JPH11257945A - Probe type shape measuring apparatus and shape measuring method - Google Patents
Probe type shape measuring apparatus and shape measuring methodInfo
- Publication number
- JPH11257945A JPH11257945A JP8032298A JP8032298A JPH11257945A JP H11257945 A JPH11257945 A JP H11257945A JP 8032298 A JP8032298 A JP 8032298A JP 8032298 A JP8032298 A JP 8032298A JP H11257945 A JPH11257945 A JP H11257945A
- Authority
- JP
- Japan
- Prior art keywords
- probe
- point
- shape measuring
- measured
- sequence data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- A Measuring Device Byusing Mechanical Method (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、プローブ式形状測
定装置及びその装置における形状測定方法、より詳細に
は、自由曲面の輪郭形状を測定プローブを用いて測定す
るプローブ式形状測定装置及びその装置における形状測
定方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a probe-type shape measuring apparatus and a shape measuring method for the apparatus, and more particularly, to a probe-type shape measuring apparatus for measuring a contour shape of a free-form surface using a measuring probe and an apparatus therefor. And a shape measuring method.
【0002】[0002]
【従来の技術】非球面レンズなど設計自由度の高いレン
ズ面の形状評価の手段として、プローブ式形状測定装置
を用いて特定断面の形状を測定し、測定データを基に近
軸曲率半径Rや形状誤差などを評価する方法がある。従
来の形状測定装置を図面に基づき説明する。図1は、プ
ローブ式形状測定装置の概略図である。測定プローブ2
は、少なくとも2自由度で動作可能なステージ3上に取
り付けられ、被測定物1の表面1a上を連続的に走査す
る。この時のプローブの軌跡を図示しない測長器によっ
て、少なくとも2次元の座標の点列として測定する。測
定プローブには、先端が数μmの球面であるスタイラス
や、小径のルビー球等を先端に付けた接触式プローブを
用いるのが一般であるが、光触針など非接触式のプロー
ブも用いられる。樹脂製の射出成形品など表面が傷つき
やすい被測定物の形状測定には、曲率半径Rが1mm前後
の大きさの球面を用いたものや光触針式のものが用いら
れる。2. Description of the Related Art As a means for evaluating the shape of a lens surface having a high degree of design freedom such as an aspherical lens, a shape of a specific cross section is measured using a probe-type shape measuring device, and a paraxial radius of curvature R or the like is determined based on measurement data. There is a method for evaluating a shape error and the like. A conventional shape measuring device will be described with reference to the drawings. FIG. 1 is a schematic diagram of a probe-type shape measuring apparatus. Measurement probe 2
Is mounted on a stage 3 operable with at least two degrees of freedom, and continuously scans the surface 1a of the DUT 1. The trajectory of the probe at this time is measured as a point sequence of at least two-dimensional coordinates by a length measuring device (not shown). As a measurement probe, it is common to use a stylus with a spherical tip of several μm or a contact probe with a small-diameter ruby ball attached to the tip, but a non-contact probe such as an optical stylus is also used. . For measuring the shape of an object to be measured, such as a resin injection-molded product, whose surface is easily damaged, a method using a spherical surface having a radius of curvature R of about 1 mm or an optical stylus type is used.
【0003】ここで、先端に球面を用いた接触式プロー
ブで形状を測定する場合を例に採って説明する。プロー
ブと被測定面の接触点は被測定面の傾斜(角度、傾斜方
向)により逐一変化していくため、測長器によって測定
される座標はプローブ先端の球の中心位置の移動とみな
し、球の中心から接触点までの位置を推定することによ
り被測定物の形状を測定する。被測定物が放物面などの
回転対称体の場合の形状評価法としては、回転軸を含む
平面での輪郭形状を評価するのが一般的である。この場
合、被測定面の傾斜のうち、走査方向と直交する方向の
傾斜成分がほぼ0とみなせるため、動作軌跡と、その法
線ベクトルは同一の平面上にのる。よって2次元平面内
での曲線と円の接触問題として比較的簡単に解くことが
できる。Here, a case where the shape is measured with a contact probe using a spherical surface at the tip will be described as an example. Since the point of contact between the probe and the surface to be measured changes every time depending on the inclination (angle, inclination direction) of the surface to be measured, the coordinates measured by the length measuring device are regarded as the movement of the center position of the sphere at the tip of the probe, Of the object to be measured by estimating the position from the center to the contact point. As a shape evaluation method when the object to be measured is a rotationally symmetric body such as a paraboloid, it is general to evaluate a contour shape on a plane including a rotation axis. In this case, among the inclinations of the surface to be measured, the inclination component in the direction orthogonal to the scanning direction can be regarded as substantially zero, so that the motion trajectory and its normal vector are on the same plane. Therefore, it can be relatively easily solved as a contact problem between a curve and a circle in a two-dimensional plane.
