JPH0545347A - Automatic ultrasonic flaw detecting method - Google Patents

Automatic ultrasonic flaw detecting method

Info

Publication number
JPH0545347A
JPH0545347A JP3204150A JP20415091A JPH0545347A JP H0545347 A JPH0545347 A JP H0545347A JP 3204150 A JP3204150 A JP 3204150A JP 20415091 A JP20415091 A JP 20415091A JP H0545347 A JPH0545347 A JP H0545347A
Authority
JP
Japan
Prior art keywords
shape
data
measured
flaw detection
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3204150A
Other languages
Japanese (ja)
Inventor
Toshio Akagi
俊夫 赤木
Kenji Udagawa
建志 宇田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3204150A priority Critical patent/JPH0545347A/en
Publication of JPH0545347A publication Critical patent/JPH0545347A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To reduce the time necessary for inputting/measuring the shape data before detecting a flaw and to detect the flaw properly without being disturbed by the surface roughness of a object to-be-measured having many curved surfaces or when the shape is measured in the ultrasonic flaw detection. CONSTITUTION:The shape data of a to-be-measured body 1 obtained from a shape measuring device 1 is reproduced to a smooth form by a shape processing part 12 after the interpolation of the data using the spline function is conducted, and temporarily stored by a shape memory part 13. The posture of an ultrasonic probe 5 is obtained by a locus calculating part 14 based on the reproduced shape data so that the position and direction of the probe are maintained with a constant angle and at a constant distance to an entering point of ultrasonic waves on the surface of the to-be-measured body 1. Driving of the probe is controlled by a control device 16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多曲面を有する物体に
対し、自動的に、かつ高精度に超音波探傷を行う方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for automatically and highly accurately performing ultrasonic flaw detection on an object having multiple curved surfaces.

【0002】[0002]

【従来の技術】多自由度スキャナを用いて多曲面を有す
る物体を自動的に、かつ高精度に超音波探傷を行う方法
としては、被測定体の形状データを予め入力して記憶、
または距離センサを用いて測定して記憶し、その記憶さ
れた形状データに基づいて、超音波探触子の方向及び位
置を被測定体の表面の入射点において、一定の角度でか
つ一定の距離の点に保持するように超音波探触子を駆動
制御する方法がとられている。このうち、距離センサを
用いて被計測体の形状データを測定して記憶させる場合
には、距離計をスキャンさせて、X軸とY軸の各点(x
i ,yj )(i,j=1,2,3………)と被測定体表
面との距離を測定し、被測定体の形状関数zij=f(x
i ,yj )を求める手法が用いられている(例えば、特
開昭63−309852、特開昭63−30985
3)。
2. Description of the Related Art As a method of automatically and highly accurately performing ultrasonic flaw detection on an object having a multi-curved surface using a multi-degree-of-freedom scanner, shape data of an object to be measured is previously input and stored,
Or, it is measured by using a distance sensor and stored, and based on the stored shape data, the direction and position of the ultrasonic probe at the incident point on the surface of the object to be measured are at a constant angle and at a constant distance. The method of driving and controlling the ultrasonic probe so that the ultrasonic probe is held at this point is adopted. Of these, when measuring and storing the shape data of the object to be measured using the distance sensor, the distance meter is scanned and each point (x) of the X axis and the Y axis is scanned.
i , y j ) (i, j = 1, 2, 3 ...) And the surface of the object to be measured is measured, and the shape function of the object to be measured z ij = f (x
A method of obtaining i , y j ) is used (for example, JP-A-63-309852 and JP-A-63-30985).
3).

