JPH03291509A - Shape measuring method for ultrasonic flaw detection - Google Patents

Shape measuring method for ultrasonic flaw detection

Info

Publication number
JPH03291509A
JPH03291509A JP9465990A JP9465990A JPH03291509A JP H03291509 A JPH03291509 A JP H03291509A JP 9465990 A JP9465990 A JP 9465990A JP 9465990 A JP9465990 A JP 9465990A JP H03291509 A JPH03291509 A JP H03291509A
Authority
JP
Japan
Prior art keywords
measured
flaw detection
ultrasonic
shape
ultrasonic flaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9465990A
Other languages
Japanese (ja)
Inventor
Toshio Akagi
俊夫 赤木
Kenji Udagawa
宇田川 建志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9465990A priority Critical patent/JPH03291509A/en
Publication of JPH03291509A publication Critical patent/JPH03291509A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable highly accurate shape measurement by coating a body to be measured with fine white particles at the time of the shape measurement. CONSTITUTION:The body 1 to be measured with coated with fine white particles and installed in a water tank in a room which contains no water and a laser range finder 6 is put in scanning operation in an (x) and a (y) direction to measure the distance between the surface of the body 1 to be measured and the range finder 6 at respective points (x,y) on the (x) and (y) axes, thereby obtaining the shape function of the body 1 to be measured. Measured shape data are inputted to a computer 9. Then water is poured in the water tank for the ultrasonic flaw detection in the water. At this time, the fine white particles applied to the body 1 to be measured are removed naturally. Thus, an ultrasonic probe 5 is controlled according to the shape data stored in the computer 9 to maintain a constant distance from the surface of the body 1 to be measured 1 at a constant angle so that the surface of the body 1 to be measured is profiled, thus performing the ultrasonic flaw detection. Consequently, highly accurate shape measurement is performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、金属セラミックス、複合材等各種材質で成
形された曲面形状の物体を、水中で自動的に超音波探傷
を行う方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for automatically performing underwater ultrasonic flaw detection on curved objects made of various materials such as metal ceramics and composite materials. be.

〔従来の技術〕[Conventional technology]

3次元スキャナを用いて任意の曲面形状を持つ物体を水
中で自動的に超音波探傷を行う方法としては、被測定体
の形状データを予め入力して記憶、または距離センサを
用いて測定して記憶し、その記憶された形状データに基
づいて、超音波探触子より発せられる超音波が、前記被
測定体の表面の超音波入射点に対して一定の角度でかつ
一定の距離から入射されるように、超音波探触子の位置
及び方向を自動的に駆動制御する方法がとられている。
A method for automatically performing underwater ultrasonic flaw detection on objects with arbitrary curved shapes using a 3D scanner is to input and store the shape data of the object in advance, or to measure it using a distance sensor. Based on the stored shape data, the ultrasonic wave emitted from the ultrasonic probe is incident at a certain angle and from a certain distance with respect to the ultrasonic incident point on the surface of the object to be measured. A method has been adopted to automatically drive and control the position and direction of the ultrasonic probe.

(特開昭63−309852号、特開昭63−3098
53号公報)ところで、精度良く超音波探傷を行おうと
すると、超音波探触子を被測定体の面に対し、出来る限
り正確に倣うように駆動制御しなければならない。超音
波探触子の軌道は、形状測定により得た形状データをも
とに決定しているため、特に、被計測体の形状データを
測定して記憶させる場合には、形状測定も出来る限り高
精度に行う必要がある。そのために形状測定には非接触
的に高精度な距離測定が可能なレーザ距離計が用いられ
ている。レーザ距離計は被測定体に当てたレーザ光線が
散乱する光を使い、三角測量の原理を利用して被測定体
との距離を測定するものである。
(JP-A-63-309852, JP-A-63-3098
In order to perform ultrasonic flaw detection with high precision, it is necessary to drive and control the ultrasonic probe so that it follows the surface of the object to be measured as accurately as possible. The trajectory of the ultrasonic probe is determined based on shape data obtained through shape measurement, so shape measurement should also be performed at the highest possible speed, especially when measuring and storing shape data of the object to be measured. Must be done with precision. For this reason, a laser distance meter is used for shape measurement, which can perform highly accurate distance measurement in a non-contact manner. A laser distance meter measures the distance to an object by using the principle of triangulation, using scattered light from a laser beam that is directed at the object.