【0004】[0004]
【発明が解決しようとする課題】しかし、走査系レンズ
などにアナモフィックな光学部品が普及するにつれて、
走査方向に直交する方向の傾斜成分が0でない部分の断
面形状を測定したい、又は有効領域全面を測定したいと
いう要求が出てきた。この場合、プローブと被測定面の
接触位置の推定が未知の自由曲面と球面の接触問題とな
り、これを測定データのみから推定することは非常に難
しい。又、プローブが光触針式プローブにおいても被測
定面の傾斜に依存して反射光が傾くため、プローブの出
力データの原点位置が数μmのオーダーで変化するので
測定データのみから被測定面の形状を正確に推定するこ
とは非常に難しい。よって、各測定データにおける法線
ベクトルを求め、原点位置の変動を補正する必要があ
る。そこで本発明の目的は、任意の被測定面に対して被
測定面の形状を正確に推定するため、各測定データから
平面近似し、その法線ベクトルを求める方法を採用する
とともに、プローブに依存する誤差の補正を行ったプロ
ーブ式形状測定装置及びその装置における形状測定方法
を提供することである。However, as anamorphic optical parts are widely used for scanning lenses and the like,
There has been a demand for measuring the cross-sectional shape of a portion where the tilt component in the direction orthogonal to the scanning direction is not zero, or for measuring the entire effective area. In this case, estimation of the contact position between the probe and the surface to be measured is a problem of contact between the unknown free-form surface and the spherical surface, and it is very difficult to estimate this from only the measurement data. In addition, even when the probe is an optical stylus type probe, the reflected light is inclined depending on the inclination of the surface to be measured, and the origin position of the output data of the probe changes in the order of several μm. It is very difficult to accurately estimate the shape. Therefore, it is necessary to obtain a normal vector in each measurement data and correct the fluctuation of the origin position. Therefore, an object of the present invention is to employ a method of obtaining a normal vector by approximating a plane from each measurement data and accurately estimating the shape of the measured surface with respect to an arbitrary measured surface, and relying on a probe. An object of the present invention is to provide a probe-type shape measuring apparatus that corrects an error and a shape measuring method in the apparatus.
【0005】[0005]
【課題を解決するための手段】請求項1の発明は、測定
プローブで被測定面上を走査し、プローブの動作軌跡を
直交座標系の点列データとして求める形状測定手段と、
測定された点列データより被測定物の輪郭形状を求める
演算手段を備えた形状測定装置において、前記形状測定
手段は、ユーザの設定によるプローブの走査により、第
1の点列データと、該第1の点列データの走査方向と直
交方向に微小量ずれた位置での第2の点列データを求め
る手段であり、前記演算手段は、前記第1の点列データ
の各点に対して、前記第1及び第2の点列データより第
1の点列データの各点の近傍数点の点群を選び、前記点
群を平面に近似し、その近似平面の法線ベクトルを求め
る手段であることを特徴とする形状測定装置である。According to a first aspect of the present invention, there is provided a shape measuring means which scans a surface to be measured with a measuring probe, and obtains a motion trajectory of the probe as point sequence data in a rectangular coordinate system;
In a shape measuring apparatus provided with calculating means for calculating a contour shape of an object to be measured from measured point sequence data, the shape measuring unit scans a first point sequence data and a second point sequence data by scanning a probe according to a user setting. A second point sequence data at a position deviated by a small amount in a direction perpendicular to the scanning direction of the first point sequence data, wherein the calculating means calculates, for each point of the first point sequence data, Means for selecting a point group of several points near each point of the first point sequence data from the first and second point sequence data, approximating the point group to a plane, and obtaining a normal vector of the approximate plane; There is provided a shape measuring device.
【0006】請求項2の発明は、請求項1に記載の形状
測定装置において、前記測定プローブはその先端が球面
である接触式プローブであり、前記演算手段は、前記法
線ベクトルと前記接触式プローブの先端の曲率半径によ
り、該接触式プローブと前記被測定物との接触点の位置
を求める手段であることを特徴とする形状測定装置であ
る。According to a second aspect of the present invention, in the shape measuring apparatus according to the first aspect, the measuring probe is a contact-type probe having a spherical tip at the tip thereof, and the arithmetic means includes the normal vector and the contact-type probe. A shape measuring apparatus characterized in that it is means for obtaining a position of a contact point between the contact type probe and the object to be measured based on a radius of curvature of a tip of the probe.
【0007】請求項3の発明は、請求項2に記載の形状
測定装置において、前記演算手段は、前記法線ベクトル
と前記接触式プローブの先端の曲率半径に加え、前記接
触式プローブの真球度誤差モデルにより、前記接触式プ
ローブと前記被測定物との接触点の位置を求める手段で
あることを特徴とする形状測定装置である。According to a third aspect of the present invention, in the shape measuring apparatus according to the second aspect, the calculating means includes, in addition to the normal vector and the radius of curvature of the tip of the contact probe, a true sphere of the contact probe. A shape measuring apparatus characterized in that it is means for obtaining a position of a contact point between the contact probe and the object to be measured using a degree error model.