【0003】[0003]

【発明が解決しようとする課題】従来の多曲面を有する
物体を検査対象とした自動探傷装置においては、精度の
良い超音波探傷を行おうとすると、探触子の動きを正確
に形状に倣うよう姿勢制御する必要があり、そのため、
探触子の動きを決める基となる形状データについて、多
くの点におけるデータを入力、または測定する必要があ
り、形状データの入力、または形状の測定に多大の時
間、手間を要していた。さらに距離センサを用いた被測
定体の形状データの入力の際には、被測定体の表面が粗
い場合や、さらに距離センサのデータに外乱が多く含ま
れているときは、被計測体の形状関数zij=f(xi
j)は滑らかな関数とならない場合がある。そのよう
な形状データに基づいて、超音波探触子の位置及び方向
を被測定体の表面の入射点において、一定の角度でかつ
一定の距離の点に保持するように超音波探触子を走査さ
せようとすると、超音波探触子の走査軌道が滑らかにな
らないため、超音波探触子の動きが不安定となり、適切
な探傷ができないという問題点があった。
In the conventional automatic flaw detection apparatus for inspecting an object having a multi-curved surface, accurate ultrasonic wave flaw detection is performed so that the movement of the probe accurately follows the shape. Attitude control is needed, and therefore
It is necessary to input or measure the data at many points with respect to the shape data that is the basis for determining the movement of the probe, and it takes a lot of time and effort to input the shape data or measure the shape. Furthermore, when inputting the shape data of the measured object using the distance sensor, if the surface of the measured object is rough, or if the distance sensor data contains a lot of disturbance, the shape of the measured object is measured. The function z ij = f (x i ,
y j ) may not be a smooth function. Based on such shape data, the ultrasonic probe is held so that the position and direction of the ultrasonic probe are held at a certain angle and a certain distance at the incident point on the surface of the object to be measured. When scanning is attempted, the scanning trajectory of the ultrasonic probe does not become smooth, so the movement of the ultrasonic probe becomes unstable, and proper flaw detection cannot be performed.

【0004】本発明はかかる問題点を解決するためにな
されたもので、形状データの入力、または測定に必要な
時間、手間を低減し、かつ、被測定体の表面の粗さや距
離センサに対する外乱の影響によらず、超音波探触子を
滑らかに駆動制御し、適切な探傷を可能とすることを目
的としている。
The present invention has been made to solve the above problems, and reduces the time and labor required for inputting or measuring the shape data, and the surface roughness of the object to be measured or disturbance to the distance sensor. The purpose of the present invention is to smoothly drive and control the ultrasonic probe to enable appropriate flaw detection regardless of the influence of.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明の自動超音波探傷装置においては、被測定体
の形状データを代表された点のデータとして予め入力し
て記憶させ、その記憶されたデータから、スプライン関
数を用いた補間を行って、滑らかな形状を再現し、その
再現された形状データに基づいて、超音波探触子の位置
及び方向を、前記被測定体の表面の入射点において、一
定の角度でかつ一定の距離の点に保持するように超音波
探触子を自動的に駆動制御するものである。さらに、被
測定体の形状データを代表された点のデータとして得る
ために、距離センサを用いて測定し、記憶させることも
できる。
In order to achieve the above object, in the automatic ultrasonic flaw detector of the present invention, the shape data of the object to be measured is previously input and stored as data of a representative point, Interpolation using a spline function is performed from the stored data to reproduce a smooth shape, and based on the reproduced shape data, the position and direction of the ultrasonic probe are set to the surface of the measured object. The ultrasonic probe is automatically driven and controlled so as to hold it at a point at a constant angle and a constant distance at the point of incidence. Further, in order to obtain the shape data of the object to be measured as data of a representative point, it is possible to measure and store the data using a distance sensor.

【0006】[0006]

【作用】上記のように、本装置ではスプライン関数を用
いた形状処理を行うことにより、被測定体の形状を代表
する限られた個数の点のデータが補間されると同時に平
滑化がなされ、実際に近い形状を表すことのできる多数
の点のデータを得ることができるため、その補間された
滑らかな形状データをもとに超音波探触子の走査させれ
ば、精度の良い、安定した探傷となる。
As described above, in the present apparatus, by performing the shape processing using the spline function, the data of a limited number of points representing the shape of the object to be measured are interpolated and smoothed at the same time. Since it is possible to obtain data for a large number of points that can represent a shape that is close to the actual shape, if the ultrasonic probe is scanned based on the interpolated smooth shape data, accurate and stable It will be a flaw detection.