実際の探傷手順としては、まず水を入れていない空の水
槽内に被測定体を置き、被測定体の上方においてレーザ
距離計を一定の姿勢でスキャンさせて、X軸とY軸の各
点(x、y)におけるレーザ距離計と被測定体表面との
距離を非接触的に測定し、被測定体の形状関数z=f 
 (XF y)を求める。次に、水槽に水を注入してか
ら水中で超音波探触子より発せられる超音波が、前記被
測定体の表面の超音波入射点に対して一定の角度でかつ
一定の距離から入射されるように、測定した形状関数を
もとに超音波探触子の位置及び方向を自動的に駆動制御
して超音波探傷が行われる。
The actual flaw detection procedure is to first place the object to be measured in an empty tank with no water in it, scan the laser distance meter in a fixed position above the object, and scan each point on the X and Y axes. The distance between the laser rangefinder and the surface of the object to be measured at (x, y) is measured in a non-contact manner, and the shape function of the object to be measured z=f
Find (XF y). Next, after water is injected into the water tank, the ultrasonic waves emitted from the ultrasonic probe underwater are incident at a certain angle and from a certain distance with respect to the ultrasonic incident point on the surface of the object to be measured. Ultrasonic flaw detection is performed by automatically controlling the position and direction of the ultrasonic probe based on the measured shape function.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、形状測定に用いられているレーザ距離計は、
前述のように被測定体に当てたレーザ光が散乱して戻っ
てくる光を使って三角測量の原理を利用して被測定体と
の距離を測定するため、−般に被測定体表面の反射率や
色の違いにより距離の測定精度が異なる。特に金属面や
鏡面を持つ物体はレーザ光が散乱しないため測定が霞し
く、また光を吸収する黒っぽい色を持つ物体も散乱光が
少ないため測定精度が落ちることが知られている。
However, the laser distance meter used for shape measurement is
As mentioned above, the distance to the object to be measured is measured using the principle of triangulation using the light that is scattered and returned from the laser beam irradiated to the object to be measured. Distance measurement accuracy varies depending on reflectance and color. In particular, it is known that objects with metal or mirror surfaces do not scatter laser light, making measurements hazy, and objects with dark colors that absorb light also reduce measurement accuracy because there is little scattered light.

また、高精度に距離測定を行うためには、被測定体の面
はレーザ距離計の発するレーザ光に対して垂直であるこ
とが望ましく、レーザ光の垂直面に対する傾きが大きい
ほど測定精度は低下する。
In addition, in order to measure distance with high accuracy, it is desirable that the surface of the object to be measured be perpendicular to the laser beam emitted by the laser distance meter, and the greater the inclination of the laser beam with respect to the vertical plane, the lower the measurement accuracy. do.

さらに被測定体の面がレーザ光の垂直面に対しある程度
以上傾いていると距離の測定は不可能となる。そのため
、被測定体が曲面を持ち、かつ、レーザ距離計を一定の
姿勢に保ちながら被検査体の上方からスキャンさせて形
状測定するような場合、レーザ光の垂直面に対して被測
定体の表面が傾きを持つようになるので、測定が困難に
なることがある。その場合の精度低下の程度や測定不能
となる角度の大きさも被測定体の反射率や色の影響が大
きく、金属面体や鏡面体や黒っぽい物体は精度低下が著
しく、かつ少しの傾きで距離の測定が不可能になる。
Further, if the surface of the object to be measured is tilted to a certain degree or more with respect to the plane perpendicular to the laser beam, distance measurement becomes impossible. Therefore, when the object to be measured has a curved surface and the shape is to be measured by scanning the object from above while keeping the laser rangefinder in a fixed position, the object to be measured has a curved surface. The surface may become sloped, making measurement difficult. In this case, the degree of accuracy loss and the angle at which measurement becomes impossible are greatly affected by the reflectance and color of the object to be measured.Metal surfaces, mirror surfaces, and dark objects will cause a significant loss of accuracy, and even a slight inclination will cause distance measurement. measurement becomes impossible.