【0008】請求項4の発明は、請求項1に記載の形状
測定装置において、前記測定プローブは、被測定面に収
束光束を照射し該被測定面からの反射光を結像させたと
きの焦点位置の変動から、前記被測定面との距離を測定
する光触針式プローブであり、前記演算手段は、前記法
線ベクトルと前記光触針式プローブの原点誤差特性モデ
ルにより、該光触針式プローブの原点誤差を補正する手
段であることを特徴とする形状測定装置である。According to a fourth aspect of the present invention, in the shape measuring apparatus according to the first aspect, the measuring probe emits a convergent light beam to the surface to be measured and forms an image of reflected light from the surface to be measured. An optical stylus probe for measuring the distance to the surface to be measured from a change in a focal position, wherein the calculating means calculates the optical stylus based on the normal vector and the origin error characteristic model of the optical stylus probe; A shape measuring apparatus characterized in that it is means for correcting the origin error of the needle type probe.
【0009】請求項5の発明は、請求項4に記載の形状
測定装置において、前記演算手段は、前記法線ベクトル
と前記光触針式プローブの原点誤差特性モデルにより、
該光触針式プローブの原点誤差を補正し、加えて、前記
法線ベクトルと前記光触針式プローブの感度特性モデル
により、該光触針式プローブの感度を求め、該光触針式
プローブの感度と該光触針式プローブのセンサ出力値に
よるフォーカスエラー誤差を補正する手段であることを
特徴とする形状測定装置である。According to a fifth aspect of the present invention, in the shape measuring apparatus according to the fourth aspect, the calculation means calculates the normal vector and the origin error characteristic model of the optical stylus type probe.
The origin error of the optical stylus probe is corrected, and in addition, the sensitivity of the optical stylus probe is determined by the normal vector and the sensitivity characteristic model of the optical stylus probe. A shape error measuring device for correcting a focus error error caused by the sensitivity of the optical probe and the sensor output value of the optical stylus probe.
【0010】請求項6の発明は、請求項1乃至5のいず
れかに記載の形状測定装置において、前記平面への近似
の際、近似誤差が所定の値より大きい場合、その測定点
を無効データとして点列から削除することを特徴とする
形状測定装置である。According to a sixth aspect of the present invention, in the shape measuring apparatus according to any one of the first to fifth aspects, when an approximation error is larger than a predetermined value at the time of approximation to the plane, the measurement point is set to invalid data. The shape measurement device is characterized in that the shape measurement device is deleted from the point sequence.
【0011】請求項7の発明は、測定プローブで被測定
面上を走査し、プローブの動作軌跡を直交座標系の点列
データとして求める形状測定手段と、測定された点列デ
ータより被測定物の輪郭形状を求める演算手段を備えた
形状測定装置における形状測定方法であって、ユーザの
設定によるプローブの走査により、第1の点列データ
と、該第1の点列データの走査方向と直交方向に微小量
ずれた位置での第2の点列データを求め、前記第1の点
列データの各点に対して、前記第1及び第2の点列デー
タより第1の点列データの各点の近傍数点の点群を選
び、前記点群を平面に近似し、その近似平面の法線ベク
トルを求めることを特徴とする形状測定方法である。According to a seventh aspect of the present invention, there is provided a shape measuring means which scans a surface to be measured with a measuring probe and obtains a motion trajectory of the probe as point sequence data in a rectangular coordinate system, and an object to be measured based on the measured point sequence data. A shape measuring method in a shape measuring device provided with a calculating means for calculating a contour shape of the first point sequence data, the first point sequence data and a scanning direction of the first point sequence data being orthogonal to a scanning direction of a probe set by a user. The second point sequence data at a position shifted by a small amount in the direction is obtained, and for each point of the first point sequence data, the first point sequence data of the first point sequence data is calculated from the first and second point sequence data. A shape measuring method characterized by selecting a point group of several points in the vicinity of each point, approximating the point group to a plane, and obtaining a normal vector of the approximate plane.
【0012】[0012]
【発明の実施の形態】本発明の第一の実施形態を図面に
基づき説明する。図1は、本発明を適用するプローブ式
形状測定装置の概略図であり、プローブ2は、少なくと
も2自由度で動作可能なステージ3上に取り付けられ、
被測定物1の表面1a上を連続的に走査する。この時の
プローブの軌跡を図示しない測長器によって、少なくと
も2次元の座標の点列として測定する。図1のプローブ
式形状測定装置を用いた測定方法について、図2,図3
を用いて説明する。図2は、図1に示す装置を上から見
た状態を示しており、破線11,12はその測定軌跡を
示している。2次元の輪郭形状測定の場合はユーザの指
定した軌跡(ここでは直線)でプローブを走査して形状
を測定し、これを第1の点列データ11とする。その
後、走査方向と直交した方向に微小量(0.01mm程
度)シフトした後、第1の測定と同じ方向(ここでは平
行な直線)を逆に戻り測定開始点の近傍までを測定し、
これを第2の点列データ12とする。この時の1走査あ
たりのサンプリングピッチや、各走査間のシフト量は、
被測定面の部分的な曲率を考え十分小さくなるように設
定する。この例では、第2の点列データ12を1本の走
査によって行ったが、これは第1の点列データ11を挟
むような複数本の走査による測定データでも構わない。
3次元形状測定の場合は、以上に示した一連の動作を位
置をずらして複数回行うことにより達成される。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram of a probe-type shape measuring apparatus to which the present invention is applied, in which a probe 2 is mounted on a stage 3 operable with at least two degrees of freedom.
