2は被測定体13を中心とする円弧軸16
を移動するように設けられる。回転モータ14及びz軸
制御モータ15はNC制御装置によって制御され、z軸
の成る位置を設定したらモータ14の回転によって1周
走査する。そのときの角度検出ヘッド1によって測定面
の傾斜角度が一定の範囲内にあるときの位置測定ヘッド
2の測定信号のみを有効データとして処理し、範囲外の
ものは除外していき、この走査測定をz軸モータ15の
制御によって位置を移動しながら各z軸位置の回転走査
を繰り返し、又、両ヘッド1,2を円弧軸16上を1ス
テップずつ移動させて照射角度を変更しながら検出測定
し、測定角度が一定範囲内にあるもののみをデータ処理
して全体としてモデルの三次元形状を測定する。
FIG. 7 shows an embodiment for measuring the central symmetrical body 13, 14 is a motor rotating about the axis of symmetry, and 15 is a vertical z-axis.
This is a motor that controls axial movement. The angle detection head 1 and the position measurement head 2 have an arc axis 16 centered on the measured object 13.
Is provided to move. The rotary motor 14 and the z-axis control motor 15 are controlled by the NC control device, and once the position of the z-axis is set, the motor 14 rotates to scan one round. Only the measurement signal of the position measuring head 2 when the tilt angle of the measurement surface is within a certain range is processed by the angle detection head 1 at that time as valid data, and those outside the range are excluded, and this scanning measurement is performed. The z-axis motor 15 is controlled by the z-axis motor 15 to repeat the rotational scanning of each z-axis position, and the heads 1 and 2 are moved one step at a time on the circular arc axis 16 to detect and measure the irradiation angle. Then, data processing is performed only for those whose measurement angles are within a certain range, and the three-dimensional shape of the model is measured as a whole.

【0020】以上のようにして形状測定信号は、プリン
タ12によってテープ等にプリントアウトされるが、こ
のテープを用いて工作機械を駆動すればNC制御により
容易にモデル形状の機械加工ができ、高精度の測定によ
って高精度の製造が得られる。
As described above, the shape measurement signal is printed out on the tape or the like by the printer 12. If the machine tool is driven by using this tape, the model shape can be easily machined by NC control, and the high-precision machining can be performed. Precision measurement results in high precision manufacturing.

【0021】[0021]

【発明の効果】以上のように本発明によれば、超音波ビ
ームの反射波により測定点の角度判定をすると共に、光
ビームの反射波により前記測定点の位置測定をするよう
にしたから、超音波反射波の角度特性、指向性が高いこ
とを利用して測定点の角度判定を高精度に判定すること
ができ、この判定結果に基づいて、光ビームが測定面に
ほぼ垂直に当たるような角度範囲にあるときのみ測定点
の位置測定をすることができ、光の乱反射による測定誤
差を少なくして測定精度を向上させることができる。位
置測定はレーザー等の光ビームを利用するから、微小ス
ポットに集束することが容易であり、測定面に垂直に当
てることによって散乱光を排除して測定でき、位置の測
定が極めて高精度にできる効果がある。
As described above, according to the present invention, the angle of the measuring point is determined by the reflected wave of the ultrasonic beam, and the position of the measuring point is measured by the reflected wave of the light beam. The angle characteristic of the reflected ultrasonic wave and the high directivity can be used to determine the angle of the measurement point with high accuracy. Based on the result of this determination, the light beam will strike the measurement surface almost perpendicularly. The position of the measurement point can be measured only in the angle range, and the measurement error due to irregular reflection of light can be reduced to improve the measurement accuracy. Since the position measurement uses a light beam such as a laser, it is easy to focus on a minute spot, and scattered light can be eliminated by hitting the measurement surface perpendicularly, and position measurement can be performed with extremely high accuracy. effective.

【0022】又、本発明は角度検出ヘッドと位置測定ヘ
ッドとを、被測定体の測定点を中心とする球面上に走査
させる角度走査装置を設け、該角度走査装置による角度
走査において、前記測定点の角度検出ヘッドによる角度
の検出判定結果から、それが一定の範囲内にある時の
み、前記位置測定ヘッドによる位置の検出測定を行うよ
うにしたから、位置測定ヘッドを被測定体の測定面に対
して常に一定の角度範囲、即ちほぼ垂直にビームの指向
対向させて位置測定をすることができ、精密測定するこ
とができる。
Further, according to the present invention, an angle scanning device for scanning the angle detection head and the position measuring head on a spherical surface centered on the measurement point of the object to be measured is provided, and in the angle scanning by the angle scanning device, the measurement is performed. From the detection result of the angle detected by the point angle detection head, the position measurement head is used to detect and measure the position only when it is within a certain range. On the other hand, the position of the beam can be always measured in a fixed angle range, that is, in a substantially vertical direction, and the position can be measured, and precise measurement can be performed.