この発明はかかる問題点を解決するためになされたもの
で、被測定体の反射率や色にかかわらず、曲面を持った
物体を超音波探傷するための形状測定を高精度に実施可
能とすることを課題とする。
This invention was made to solve this problem, and makes it possible to perform shape measurement with high precision for ultrasonic flaw detection of objects with curved surfaces, regardless of the reflectance or color of the object to be measured. That is the issue.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために1本発明は、3次元スキャナ
に設置したレーザ距離計を用いて被測定体の形状を予め
測定し、記憶された形状データに基づいて、超音波探触
子より発せられる超音波が、前記被測定体の表面の超音
波入射点に対して一定の角度でかつ一定の距離から入射
されるように、超音波探触子の位置及び方向を自動的に
駆動制御する超音波探傷方法において、形状測定の際に
被測定体に白色微粉末を塗布することによって、高精度
な形状測定を行う。
In order to solve the above-mentioned problems, the present invention measures the shape of the object in advance using a laser distance meter installed in a three-dimensional scanner, and based on the memorized shape data, emits light from an ultrasonic probe. automatically driving and controlling the position and direction of the ultrasonic probe so that the ultrasonic waves incident on the surface of the object to be measured are incident at a certain angle and from a certain distance with respect to the ultrasonic wave incident point on the surface of the object to be measured; In the ultrasonic flaw detection method, highly accurate shape measurement is performed by applying white fine powder to the object to be measured during shape measurement.

〔作用〕[Effect]

形状測定の際に被測定体に白色粉末を塗布することによ
って、レーザ距離計のレーザ光が被測定体表面において
効率良く散乱するようになり、測定した各点での距離の
測定精度が向上し、さらに被測定体の面がレーザ光の垂
直面に対し多少傾いているような場合でも精度の高い距
離測定が可能となる。
By applying white powder to the object to be measured during shape measurement, the laser beam from the laser distance meter is efficiently scattered on the surface of the object, improving the accuracy of distance measurement at each point measured. Furthermore, even when the surface of the object to be measured is somewhat inclined with respect to the vertical plane of the laser beam, highly accurate distance measurement is possible.

〔実施例〕〔Example〕

以下、図面を参照してこの発明の一実施例を説明示する
。なお、ここに示す超音波探傷装置は、各種材質で成形
された曲面形状の物体を、水中で自動的に超音波探傷を
行うためのものであり、3次元スキャナに設置したレー
ザ距離計を用いて被測定体の形状を予め測定し、記憶さ
れた形状データに基づいて、超音波探触子より発せられ
る超音波が、前記被測定体の表面の超音波入射点に対し
て一定の角度でかつ一定の距離から入射されるように、
超音波探触子の位置及び方向を自動的に駆動制御して探
傷を行うタイプの装置である。
Hereinafter, one embodiment of the present invention will be explained with reference to the drawings. The ultrasonic flaw detection device shown here is for automatically performing ultrasonic flaw detection underwater on curved objects made of various materials, and uses a laser distance meter installed on a three-dimensional scanner. The shape of the object to be measured is measured in advance, and based on the stored shape data, the ultrasonic waves emitted from the ultrasonic probe are set at a constant angle with respect to the ultrasonic incident point on the surface of the object to be measured. And so that it is incident from a certain distance,
This is a type of device that performs flaw detection by automatically controlling the position and direction of an ultrasonic probe.

第1図は、超音波探傷装置における3次元スキャナ先端
部の概略図である0図において、1は被測定体、2はx
、y、zスキャナの先端部、3はθ軸モータ、4はα軸
モータ、5は超音波探触子、6はレーザ距離計、7は水
中自動探傷のための水槽である。
Fig. 1 is a schematic diagram of the tip of a three-dimensional scanner in an ultrasonic flaw detection device, in which 1 is the object to be measured and 2 is x
, y, and z scanners, 3 is a θ-axis motor, 4 is an α-axis motor, 5 is an ultrasonic probe, 6 is a laser distance meter, and 7 is a water tank for automatic underwater flaw detection.

図のようにレーザ距離計6はX軸・y軸・Z軸からなる
スキャナの先端部2に取り付けてあり。
As shown in the figure, a laser distance meter 6 is attached to the tip 2 of the scanner, which has X, Y, and Z axes.