The surface 1a of the DUT 1 is continuously scanned. The trajectory of the probe at this time is measured as a point sequence of at least two-dimensional coordinates by a length measuring device (not shown). FIGS. 2 and 3 show a measuring method using the probe-type shape measuring apparatus shown in FIG.
This will be described with reference to FIG. FIG. 2 shows a state in which the apparatus shown in FIG. 1 is viewed from above, and broken lines 11 and 12 show measurement loci. In the case of measuring a two-dimensional contour shape, the probe is scanned along a locus (in this case, a straight line) specified by the user to measure the shape, and this is set as first point sequence data 11. Then, after a slight amount (about 0.01 mm) shift in the direction perpendicular to the scanning direction, the measurement returns to the same direction as the first measurement (in this case, a parallel straight line) and measures up to the vicinity of the measurement start point.
This is referred to as second point sequence data 12. At this time, the sampling pitch per scan and the shift amount between each scan are as follows.
Considering the partial curvature of the surface to be measured, it is set to be sufficiently small. In this example, the second point sequence data 12 is performed by one scan, but this may be measurement data by a plurality of scans sandwiching the first point sequence data 11.
The three-dimensional shape measurement is achieved by performing the above-described series of operations a plurality of times while shifting the position.
【0013】次にデータ処理について図3を用いて説明
する。第1の測定で得られた第1の点列データ11のう
ちの任意の点P1i(黒塗りの点)21について考え
る。図3は、P1i21とその近傍の測定点を示してい
る。P1i21の近傍には第2の点列データ12の点P
2iがある。ここでは第2の点列データ12は、1本の
走査によって得ているが、第1の走査を挟むような2回
又は複数の走査による点列データでも同様である。ここ
で、太線の円で示したP1i21の近傍の点群22,2
3,31,32,33を抽出する。本実施形態では、第
1の点列データ11から前後各1点22,23と第2の
点列データ12から近傍3点31,32,33を選択す
る。抽出する点群は、最低で第1,2の点列データで各
1点ずつあればよい。この6点の座標データをコピーし
て、P1i21を座標原点とするような並進座標変換を
する。ここで、この6点21,22,23,31,3
2,33に対して最小自乗法によりP1i(原点)21
を通る平面 z=ax+by のパラメータa,bを推定する。これにより、各軸方向
の偏微分が簡単に求まる。 ∂z/∂x=a ∂z/∂y=b この時の単位法線ベクトルは、Next, data processing will be described with reference to FIG. Consider an arbitrary point P1 i (solid black point) 21 in the first point sequence data 11 obtained in the first measurement. FIG. 3 shows P1 i 21 and measurement points in the vicinity thereof. The point P of the second point sequence data 12 is located near P1 i 21.
There is 2 i . Here, the second point sequence data 12 is obtained by one scan, but the same applies to point sequence data by two or more scans sandwiching the first scan. Here, point groups 22 and 2 near P1 i 21 indicated by thick circles
3, 31, 32, and 33 are extracted. In the present embodiment, one point 22, 23 before and after the first point sequence data 11 and three neighboring points 31, 32, 33 from the second point sequence data 12 are selected. The point group to be extracted may be at least one point each of the first and second point sequence data. The coordinate data of these six points is copied and subjected to translational coordinate conversion such that P1 i 21 is the coordinate origin. Here, these six points 21, 22, 23, 31, 3
P1 i (origin) 21 by least square method for 2, 33
Are estimated on the plane z = ax + by passing through. Thereby, the partial differential in each axis direction can be easily obtained. ∂z / ∂x = a ∂z / ∂y = b At this time, the unit normal vector is
【0014】[0014]
【数1】 (Equation 1)
【0015】となる。この法線ベクトルを用いて、被測
定物の形状を推定する。## EQU1 ## The shape of the measured object is estimated using the normal vector.
【0016】本発明の第二の実施形態を説明する。測定
プローブが接触式のプローブの場合、第一の実施形態で
求めた単位法線ベクトルとプローブの先端の曲率半径R
から、接触点の位置Piは、A second embodiment of the present invention will be described. When the measurement probe is a contact probe, the unit normal vector obtained in the first embodiment and the radius of curvature R of the tip of the probe are used.
Therefore, the position P i of the contact point is
【0017】[0017]
【数2】 (Equation 2)
【0018】となり、特にプローブが球面である場合
に、精度よく、プローブと被測定面の接触点を求めるこ
とができる。In particular, when the probe has a spherical surface, the contact point between the probe and the surface to be measured can be obtained with high accuracy.