【0023】又、本発明は更に、前記被測定体の測定点
を移動させる位置走査装置と、前記測定点の角度検出ヘ
ッドによる角度の検出判定結果から、それが一定の範囲
内にあると時のみ、前記位置走査装置による測定点の位
置情報と前記位置測定ヘッドによる位置の検出測定情報
とにより、三次元形状信号を演算出力する演算処理装置
とを設けたから三次元形状の自動測定が極めて精密にで
きる効果がある。
Further, according to the present invention, based on the position scanning device for moving the measuring point of the object to be measured and the detection detection result of the angle by the angle detecting head of the measuring point, it is determined that it is within a certain range. Only, the automatic measurement of the three-dimensional shape is extremely precise because the arithmetic processing unit that arithmetically outputs the three-dimensional shape signal is provided based on the position information of the measuring point by the position scanning device and the position detection measurement information by the position measuring head. There is an effect that can be.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】図1の一部詳細図である。FIG. 2 is a partial detailed view of FIG.

【図3】図1の一部分のスポット径特性図である。3 is a spot diameter characteristic diagram of a part of FIG. 1. FIG.

【図4】図1の一部分の角度特性図である。FIG. 4 is an angle characteristic diagram of a part of FIG.

【図5】図1の一部分の説明図である。5 is an explanatory diagram of a part of FIG. 1. FIG.

【図6】図1の走査説明図である。FIG. 6 is a scanning explanatory diagram of FIG. 1.

【図7】本発明の他の実施例の一部構成図である。FIG. 7 is a partial configuration diagram of another embodiment of the present invention.

【図8】従来例の説明図である。FIG. 8 is an explanatory diagram of a conventional example.

【図9】従来例の説明図である。FIG. 9 is an explanatory diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1 角度検出ヘッド 2 位置測定ヘッド 3 アーム 4 回動モータ 5 被測定体 6 テーブル 7 x軸モータ 8 y軸モータ 9 z軸モータ 10 NC制御装置 11 演算処理装置 12 プリンタ 21 レーザー− 22 レンズ 23 ラインセンサ 24 レンズ DESCRIPTION OF SYMBOLS 1 Angle detection head 2 Position measurement head 3 Arm 4 Rotation motor 5 Object to be measured 6 Table 7 x-axis motor 8 y-axis motor 9 z-axis motor 10 NC control device 11 Arithmetic processing device 12 Printer 21 Laser-22 lens 23 Line sensor 24 lenses

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 超音波ビームの反射波により測定点の傾
斜角度判定をすると共に、光ビームの反射波により前記
測定点の位置測定をすることを特徴とする三次元形状測
定方法。
1. A three-dimensional shape measuring method, comprising: determining a tilt angle of a measurement point by a reflected wave of an ultrasonic beam; and measuring the position of the measurement point by a reflected wave of a light beam.
【請求項2】 前記光ビームの反射波による位置測定を
三角測量の原理を利用して測定することを特徴とする第
1項に記載の三次元形状測定方法。
2. The three-dimensional shape measuring method according to claim 1, wherein the position measurement by the reflected wave of the light beam is measured by using the principle of triangulation.
【請求項3】 超音波ビームの送受信による角度検出ヘ
ッドと、レーザービームの送受光による位置測定ヘッド
と、前記両ヘッドを被測定体の測定点を中心とする球面
上に走査させる角度走査装置とを設け、該角度走査装置
による角度走査において、前記測定点の角度検出ヘッド
による傾斜角度の検出判定結果からそれが一定の範囲内
にある時のみ、前記位置測定ヘッドによる位置の検出測
定を行うようにしたことを特徴とする三次元形状測定装
置。
3. An angle detecting head for transmitting and receiving an ultrasonic beam, a position measuring head for transmitting and receiving a laser beam, and an angle scanning device for scanning both of these heads on a spherical surface centered on a measurement point of an object to be measured. In the angle scanning by the angle scanning device, the position detection head performs the position detection measurement only when the angle detection head at the measurement point detects the inclination angle detection result is within a certain range. A three-dimensional shape measuring device characterized in that
【請求項4】 超音波ビームの送受信による角度検出ヘ
ッドと、レーザービームの送受光による位置測定ヘッド
と、前記両ヘッドを被測定体の測定点を中心とする球面
上に走査させる角度走査装置とを設け、該角度走査装置
による角度走査において、前記測定点の角度検出ヘッド
による傾斜角度の検出判定結果から、それが一定の範囲
内にある時のみ、前記位置測定ヘッドによる位置の検出
測定を行うようにした装置において、前記被測定体の測
定点を移動させる位置走査装置と、前記測定点の角度検
出へッドによる傾斜角度の検出判定結果から、それが一
定の範囲内にある時のみ、前記位置走査装置による測定
点の移動位置情報と前記位置測定ヘッドによる位置の検
出測定情報とにより、三次元形状信号を演算出力する演
算処理装置とを設けたことを特徴とする三次元形状測定
装置。
4. An angle detecting head for transmitting and receiving an ultrasonic beam, a position measuring head for transmitting and receiving a laser beam, and an angle scanning device for scanning both heads on a spherical surface centered on a measurement point of an object to be measured. In the angle scanning by the angle scanning device, the position detection head performs the position detection measurement only when it is within a certain range based on the inclination angle detection determination result by the angle detection head of the measurement point. In the device, the position scanning device that moves the measurement point of the measured object, and the detection determination result of the tilt angle by the angle detection head of the measurement point, only when it is within a certain range, An arithmetic processing unit for arithmetically outputting a three-dimensional shape signal based on the moving position information of the measurement point by the position scanning device and the position detection measurement information by the position measuring head is provided. A three-dimensional shape measuring device characterized in that
JP36137891A 1991-12-26 1991-12-26 Method and instrument for measuring three-dimensional shape Pending JPH07286845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36137891A JPH07286845A (en) 1991-12-26 1991-12-26 Method and instrument for measuring three-dimensional shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36137891A JPH07286845A (en) 1991-12-26 1991-12-26 Method and instrument for measuring three-dimensional shape