各軸の動きにより、その位置がコントロールされる。ま
た、超音波探触子5はX軸、y軸、2軸。
Movement of each axis controls its position. Moreover, the ultrasonic probe 5 has two axes, an X axis and a Y axis.

θ軸、α軸から成るスキャナの先端に取り付けられてお
り、各軸の動きにより、その位置や姿勢がコントロール
される。なお、X軸、y軸、Z軸は互いに直交し、θ軸
はZ軸に取り付けられ2軸まわりの回転をし、α軸はθ
軸に取り付けられθと直角方向に回転する。
It is attached to the tip of the scanner, which consists of a θ-axis and an α-axis, and its position and orientation are controlled by the movement of each axis. Note that the X-axis, y-axis, and Z-axis are orthogonal to each other, the θ-axis is attached to the Z-axis and rotates around two axes, and the α-axis is attached to the θ-axis.
It is attached to the shaft and rotates in a direction perpendicular to θ.

第2図は装置全体の構成概略図である。この第2図を用
いて、この超音波探傷装置により、曲面形状の物体が自
動的に超音波探傷される過程を説明する。
FIG. 2 is a schematic diagram of the overall structure of the device. With reference to FIG. 2, a process in which a curved object is automatically ultrasonically detected by this ultrasonic flaw detection apparatus will be explained.

まず、水槽7の中に置かれた被測定体1の形状は、レー
ザ距離計6をXvY方向にスキャンしながら測定される
被測定体1との距離データを計算機9に取り込むことに
よって得られる。計算機9に取り込まれた被測定体lの
形状データをもとに、超音波探触子5より発せられる超
音波が、被測定体1表面の超音波入射点に対して一定の
角度でかつ一定の距離から入射されるように、超音波探
触子5の動くべき位置及び方向を計算機9で求める。
First, the shape of the object to be measured 1 placed in the water tank 7 is obtained by importing distance data to the object to be measured 1 into the computer 9, which is measured while scanning the laser distance meter 6 in the XvY direction. Based on the shape data of the object to be measured l imported into the computer 9, the ultrasonic waves emitted from the ultrasonic probe 5 are set at a constant angle and at a constant angle with respect to the ultrasonic incident point on the surface of the object to be measured 1. The computer 9 determines the position and direction in which the ultrasonic probe 5 should move so that the ultrasonic probe 5 is incident from a distance of .

そして、そのような超音波探触子5の動きを実現するよ
うにXyYtZp θ、α軸の動きを計算し、計算機9
から各軸モータの制御装置EIIに指令が送られる。こ
うして超音波探触子5が被測定体1表面に倣うように動
いている間に、超音波探傷器8を介して超音波探傷結果
が計算機9に取り込まれCRTl 0に表示される。以
上のようにして曲面を持つ被測定体1が自動的に超音波
探傷される。
Then, the movements of the XyYtZp θ and α axes are calculated to realize such movement of the ultrasound probe 5, and the computer 9
A command is sent to the control device EII of each axis motor. While the ultrasonic probe 5 is moving to follow the surface of the object to be measured 1, the ultrasonic flaw detection results are taken into the computer 9 via the ultrasonic flaw detector 8 and displayed on the CRT10. As described above, the object to be measured 1 having a curved surface is automatically subjected to ultrasonic flaw detection.

第3図にこの実施例で用いたレーザ距離計の原理図を示
す。図において、レーザ12から出た光が被測定体の面
で散乱し、光位置検出素子13に入ってくるが、被測定
体の面が変位すると光位置検出素子13上のスポットが
移動する。この移動量を電気信号に変換して知ることに
より、三角測量の原理から被測定体の面までの距離を得
ることが出来る。
FIG. 3 shows a diagram of the principle of the laser distance meter used in this example. In the figure, the light emitted from the laser 12 is scattered by the surface of the object to be measured and enters the optical position detection element 13, but when the surface of the object to be measured is displaced, the spot on the optical position detection element 13 moves. By converting this amount of movement into an electrical signal and knowing it, the distance to the surface of the object to be measured can be obtained from the principle of triangulation.