【0019】本発明の第三の実施形態を説明する。第二
の実施形態において、被測定物の測定に先立ってプロー
ブの校正を行う。その校正作業によって、プローブの真
球度誤差を求める。校正にはトレーサビリティのとれた
校正球を用意し、許容する最大傾斜角内で全面を走査し
て、形状を測定する。この測定結果を球面に近似して近
似曲率半径Rmeasと形状誤差データを求める。ここで、
校正球の正確な曲率半径Rrefがわかっているので、プ
ローブの曲率半径Rprobeは、 Rprobe=Rmeas−Rref で求まる。プローブの真球度誤差は測定データから球面
成分を分離した形状誤差データである。これは座標
(x,y,z)の点列データであるから、これを傾斜−
誤差の関係に変換する。即ち、球面の方程式を、各軸方
向の偏微分が解析的に求まるので、(x,y,z)を
(∂z/∂x,∂z/∂y,z)に変換することによ
り、これを適当なモデルf(∂z/∂x,∂z/∂y)
に近似してそのパラメータを保存する。次に任意のサン
プルの形状測定を行うときの補正処理を示す。第一の実
施形態のように近傍数点を平面に近似し、各軸方向の偏
微分が求まっているので、これを上述の校正により真球
度誤差モデルf(∂z/∂x,∂z/∂y)に代入して
真球度誤差を求める。これをz座標の誤差として減算す
ることによりプローブの真球度誤差を補正することがで
き、プローブ先端の球の真球度誤差が要求精度より劣る
場合にも、要求精度を満たし、精度よく形状測定を行う
ことができる。Next, a third embodiment of the present invention will be described. In the second embodiment, the probe is calibrated before the measurement of the device under test. The sphericity error of the probe is obtained by the calibration work. For calibration, a calibration sphere with traceability is prepared, and the entire surface is scanned within the maximum allowable tilt angle to measure the shape. This measurement result is approximated to a spherical surface to obtain an approximate radius of curvature R meas and shape error data. here,
Since the exact radius of curvature R ref of the calibration sphere is known, the radius of curvature R probe of the probe is determined by R probe = R meas -R ref . The sphericity error of the probe is shape error data obtained by separating a spherical component from measurement data. Since this is point sequence data of coordinates (x, y, z),
Convert to an error relationship. That is, since the partial differential in each axis direction is analytically obtained from the equation of the spherical surface, by converting (x, y, z) to (∂z / ∂x, ∂z / zy, z), To a suitable model f (∂z / ∂x, ∂z / ∂y)
And save the parameters. Next, a correction process for measuring the shape of an arbitrary sample will be described. As in the first embodiment, several points in the vicinity are approximated to a plane, and partial derivatives in each axis direction are obtained. / ∂y) to determine the sphericity error. By subtracting this as the z-coordinate error, the sphericity error of the probe can be corrected. A measurement can be made.
【0020】本発明の第四の実施形態を説明する。測定
プローブが光触針式の場合、被測定面の傾斜に依存して
センサ出力の原点位置がシフトするという特性がある。
従って、第三の実施形態で示した校正と同じように原点
誤差特性をモデル化する。実際の測定時も、第三の実施
形態と同様に偏微分から上述の原点誤差特性モデルを用
いて原点誤差を求め、補正する。このように、プローブ
誤差を補正することにより、高精度の形状測定を行うこ
とができる。A fourth embodiment of the present invention will be described. When the measuring probe is of the optical stylus type, there is a characteristic that the origin position of the sensor output shifts depending on the inclination of the surface to be measured.
Therefore, the origin error characteristic is modeled similarly to the calibration shown in the third embodiment. At the time of actual measurement, the origin error is obtained from the partial differential using the above-described origin error characteristic model and corrected, as in the third embodiment. As described above, by correcting the probe error, highly accurate shape measurement can be performed.
【0021】本発明の第五の実施形態を説明する。光触
針式プローブは、被測定面との距離に比例したセンサ出
力(フォーカスエラー出力)を得るものであり、この時
の比例係数であるセンサの感度は、被測定面の傾斜に依
存して変化する。従って、光触針式プローブにおける被
測定面の傾斜に依存するセンサ感度変化の特性を校正す
る。校正作業としては、第三の実施形態の校正球を用
い、その複数の位置でプローブの測定軸方向に走査させ
ながらセンサ出力を取り込む。これを線形近似すること
により、センサ出力の原点位置の座標と、センサ感度が
求まる。そのうち原点座標を用いて、球面に近似する。
次に各点のx,y座標より前述の球面方程式の各軸方向
偏微分を求め、これとセンサ感度との関係をモデル化し
て、記憶する。被測定物の形状測定のときに、各軸方向
偏微分から上述の感度特性モデルを用いて各点測定時の
感度を求め、これと光触針センサ出力からフォーカスエ
ラー誤差を求め、補正する。つまり、各点測定時の感度
を求め、これとセンサ出力により被測定面とプローブの
原点との距離が正確に求まる。これを補正することによ
り、高速且つ高精度な形状測定を行うことができる。A fifth embodiment of the present invention will be described. The optical stylus type probe obtains a sensor output (focus error output) proportional to the distance to the surface to be measured, and the sensitivity of the sensor, which is a proportional coefficient at this time, depends on the inclination of the surface to be measured. Change. Therefore, the characteristic of the sensor sensitivity change depending on the inclination of the surface to be measured in the optical stylus probe is calibrated. As the calibration work, the calibration sphere of the third embodiment is used, and the sensor output is taken in while scanning in the measurement axis direction of the probe at a plurality of positions. By linearly approximating this, the coordinates of the sensor output origin position and the sensor sensitivity are obtained. The origin is approximated to a spherical surface using the coordinates of the origin.