【0007】なお、一般に離散的データの補間には、ス
プライン関数の他にラグランジュ多項式を用いる方法が
よく知られているが、これは曲線を単一の多項式で表そ
うとするものであり、該技術のように補間によって多曲
面を持つ物体の形状を表す場合には、様々な曲率を含む
曲線、曲面となるため、補間の際に、ルンゲの現象に代
表されるような余計な振動を生じる場合があり、正確な
形状を再現することができない。これに対し、スプライ
ン関数を用いる方法では、曲線・曲面を複数の多項式の
組み合わせで表そうとするため、余計な振動は生じず、
任意の曲率を含む曲線、曲面を表すことができるため、
該技術においては、スプライン関数を用いて補間をする
ことが最適であるといえる。
In general, a method of using a Lagrange polynomial in addition to the spline function is well known for the interpolation of discrete data, but this is intended to represent a curve by a single polynomial. When expressing the shape of an object with multiple curved surfaces by interpolation as in the technique, curves and curved surfaces that include various curvatures are generated, and therefore extra vibration such as the Runge phenomenon occurs during interpolation. In some cases, the exact shape cannot be reproduced. On the other hand, in the method using the spline function, since an attempt is made to represent a curve / curved surface by a combination of a plurality of polynomials, unnecessary vibration does not occur,
Since it is possible to represent curves and curved surfaces that include arbitrary curvature,
In this technique, it can be said that it is optimal to perform interpolation using a spline function.

【0008】このスプライン関数を用いた補間を行う際
には、スプライン曲面への当てはめによって行うか、ま
たは、互いに垂直な2方向についてスプライン曲線への
当てはめを実施すれば、より滑らかな形状を再現するこ
とができる。
When interpolation using this spline function is performed by fitting to a spline curved surface or by fitting to a spline curve in two directions perpendicular to each other, a smoother shape is reproduced. be able to.

【0009】[0009]

【実施例】以下、本発明の一実施例として、距離センサ
を用いて多曲面を有する被測定体の形状を予め測定し、
水中にて被測定体内部の欠陥を検出するための超音波探
傷を行う例について、図面を参照しながら説明する。
EXAMPLES As one example of the present invention, the shape of an object to be measured having a multi-curved surface is previously measured using a distance sensor,
An example of performing ultrasonic flaw detection for detecting a defect inside the object to be measured in water will be described with reference to the drawings.

【0010】本実施例における装置の計測部の概略を図
1に、また、データの流れと全体の概略を図2に示す。
図1において、超音波探触子5はx軸、y軸、z軸、θ
軸、α軸から成る5軸スキャナに取り付けられており、
その位置や姿勢がコントロールされる。また距離センサ
2はz軸に取り付けられており、x軸、y軸、z軸の動
きによりその位置がコントロールされる。なお、x軸、
y軸、z軸は互いに直交し、θ軸はz軸に取り付けられ
z軸まわりの回転をし、α軸はθ軸に取り付けられθ軸
と直角方向に回転する。
FIG. 1 shows an outline of the measuring unit of the apparatus in this embodiment, and FIG. 2 shows an outline of the data flow and the whole.
In FIG. 1, the ultrasonic probe 5 has an x-axis, a y-axis, a z-axis, and a θ.
It is attached to a 5-axis scanner consisting of an axis and an α-axis,
Its position and posture are controlled. The distance sensor 2 is attached to the z-axis, and its position is controlled by the movements of the x-axis, the y-axis, and the z-axis. Note that the x-axis,
The y axis and the z axis are orthogonal to each other, the θ axis is attached to the z axis and rotates around the z axis, and the α axis is attached to the θ axis and rotates in a direction perpendicular to the θ axis.