このように、レーザ距離計は、被測定体に当てたレーザ
光が散乱して戻ってくる光を利用しているため、被測定
体の面はレーザ距離計の発するレーザ光に対して垂直で
あることが望ましく、レーザ光の垂直面に対する傾きが
大きいほど測定精度は低下し、ある程度以上傾いている
と距離の測定は不可能となる。この傾向は、散乱光の少
ない物体、すなわち金属面や黒っぽい面を持つ物体を被
測定体とした場合に特に著しい。
In this way, the laser rangefinder uses the light that is scattered and returned from the laser beam that hits the object to be measured, so the surface of the object to be measured is perpendicular to the laser beam emitted by the laser distance meter. It is desirable that the laser beam be tilted to the vertical plane, the measurement accuracy will be lowered as the inclination of the laser beam with respect to the vertical plane is greater, and if the inclination exceeds a certain level, it will be impossible to measure the distance. This tendency is particularly remarkable when the object to be measured is an object with little scattered light, that is, an object with a metal surface or a dark surface.

第4図に示いようにな曲面を持った表面の黒っぽいサン
プルを探傷する場合を例として1本発明による形状測定
の様子及び効果を説明する。
The state and effect of shape measurement according to the present invention will be explained by taking as an example the case where a dark sample with a curved surface as shown in FIG. 4 is detected.

まず、被測定体1に白色微粉末を直接に、または水など
に溶いた後にスプレーまたは刷毛塗り。
First, white fine powder is applied directly to the object 1 to be measured, or after it is dissolved in water or the like, it is sprayed or brushed.

浸漬等によって塗布する。ここで使用する白色微粉末に
は、後で水などによって容易に除去できるものを用いる
0次に水を入れていない空の水槽7内に被測定体1を設
置し、その上部でレーザ距離計6をXpY方向にスキャ
ンさせ、X軸とy軸の各点(xt y)における被測定
体1の表面とレーザ距離計の距離を測定し、被測定体1
の形状関数z = f (XI y)を得る。ここで測
定した形状データは計算機9に取り込まれる。その形状
データのうち、y方向にスキャンした1ライン分のデー
タを第5図に示す。
Apply by dipping, etc. The white fine powder used here is one that can be easily removed later with water, etc.The object to be measured 1 is placed in an empty water tank 7 without water, and a laser distance meter is placed above it. 6 in the XpY direction, and measure the distance between the surface of the object to be measured 1 and the laser distance meter at each point (xt y) on the X and y axes.
Obtain the shape function z = f (XI y). The shape data measured here is taken into the computer 9. Of the shape data, data for one line scanned in the y direction is shown in FIG.

この後、水中で超音波探傷を行うために水槽7に水を注
入する。このとき、被測定体1に塗布された白色微粉末
は水によって自然に除去される。
After this, water is poured into the water tank 7 in order to perform underwater ultrasonic flaw detection. At this time, the white fine powder applied to the object to be measured 1 is naturally removed by water.

このようにして計算機9に記憶された形状データをもと
に、前述のように、超音波探触子5が被測定体1の表面
に倣うように、表面に対して一定角度をなす方向から一
定の距離を保つようにコントロールされ、超音波探傷が
実現される。
Based on the shape data stored in the computer 9 in this way, the ultrasonic probe 5 follows the surface of the object to be measured 1 from a direction at a constant angle to the surface, as described above. It is controlled to maintain a certain distance, and ultrasonic flaw detection is realized.

比較のため、形状測定の際に白色微粉末を塗布しなかっ
た場合の形状データをy方向にスキャンした1ライン分
のデータを第6図に示す。図のうち、下の落ち込んでい
る部分はレーザ距離計によって測定できなかったことを
示している。
For comparison, FIG. 6 shows data for one line obtained by scanning the shape data in the y direction when the white fine powder was not applied during shape measurement. The depressed area at the bottom of the figure indicates that the laser rangefinder could not measure the distance.

第5図と第6図を比較すると、白色微粉末を塗布せず、
黒い面のまま測定した場合は、水平面。
Comparing Figures 5 and 6, it can be seen that without applying white fine powder,
If the measurement is made on the black surface, it is a horizontal surface.

即ちレーザ距離計のレーザ光の垂直面に対し、およそ1
8°以上傾いた部分では測定不能となっていることがわ
かる。これに対し、白色微粉末を塗布した場合は、y方
向の1ライン全体について形状が正確に測定されている
In other words, approximately 1
It can be seen that measurements are not possible in areas tilted by 8° or more. On the other hand, when white fine powder was applied, the shape of the entire line in the y direction was accurately measured.