Next, the axial partial derivatives of the above-described spherical equation are obtained from the x and y coordinates of each point, and the relationship between the partial derivatives and the sensor sensitivity is modeled and stored. When measuring the shape of the object to be measured, the sensitivity at each point measurement is obtained from each axial partial differential using the above-described sensitivity characteristic model, and the focus error error is obtained and corrected from this and the optical stylus sensor output. That is, the sensitivity at the time of each point measurement is obtained, and the distance between the measured surface and the origin of the probe is accurately obtained from the sensitivity and the sensor output. By correcting this, high-speed and high-accuracy shape measurement can be performed.
【0022】本発明の第六の実施形態を説明する。第一
の実施形態において、平面への近似の時、誤差の自乗和
が特定の値より大きい場合は、推定した被測定物上の点
Piがキズやゴミに依存する異常データである可能性が
非常に高いので、Piを点列データから削除する。測定
データの中の、キズやゴミによる異常データを除去する
ことにより、より安定して形状の評価を行うことができ
る。A sixth embodiment of the present invention will be described. In the first embodiment, when the approximation to the plane, when the square sum of errors is greater than the specific value, potential point P i on the object to be measured is estimated is abnormal data dependent on scratches and dust Is very high, P i is deleted from the point sequence data. By removing abnormal data due to scratches or dust in the measurement data, the shape can be more stably evaluated.
【0023】[0023]
【発明の効果】請求項1,7に対応する効果:より簡便
に任意の被測定面に対して、各点の法線ベクトルを求め
ることができ、プローブに依存する誤差の補正を行え
ば、精度よく形状測定ができる。高精度を要求される被
測定物の代表として、非球面レンズやその金型などの光
学部品がある。これらの被測定物には、その有効範囲内
にエッジや急激に傾斜角が変動するような部分が無い、
又はその表面粗さは十分小さいという共通点がある。被
測定面は十分に滑らかであるとすると、各測定点近傍の
数点を抽出した点群はほぼ1つの平面上に載っていると
仮定できるので、平面への近似精度が高く法線ベクトル
の推定の精度も高い。よって、光学部品の高精度を保証
し安定した測定を行うことができる。このように、被測
定面の粗さが鏡面レベルにありエッジ部やキズが無いと
きに最も効率よく補正を行うことができ、高精度の測定
を行うことができる。According to the first and seventh aspects of the present invention, the normal vector of each point can be obtained more easily with respect to an arbitrary surface to be measured, and the error depending on the probe can be corrected. Shape measurement can be performed accurately. Optical components such as an aspherical lens and its mold are representative of the object to be measured which requires high accuracy. These DUTs have no edge or a portion where the inclination angle fluctuates rapidly within the effective range.
Alternatively, there is a common feature that the surface roughness is sufficiently small. Assuming that the surface to be measured is sufficiently smooth, it can be assumed that the point group obtained by extracting several points in the vicinity of each measurement point is almost on one plane, so that the accuracy of approximation to the plane is high and the normal vector The accuracy of the estimation is high. Therefore, high accuracy of the optical component can be guaranteed and stable measurement can be performed. As described above, when the roughness of the surface to be measured is at the mirror level and there are no edges or scratches, the correction can be performed most efficiently, and highly accurate measurement can be performed.
【0024】請求項2に対応する効果:請求項1に対応
する効果に加えて、接触式の球面プローブを用いた場合
に、簡便に任意の被測定面に対してプローブと被測定面
の接触点を求めることにより、高精度に形状の測定を行
うことができる。According to a second aspect of the present invention, in addition to the effect of the first aspect, when a contact-type spherical probe is used, the contact between the probe and the measured surface can be easily made on an arbitrary measured surface. By obtaining the points, the shape can be measured with high accuracy.
【0025】請求項3に対応する効果:請求項2に対応
する効果に加えて、先端球面の真球度誤差を補正するこ
とにより、より高精度に形状の測定を行うことができ
る。Effect corresponding to claim 3: In addition to the effect corresponding to claim 2, by correcting the sphericity error of the tip spherical surface, the shape can be measured with higher accuracy.