【0011】次に、探傷手順に従い、本装置の動作を説
明する。まず、水槽6内に設置された被測定体1の上部
で距離センサ2をスキャンさせ、x軸とy軸の各点(x
i ,yj )における被測定体1の表面と距離センサ2の
距離を測定し、被測定体1の形状関数zij=f(xi
j )を得る。この(xi ,yj )のメッシュの設定の
仕方を示すのが図3である。この例ではx軸に沿ってd
xのピッチでM個の点を測定し、y軸に沿ってdyのピ
ッチでN個の点を測定したものとする。
Next, the operation of this apparatus will be described according to the flaw detection procedure. First, the distance sensor 2 is scanned above the device under test 1 installed in the water tank 6, and each point (x
The distance between the surface of the measured object 1 and the distance sensor 2 at i , y j ) is measured, and the shape function z ij = f (x i ,
y j ). FIG. 3 shows how to set the mesh of (x i , y j ). In this example d along the x-axis
It is assumed that M points are measured at a pitch of x and N points are measured at a pitch of dy along the y-axis.

【0012】距離センサ2には、非接触式のレーザ距離
計や超音波距離計、あるいは接触式の変位形などを用い
ることができ、その距離データは形状測定器11によっ
て取得される。形状測定器11からのデータは、形状処
理部12において、スプライン曲面への当てはめか、ま
たは、x,yの2方向についてスプライン曲線への当て
はめによって補間され、滑らかな形状データに変換され
る。
As the distance sensor 2, a non-contact type laser range finder, an ultrasonic range finder, or a contact type displacement type can be used, and the distance data thereof is acquired by the shape measuring instrument 11. The data from the shape measuring instrument 11 is interpolated in the shape processing unit 12 by fitting to a spline curved surface or fitting to a spline curve in two directions of x and y, and converted into smooth shape data.

【0013】このとき、超音波探傷を行いたいポイント
のx軸方向のピッチをdx2、y軸方向のピッチをdy
2とすると、測定されたM*N個のデータは形状処理部
12においてスプライン関数を用いた補間により、x軸
方向にM*(dx/dx2)個、y軸方向にN*(dy
/dy2)個の形状データに変換される。このスプライ
ン関数を用いた補間を行う場合には、一般にdx/dx
2、dy/dy2とも10以上にしても十分であるの
で、初めに測定する代表点のデータは、最終的に超音波
探傷を行う点の1/100以下の個数で済むことにな
る。
At this time, the pitch in the x-axis direction at the point where ultrasonic flaw detection is desired is dx2, and the pitch in the y-axis direction is dy.
2, the measured M * N data are M * (dx / dx2) in the x-axis direction and N * (dy in the y-axis direction by the interpolation using the spline function in the shape processing unit 12.
/ Dy2) shape data. When performing interpolation using this spline function, generally dx / dx
Since 2 and dy / dy2 are sufficient even if they are 10 or more, the data of the representative points to be initially measured will be 1/100 or less of the points at which ultrasonic flaw detection is finally performed.

【0014】形状処理部12からのデータは形状記憶部
13に一旦記憶され、必要に応じて軌道計算部14に送
られる。軌道計算部14は形状記憶部13に取り込まれ
ている形状データから、各点(xi ,yj ,zij)につ
いて、超音波探触子5が法線方向で、かつ一定の距離離
れた点から被測定体1の表面に向かうようにするための
5軸スキャナの座標(x,y,z,θ,α)を計算す
る。これを軌道データとする。この軌道データより、x
軸、y軸、z軸、θ軸、α軸の各軸のモータの動きが計
算され、制御装置16へ送られ、5軸スキャナが駆動す
る。
The data from the shape processing unit 12 is temporarily stored in the shape storage unit 13 and sent to the trajectory calculation unit 14 as needed. The trajectory calculation unit 14 separates the ultrasonic probe 5 from the shape data stored in the shape storage unit 13 at each point (x i , y j , z ij ) in the normal direction and at a constant distance. The coordinates (x, y, z, θ, α) of the 5-axis scanner for moving from the point to the surface of the DUT 1 are calculated. This is orbital data. From this orbital data, x
The movements of the motors for the axes, y-axis, z-axis, θ-axis, and α-axis are calculated and sent to the control device 16 to drive the 5-axis scanner.