〔発明の効果〕〔Effect of the invention〕

以上説明したとおり1本発明によれば、3次元スキャナ
に設置したレーザ距離計を用いて曲面をもった被測定体
の形状を予め測定し、記憶された形状データに基づいて
、超音波探触子より発せられる超音波が、前記被測定体
の表面の超音波入射点に対して一定の角度でかつ一定の
距雇から入射されるように、超音波探触子の位置及び方
向を自動的に駆動制御する超音波探傷方法において、形
状測定の際に被測定体に白色微粉末を塗ることによって
、金属面の物体や黒い色の物体に対しても、特に被測定
体の面が傾いている場合でも高精度な形状測定が可能と
なり、その形状測定により得られた形状データを用いて
精度の高い超音波探傷が可能となる。
As explained above, according to the present invention, the shape of a curved object to be measured is measured in advance using a laser distance meter installed in a three-dimensional scanner, and an ultrasonic probe is used based on the stored shape data. The position and direction of the ultrasonic probe is automatically adjusted so that the ultrasonic wave emitted from the probe is incident at a constant angle and from a constant distance to the ultrasonic incident point on the surface of the object to be measured. In the ultrasonic flaw detection method that controls the drive, applying fine white powder to the object to be measured during shape measurement prevents the surface of the object from being tilted, especially when it comes to metal surfaces or black objects. High-precision shape measurement is possible even when there is a large number of defects, and high-precision ultrasonic flaw detection can be performed using the shape data obtained from the shape measurement.

また被測定体に塗布する白色微粉末については、水など
により容易に除去されるものを用いることにより、特別
に微粉末を取り除く工程を設ける必要なく、超音波探傷
する際には水槽に注入する水によって自然に除去される
ため、一連の探傷操作の後に被測定体に影響を残すこと
もない。
In addition, as for the fine white powder applied to the object to be measured, by using one that is easily removed by water, etc., there is no need for a special process to remove the fine powder, and it can be injected into a water tank during ultrasonic flaw detection. Since it is naturally removed by water, it does not leave any effect on the object to be measured after a series of flaw detection operations.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は超音波探傷装置における3次元スキャナ先端部
の概略を示す斜視図、第2図は装置全体の構成概略を示
すブロック図、第3図は実施例で用いたレーザ距離計の
原理を示す正面図、第4図は曲面を持った黒っぽい表面
をした被測定体のサンプル例を示す斜視図、第5図は白
色微粉末を第4図に示すサンプルに塗布してからレーザ
距離計により形状測定を行った結果を示すグラフ、第6
図は第4図に示すサンプルを白色微粉末を塗布せずにそ
のままレーザ距離計を用いて形状測定を行った結果を示
すグラフである。 1:被測定体  2 : Xp’jp”スキャナの先端
部3:θ軸モータ       4:α軸モータ5 ニ ア : 9 : 11: 13: 超音波探触子 水槽 計算機 各軸モータの制御装置 光位置検出素子 6:レーザ距離計 8:超音波探傷器 10:CRT 12:レーザ
Fig. 1 is a perspective view schematically showing the tip of a three-dimensional scanner in an ultrasonic flaw detection device, Fig. 2 is a block diagram showing a schematic configuration of the entire device, and Fig. 3 shows the principle of the laser distance meter used in the example. Fig. 4 is a perspective view showing an example of a sample of an object to be measured with a curved, dark surface, and Fig. 5 shows a sample after applying white fine powder to the sample shown in Fig. 4 using a laser rangefinder. Graph showing the results of shape measurement, No. 6
This figure is a graph showing the results of shape measurement of the sample shown in FIG. 4 using a laser distance meter without applying white fine powder. 1: Measured object 2: Tip of Xp'jp" scanner 3: θ-axis motor 4: α-axis motor 5 Near: 9: 11: 13: Ultrasonic probe water tank calculator Control device for each axis motor Optical position detection Element 6: Laser distance meter 8: Ultrasonic flaw detector 10: CRT 12: Laser

Claims (1)