【0026】請求項4に対応する効果:請求項1に対応
する効果に加えて、測定プローブが光触針式であって
も、精度よく形状測定を行うことができる。Advantageous Correspondence of Claim 4: In addition to the effect corresponding to claim 1, even if the measuring probe is of the optical stylus type, the shape can be measured accurately.
【0027】請求項5に対応する効果:請求項4に対応
する効果に加えて、さらに精度よく、又プローブ出力が
十分に収束しなくても、形状測定を行うことができる。Effect corresponding to claim 5: In addition to the effect corresponding to claim 4, shape measurement can be performed with higher accuracy and even when the probe output does not sufficiently converge.
【0028】請求項6に対応する効果:請求項1に対応
する効果に加えて、キズやゴミ等による異常データを除
去することにより、より高精度の形状測定を行うことが
できる。Effect corresponding to the sixth aspect: In addition to the effect corresponding to the first aspect, by removing abnormal data due to scratches, dust, etc., more accurate shape measurement can be performed.
【図1】 本発明を適用するプローブ式形状測定装置の
概略図である。FIG. 1 is a schematic diagram of a probe type shape measuring apparatus to which the present invention is applied.
【図2】 本発明のプローブ式形状測定装置の測定軌跡
の一例を示す図である。FIG. 2 is a diagram showing an example of a measurement trajectory of the probe-type shape measuring device of the present invention.
【図3】 本発明において第1回の形状測定で得られた
点列データの一例を示す図である。FIG. 3 is a diagram showing an example of point sequence data obtained by a first shape measurement in the present invention.
1…被測定物、1a…被測定物の表面、2…測定プロー
ブ、3…ステージ、11…第1の点列データ、12…第
2の点列データ、21…第1の点列データ中の任意の
点、22,23…第1の点列データ中の任意の点の前後
の点、31,32,33…第2の点列データであり、第
1の点列データ中の任意の点の近傍の点群。DESCRIPTION OF SYMBOLS 1 ... DUT, 1a ... Surface of a DUT, 2 ... Measuring probe, 3 ... Stage, 11 ... First point sequence data, 12 ... Second point sequence data, 21 ... First point sequence data , Arbitrary points in the first point sequence data, 22, 23... Points before and after an arbitrary point in the first point sequence data, 31, 32, 33. Point cloud near a point.
Claims (7)
ローブの動作軌跡を直交座標系の点列データとして求め
る形状測定手段と、測定された点列データより被測定物
の輪郭形状を求める演算手段を備えた形状測定装置にお
いて、前記形状測定手段は、ユーザの設定によるプロー
ブの走査により、第1の点列データと、該第1の点列デ
ータの走査方向と直交方向に微小量ずれた位置での第2
の点列データを求める手段であり、前記演算手段は、前
記第1の点列データの各点に対して、前記第1及び第2
の点列データより第1の点列データの各点の近傍数点の
点群を選び、前記点群を平面に近似し、その近似平面の
法線ベクトルを求める手段であることを特徴とする形状
測定装置。1. A shape measuring means for scanning a surface to be measured with a measuring probe to obtain an operation trajectory of the probe as point sequence data in a rectangular coordinate system, and obtaining a contour shape of the object to be measured from the measured point sequence data. In a shape measuring apparatus provided with a calculating means, the shape measuring means is configured to scan the first point sequence data with a small amount in a direction orthogonal to the scanning direction of the first point sequence data by scanning a probe according to a user setting. 2nd position
Means for calculating point sequence data of the first point sequence data, wherein the calculating means calculates the first and second points for each point of the first point sequence data.
A point group of several points near each point of the first point sequence data is selected from the point sequence data, and the point group is approximated to a plane, and a normal vector of the approximate plane is obtained. Shape measuring device.
て、前記測定プローブはその先端が球面である接触式プ
ローブであり、前記演算手段は、前記法線ベクトルと前
記接触式プローブの先端の曲率半径により、該接触式プ
ローブと前記被測定物との接触点の位置を求める手段で
あることを特徴とする形状測定装置。2. The shape measuring apparatus according to claim 1, wherein the measuring probe is a contact probe whose tip is a spherical surface, and wherein the calculating means calculates the normal vector and a curvature of the tip of the contact probe. A shape measuring device, which is means for determining a position of a contact point between the contact probe and the object to be measured, based on a radius.
て、前記演算手段は、前記法線ベクトルと前記接触式プ
ローブの先端の曲率半径に加え、前記接触式プローブの
真球度誤差モデルにより、前記接触式プローブと前記被
測定物との接触点の位置を求める手段であることを特徴
とする形状測定装置。3. The shape measuring apparatus according to claim 2, wherein the calculating means calculates a sphericity error model of the contact type probe in addition to the normal vector and a radius of curvature of a tip of the contact type probe. A shape measuring device, which is means for determining a position of a contact point between the contact probe and the object to be measured.