【0015】このようにして超音波探触子5は被測定体
1の表面に倣うように、法線方向から一定の距離を保っ
て動くことになり、超音波探傷が可能となる。超音波探
傷は、上記のごとく超音波探触子5が被測定体1の表面
に倣うように動いている間、探傷を行うポイント毎に超
音波探触子5からのデータを超音波探傷器17が取り込
み、その探傷データを探傷データ処理装置18がCRT
上に探傷結果として表示することでなされる。
In this way, the ultrasonic probe 5 moves so as to follow the surface of the object to be measured 1 at a constant distance from the normal direction, and ultrasonic flaw detection is possible. In the ultrasonic flaw detection, while the ultrasonic probe 5 is moving so as to follow the surface of the DUT 1 as described above, the ultrasonic flaw detector 5 uses data from the ultrasonic probe 5 at each point where flaw detection is performed. 17 takes in the flaw detection data, and the flaw detection data processing device 18 carries out CRT.
This is done by displaying the flaw detection result above.

【0016】次に、図4に示すような曲面を含む探傷サ
ンプルにおける100mm×100mmの範囲を探傷する場
合を例として、本探傷方法実施前と、実施後の差を以下
に示す。まず、同一の探傷ピッチdx2=dy2=0.
1mmで探傷する場合、本発明実施前と実施後の距離計を
用いた形状測定に要する時間を比較したものを表1に示
す。本発明実施前はdx=dy=0.1mmのピッチにて
測定を行っており、約40分を要す。一方、本発明実施
後はdx=dy=1mmのピッチで測定が可能であり、こ
のときは約6分を要す。これより、本発明によって、形
状測定に要する時間が大幅に低減されることがわかる。
Next, the difference between before and after execution of the present flaw detection method will be described below by taking as an example the case of flaw detection in a 100 mm × 100 mm range in a flaw detection sample including a curved surface as shown in FIG. First, the same flaw detection pitch dx2 = dy2 = 0.
Table 1 shows a comparison of the time required for shape measurement using the distance meter before and after the present invention when flaw detection is performed with 1 mm. Before carrying out the present invention, the measurement is performed at a pitch of dx = dy = 0.1 mm, which requires about 40 minutes. On the other hand, after carrying out the present invention, the measurement can be performed at a pitch of dx = dy = 1 mm, and in this case, it takes about 6 minutes. From this, it can be seen that the present invention significantly reduces the time required for shape measurement.

【0017】次に、形状測定のピッチを同一のdx=d
y=1mmとして超音波探傷を実施した場合に、本発明実
施前と実施後において検出されたサンプル中の欠陥の個
数を比較した。なお、探傷のピッチは本発明実施はdx
2=dy2=1mmとなり、超音波探傷点が100×10
0ポイント、実施後ではdx2=dy2=0.1mmとし
て、超音波探傷点1000×1000ポイントとした。
その結果を、表2に示す。サンプル中の欠陥が本発明実
施前は12個、実施後は35個検出されており、本発明
によって、超音波探傷の精度が大幅に向上したことがわ
かる。
Next, the shape measurement pitch is set to the same dx = d.
When ultrasonic flaw detection was performed with y = 1 mm, the numbers of defects in the samples detected before and after the present invention were compared. The pitch of flaw detection is dx in the embodiment of the present invention.
2 = dy2 = 1 mm, and the ultrasonic flaw detection point is 100 x 10
0 point, and dx2 = dy2 = 0.1 mm after execution, and ultrasonic flaw detection points were 1000 × 1000 points.
The results are shown in Table 2. Twelve defects were detected in the sample before the present invention was carried out, and 35 defects were carried out after the present invention. It can be seen that the present invention significantly improved the accuracy of ultrasonic flaw detection.