Publications (1)

Publication Number Publication Date
JPH07286845A true JPH07286845A (en) 1995-10-31

Family

ID=18473332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36137891A Pending JPH07286845A (en) 1991-12-26 1991-12-26 Method and instrument for measuring three-dimensional shape

Country Status (1)

Country Link
JP (1) JPH07286845A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001153632A (en) * 1999-10-21 2001-06-08 Sirona Dental Systems Gmbh Method and device for detecting medical object, especially model of tooth specimen
JP2010175306A (en) * 2009-01-27 2010-08-12 Toyota Motor Corp Ultrasonic measurement device
CN102519416A (en) * 2011-12-13 2012-06-27 中国科学院光电技术研究所 Measuring device of workpiece rotary table error separation based on double-probe scan data splicing and method thereof
WO2017033638A1 (en) * 2015-08-25 2017-03-02 ソニー株式会社 Information processing device, information processing method and program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001153632A (en) * 1999-10-21 2001-06-08 Sirona Dental Systems Gmbh Method and device for detecting medical object, especially model of tooth specimen
JP2010175306A (en) * 2009-01-27 2010-08-12 Toyota Motor Corp Ultrasonic measurement device
CN102519416A (en) * 2011-12-13 2012-06-27 中国科学院光电技术研究所 Measuring device of workpiece rotary table error separation based on double-probe scan data splicing and method thereof
WO2017033638A1 (en) * 2015-08-25 2017-03-02 ソニー株式会社 Information processing device, information processing method and program

Similar Documents

Publication Publication Date Title
US9006607B2 (en) Light beam scanning apparatus, laser machining apparatus, test method and laser machining method
JPH0599617A (en) Method and device for detecting edge section and hole by optical scanning head
JP2000186913A (en) Method and device for optical detection of contrast line
JP2003117778A (en) Precision measurement device for machine tool
JPH08278117A (en) Attitude control device for work apparatus relative to work object plane, crucible instrumentation device with the control device and painting device
CN104117772A (en) Laser processing method and laser processing device
JP4571256B2 (en) Shape accuracy measuring device by sequential two-point method and laser displacement meter interval measuring method for shape accuracy measurement by sequential two-point method
JP2004114203A (en) Apparatus for measuring profile of workpiece and profile measuring system using the same
JPH07286845A (en) Method and instrument for measuring three-dimensional shape
JP2542653B2 (en) Non-contact copying method
JP3607821B2 (en) Inclination angle measuring machine
JPH05180632A (en) Method and apparatus for measuring threedimensional shape
JPH0352888B2 (en)
JPH05215528A (en) Three-dimensional shape measuring apparatus
JP3724162B2 (en) Laser scanning device and shape measuring device
JPH05180629A (en) Three-dimensional-shape measuring apparatus
JP2536821Y2 (en) 3D position measuring device
JPH10111107A (en) Method and device for measuring distance
JP4159809B2 (en) Non-contact measuring method and measuring apparatus
JPH10103937A (en) Optical axis inclination measuring method for laser light and apparatus therefor
JPH03104787A (en) Running control apparatus
JP3252248B2 (en) Non-contact diameter measuring device using speckle
JPH03291509A (en) Shape measuring method for ultrasonic flaw detection
JPH05332736A (en) Method for measuring three-dimensional form
JPH07136787A (en) Laser beam welding equipment