【特許請求の範囲】[Claims] 3次元スキャナに設置したレーザ距離計を用いて被測定
体の形状を予め測定し、記憶された形状データに基づい
て、超音波探触子より発せられる超音波が、前記被測定
体の表面の超音波入射点に対して一定の角度でかつ一定
の距離から入射されるように、超音波探触子の位置及び
方向を自動的に駆動制御する超音波探傷方法において、
形状測定の際に被測定体に白色微粉末を塗布することに
よって、高精度な形状測定を行うことを特徴とする超音
波探傷のための形状測定方法。
The shape of the object to be measured is measured in advance using a laser distance meter installed in a three-dimensional scanner, and based on the memorized shape data, the ultrasonic waves emitted from the ultrasonic probe detect the surface of the object to be measured. In an ultrasonic flaw detection method that automatically controls the position and direction of an ultrasonic probe so that the ultrasonic waves are incident at a certain angle and from a certain distance with respect to the point of incidence,
A shape measurement method for ultrasonic flaw detection characterized by performing highly accurate shape measurement by applying fine white powder to the object to be measured during shape measurement.
JP9465990A 1990-04-10 1990-04-10 Shape measuring method for ultrasonic flaw detection Pending JPH03291509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9465990A JPH03291509A (en) 1990-04-10 1990-04-10 Shape measuring method for ultrasonic flaw detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9465990A JPH03291509A (en) 1990-04-10 1990-04-10 Shape measuring method for ultrasonic flaw detection

Publications (1)

Publication Number Publication Date
JPH03291509A true JPH03291509A (en) 1991-12-20

Family

ID=14116385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9465990A Pending JPH03291509A (en) 1990-04-10 1990-04-10 Shape measuring method for ultrasonic flaw detection

Country Status (1)

Country Link
JP (1) JPH03291509A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011064645A (en) * 2009-09-18 2011-03-31 Shinmaywa Industries Ltd Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
JP2011523048A (en) * 2008-05-16 2011-08-04 ロッキード・マーチン・コーポレーション Vision system and method for mapping ultrasound data to CAD space
WO2017033638A1 (en) * 2015-08-25 2017-03-02 ソニー株式会社 Information processing device, information processing method and program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011523048A (en) * 2008-05-16 2011-08-04 ロッキード・マーチン・コーポレーション Vision system and method for mapping ultrasound data to CAD space
JP2011064645A (en) * 2009-09-18 2011-03-31 Shinmaywa Industries Ltd Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
WO2017033638A1 (en) * 2015-08-25 2017-03-02 ソニー株式会社 Information processing device, information processing method and program

Similar Documents

Publication Publication Date Title
US8794072B2 (en) Scanning acoustic microscope with profilometer function
EP0335035B1 (en) Method and apparatus for measuring a three-dimensional curved surface shape
Hickling et al. The use of ultrasonics for gauging and proximity sensing in air
JP3511450B2 (en) Position calibration method for optical measuring device
JPH0599617A (en) Method and device for detecting edge section and hole by optical scanning head
EP0584673A1 (en) Measurement of transparent container wall thickness
JP2958456B1 (en) Traveling vehicle distance measurement device
Moring et al. Acquisition of three-dimensional image data by a scanning laser range finder
GB2264601A (en) Object inspection
US4502785A (en) Surface profiling technique
JP2771594B2 (en) Method and apparatus for measuring displacement of object
WO1994015173A1 (en) Scanning sensor
JP2553867B2 (en) Ultrasonic flaw detector
JPH03291509A (en) Shape measuring method for ultrasonic flaw detection
JPH0612252B2 (en) Automatic three-dimensional shape measurement method
JPH0123041B2 (en)
JPH06174703A (en) Curved surface shape-follow-up type ultrasonic flaw detector and control method for probe attitude
JPH0545347A (en) Automatic ultrasonic flaw detecting method
JPS63309853A (en) Ultrasonic flaw detecting method
JPS6355642B2 (en)
KR100240259B1 (en) Apparatus for measuring three dimension using spherical lens and laser scanner
JPH05215528A (en) Three-dimensional shape measuring apparatus
KR920010549B1 (en) Shape measuring method and system of three dimensional curved surface
JPH07286845A (en) Method and instrument for measuring three-dimensional shape
JP2731062B2 (en) 3D shape measuring device