【0018】なお、以上の実施例では被測定体表面に対
し超音波探触子がつねに法線方向を向きかつ一定距離の
場合、即ち被測定体の内部を探傷する例について述べた
が、同様の方式によって表面に対して一定の角度を及び
距離を保ちながら、表面に表面波を発生しながら表面の
探傷を行うことも可能である。
In the above embodiments, the case where the ultrasonic probe always points in the direction of the normal to the surface of the object to be measured and is at a constant distance, that is, an example in which the inside of the object to be inspected is flawed is described. It is also possible to detect the surface by generating a surface wave while maintaining a constant angle and distance to the surface.

【0019】また、以上の実施例では、距離センサを用
いて被測定体の代表点の形状データを測定し、このデー
タに基づいて形状データを作成し、探触子軌道計算を行
ったが、代表点における形状データの入力は物体製造時
や入手時などにおいてCADなどから得た形状情報を用
いても良い。その際には代表点のデータのみ入力すれば
良いので探傷ポイント全点における形状データを必要と
した従来の方法に比べ、形状データを入力する手間、時
間が大幅に低減されることになる。
In the above embodiment, the shape data of the representative point of the object to be measured is measured using the distance sensor, the shape data is created based on this data, and the probe trajectory calculation is performed. For inputting the shape data at the representative point, shape information obtained from CAD or the like at the time of manufacturing or obtaining the object may be used. In that case, since it is sufficient to input only the data of the representative points, the labor and time for inputting the shape data are significantly reduced as compared with the conventional method that requires the shape data at all the flaw detection points.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【発明の効果】以上説明したとおり、本発明によれば、
被測定体の形状データを代表された点のデータとして予
め入力して記憶し、記憶されたデータからスプライン関
数を用いた補間を利用して形状を再現し、その再現され
た形状データに基づいて、超音波探触子の位置及び方向
を、前記被測定体の表面の入射点において、一定の角度
でかつ一定の距離の点に保持するように超音波探触子を
自動的に駆動制御するので、入力すべき形状代表点のデ
ータが少なくて済む。
As described above, according to the present invention,
The shape data of the object to be measured is input and stored in advance as representative point data, the shape is reproduced from the stored data by using interpolation using a spline function, and based on the reproduced shape data. , The ultrasonic probe is automatically driven and controlled so that the position and direction of the ultrasonic probe are held at a point at a constant angle and a constant distance at the incident point on the surface of the object to be measured. Therefore, the data of the shape representative points to be input can be reduced.

【0023】また、形状を代表する点のデータは、距離
センサを用いた測定によっても得ることができるが、そ
の際には、測定すべき点の数が少なくて済むので、測定
に必要な時間、手間が低減されるだけでなく、スプライ
ン関数を用いた補間を行う際、同時にデータの平滑化が
なされるため、被測定体の表面の粗さや距離センサへの
外乱にかかわらず、滑らかな形状データを得ることがで
き、それによって超音波探触子を滑らかに駆動できるの
で、高精度で安定した探傷ができる。
The data representing the points representing the shape can also be obtained by measurement using a distance sensor. In this case, however, the number of points to be measured can be small, so that the time required for measurement can be reduced. In addition to reducing labor, the data is smoothed at the same time when the interpolation using the spline function is performed. Since data can be obtained and the ultrasonic probe can be driven smoothly by it, highly accurate and stable flaw detection can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】システム計測部の概略図。FIG. 1 is a schematic diagram of a system measurement unit.

【図2】データの流れとシステム全体の概略図。FIG. 2 is a schematic diagram of a data flow and the entire system.

【図3】距離センサを用いた形状測定図。FIG. 3 is a shape measurement diagram using a distance sensor.

【図4】探傷サンプル。FIG. 4 is a flaw detection sample.

【符号の説明】[Explanation of symbols]

1 被測定体 2 距離センサ 3 α軸モータ 4 θ軸モータ 5 超音波探触子 6 水槽 11 形状測定器 12 形状処理部 13 形状記憶部 14 軌道計算部 15 デジタル計算機 16 制御装置 17 超音波探傷器 18 探傷データ処理装置 1 Object to be Measured 2 Distance Sensor 3 α-axis Motor 4 θ-axis Motor 5 Ultrasonic Probe 6 Water Tank 11 Shape Measuring Instrument 12 Shape Processing Section 13 Shape Storage Section 14 Trajectory Calculation Section 15 Digital Computer 16 Controller 17 Ultrasonic Flaw Detector 18 Flaw detection data processor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 多曲面を有する被測定体に対し、計算機
に予め記憶された形状データを基に、超音波探触子を、
その方向及び位置が被測定体の表面の入射点において、
一定の角度でかつ一定の距離の点に保持するようにしな
がら走査させることにより自動探傷を行う方法におい
て、被測定体の形状を、代表点のデータとして計算機に
予め入力し、そのデータをスプライン関数を用いて補間
して滑らかな形状を再現し、その再現された形状データ
に基づいて、超音波探触子の方向及び位置を決定し、走
査させることを特徴とする超音波探傷方法。
1. An ultrasonic probe for an object to be measured having a multi-curved surface, based on shape data stored in advance in a computer,
At the incident point on the surface of the DUT whose direction and position are,
In the method for automatic flaw detection by scanning while holding at a constant angle and at a constant distance point, the shape of the measured object is input in advance in the computer as the data of the representative point, and the data is spline function. An ultrasonic flaw detection method characterized in that a smooth shape is reproduced by performing interpolation by using, and the direction and position of the ultrasonic probe are determined and scanned based on the reproduced shape data.
【請求項2】 被測定体の形状を、距離センサを用い
て、代表点のデータとして測定し、計算機に記憶させる
ことを特徴とする請求項1記載の超音波探傷方法。
2. The ultrasonic flaw detection method according to claim 1, wherein the shape of the object to be measured is measured as data of a representative point using a distance sensor and is stored in a computer.
JP3204150A 1991-08-14 1991-08-14 Automatic ultrasonic flaw detecting method Withdrawn JPH0545347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3204150A JPH0545347A (en) 1991-08-14 1991-08-14 Automatic ultrasonic flaw detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3204150A JPH0545347A (en) 1991-08-14 1991-08-14 Automatic ultrasonic flaw detecting method

Publications (1)

Publication Number Publication Date
JPH0545347A true JPH0545347A (en) 1993-02-23

Family

ID=16485669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3204150A Withdrawn JPH0545347A (en) 1991-08-14 1991-08-14 Automatic ultrasonic flaw detecting method

Country Status (1)

Country Link
JP (1) JPH0545347A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329632A (en) * 2005-05-23 2006-12-07 Sii Nanotechnology Inc Nondestructive inspection device and non-destructive inspection method using it
JP2007509332A (en) * 2003-10-24 2007-04-12 ゲーイー・インスペクチオン・テクノロジーズ・ゲーエムベーハー Method and apparatus for ultrasonic inspection of members with complex surface contours
WO2009107746A1 (en) 2008-02-26 2009-09-03 株式会社東芝 Ultrasonic inspection device
WO2009107745A1 (en) * 2008-02-26 2009-09-03 株式会社東芝 Ultrasonic examination device
JP2010008212A (en) * 2008-06-26 2010-01-14 Toshiba Corp Flaw detection test method
JP2011064645A (en) * 2009-09-18 2011-03-31 Shinmaywa Industries Ltd Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
KR101919028B1 (en) * 2017-06-22 2019-01-31 두산중공업 주식회사 Method for ultrasonic inspection and, apparatus and system for the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007509332A (en) * 2003-10-24 2007-04-12 ゲーイー・インスペクチオン・テクノロジーズ・ゲーエムベーハー Method and apparatus for ultrasonic inspection of members with complex surface contours
JP4688811B2 (en) * 2003-10-24 2011-05-25 ジーイー インスペクション テクノロジーズ ゲーエムベーハー Method and apparatus for ultrasonic inspection of members with complex surface contours
JP2006329632A (en) * 2005-05-23 2006-12-07 Sii Nanotechnology Inc Nondestructive inspection device and non-destructive inspection method using it
WO2009107746A1 (en) 2008-02-26 2009-09-03 株式会社東芝 Ultrasonic inspection device
WO2009107745A1 (en) * 2008-02-26 2009-09-03 株式会社東芝 Ultrasonic examination device
JP2009204327A (en) * 2008-02-26 2009-09-10 Toshiba Plant Systems & Services Corp Ultrasonic inspection device
JP2009204328A (en) * 2008-02-26 2009-09-10 Toshiba Plant Systems & Services Corp Ultrasonic inspection device
US8371171B2 (en) 2008-02-26 2013-02-12 Kabushiki Kaisha Toshiba Ultrasonic inspection apparatus
US8413515B2 (en) 2008-02-26 2013-04-09 Kabushiki Kaisha Toshiba Ultrasonic inspection apparatus
JP2010008212A (en) * 2008-06-26 2010-01-14 Toshiba Corp Flaw detection test method
JP2011064645A (en) * 2009-09-18 2011-03-31 Shinmaywa Industries Ltd Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
KR101919028B1 (en) * 2017-06-22 2019-01-31 두산중공업 주식회사 Method for ultrasonic inspection and, apparatus and system for the same

Similar Documents

Publication Publication Date Title
US5341183A (en) Method for controlling projection of optical layup template
US7865316B2 (en) System, program product, and related methods for registering three-dimensional models to point data representing the pose of a part
WO1991002971A1 (en) Ultrasonic flaw detector
EP3542130B1 (en) Method of calibrating an analogue contact probe and method of transforming a probe signal from an analogue contact probe into a spatial measurement value
EP1703251B1 (en) Interaxis angle correction method
EP1662252A1 (en) X-ray inspection apparatus, x-ray inspection method, and x-ray inspection program
JPH0545347A (en) Automatic ultrasonic flaw detecting method
JP2720077B2 (en) Ultrasonic flaw detector
JP2553867B2 (en) Ultrasonic flaw detector
JP3880030B2 (en) V-groove shape measuring method and apparatus
JPH06174703A (en) Curved surface shape-follow-up type ultrasonic flaw detector and control method for probe attitude
JP2859659B2 (en) Ultrasonic flaw detector
JPH09325136A (en) Automatic defect evaluating method for centrifugal type impeller
JP3195850B2 (en) Method and apparatus for measuring three-dimensional position on curved surface
JPH11257945A (en) Probe type shape measuring apparatus and shape measuring method
Séguin-Charbonneau et al. Automated Path Generation for Robotic UT Inspection of CFRP Components
JP2812737B2 (en) Probe speed controller
CN106706755A (en) Immersion type ultrasonic flaw detection method
JPH06137854A (en) Three-dimensional form inspection method
JPH07260423A (en) Noncontact distance measuring method
JP3195851B2 (en) Method and apparatus for measuring three-dimensional position on curved surface
KR920006740B1 (en) Noncontact type tire contour shape measurement method
JP2507412B2 (en) Machining line teaching method
JPH03291509A (en) Shape measuring method for ultrasonic flaw detection
CN113614775A (en) Computer-implemented method for analyzing measurement data of an object

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981112