て、前記測定プローブは、被測定面に収束光束を照射し
該被測定面からの反射光を結像させたときの焦点位置の
変動から、前記被測定面との距離を測定する光触針式プ
ローブであり、前記演算手段は、前記法線ベクトルと前
記光触針式プローブの原点誤差特性モデルにより、該光
触針式プローブの原点誤差を補正する手段であることを
特徴とする形状測定装置。4. The shape measuring apparatus according to claim 1, wherein the measurement probe irradiates a convergent light beam on the surface to be measured and focuses the light reflected from the surface to be measured. An optical stylus probe for measuring a distance from the surface to be measured, wherein the calculating means calculates the origin of the optical stylus probe based on the normal vector and the origin error characteristic model of the optical stylus probe. A shape measuring device, which is a means for correcting an error.
て、前記演算手段は、前記法線ベクトルと前記光触針式
プローブの原点誤差特性モデルにより、該光触針式プロ
ーブの原点誤差を補正し、加えて、前記法線ベクトルと
前記光触針式プローブの感度特性モデルにより、該光触
針式プローブの感度を求め、該光触針式プローブの感度
と該光触針式プローブのセンサ出力値によるフォーカス
エラー誤差を補正する手段であることを特徴とする形状
測定装置。5. The shape measuring apparatus according to claim 4, wherein the calculating means corrects an origin error of the optical stylus probe based on the normal vector and an origin error characteristic model of the optical stylus probe. In addition, the sensitivity of the optical stylus probe is determined by the normal vector and the sensitivity characteristic model of the optical stylus probe, and the sensitivity of the optical stylus probe and the sensor of the optical stylus probe are determined. A shape measuring device, which is means for correcting a focus error error due to an output value.
測定装置において、前記平面への近似の際、近似誤差が
所定の値より大きい場合、その測定点を無効データとし
て点列から削除することを特徴とする形状測定装置。6. The shape measuring apparatus according to claim 1, wherein, when approximating the plane, if an approximation error is larger than a predetermined value, the measured point is deleted from the point sequence as invalid data. A shape measuring apparatus characterized in that:
ローブの動作軌跡を直交座標系の点列データとして求め
る形状測定手段と、測定された点列データより被測定物
の輪郭形状を求める演算手段を備えた形状測定装置にお
ける形状測定方法であって、ユーザの設定によるプロー
ブの走査により、第1の点列データと、該第1の点列デ
ータの走査方向と直交方向に微小量ずれた位置での第2
の点列データを求め、前記第1の点列データの各点に対
して、前記第1及び第2の点列データより第1の点列デ
ータの各点の近傍数点の点群を選び、前記点群を平面に
近似し、その近似平面の法線ベクトルを求めることを特
徴とする形状測定方法。7. A shape measuring means for scanning a surface to be measured with a measuring probe and obtaining a motion trajectory of the probe as point sequence data in a rectangular coordinate system, and obtaining a contour shape of the object to be measured from the measured point sequence data. What is claimed is: 1. A shape measuring method in a shape measuring device provided with an arithmetic unit, wherein a first point sequence data is shifted by a small amount in a direction orthogonal to a scanning direction of the first point sequence data by scanning of a probe by a user. 2nd position
And for each point of the first point sequence data, select a point group of several points near each point of the first point sequence data from the first and second point sequence data. A shape measurement method, wherein the point group is approximated to a plane, and a normal vector of the approximate plane is obtained.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8032298A JPH11257945A (en) | 1998-03-11 | 1998-03-11 | Probe type shape measuring apparatus and shape measuring method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8032298A JPH11257945A (en) | 1998-03-11 | 1998-03-11 | Probe type shape measuring apparatus and shape measuring method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11257945A true JPH11257945A (en) | 1999-09-24 |
Family
ID=13715033
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8032298A Pending JPH11257945A (en) | 1998-03-11 | 1998-03-11 | Probe type shape measuring apparatus and shape measuring method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11257945A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002357415A (en) * | 2001-06-04 | 2002-12-13 | Matsushita Electric Ind Co Ltd | Shape measuring method and device, and manufacturing method of object to be measured |
JP2008256365A (en) * | 2007-03-30 | 2008-10-23 | Morinaga Milk Ind Co Ltd | Scanning device of coagulation detection sensor, and scanning method using the same |
JP2011095239A (en) * | 2009-10-01 | 2011-05-12 | Canon Inc | Surface shape measuring device |
JP2011095240A (en) * | 2009-10-01 | 2011-05-12 | Canon Inc | Surface shape measuring device |
CN104515495A (en) * | 2015-01-20 | 2015-04-15 | 大连交通大学 | Coupler knuckle detector for train and detection method thereof |
CN108318363A (en) * | 2018-02-12 | 2018-07-24 | 三峡大学 | Detection device and its detection method for the abrasion of bottom pivot mushroom head |
CN115711589A (en) * | 2022-11-22 | 2023-02-24 | 哈尔滨工业大学 | Method for measuring rotor spherical surface profile of large-scale high-speed rotation equipment based on integration of multidimensional great circle projection centers |
-
1998
- 1998-03-11 JP JP8032298A patent/JPH11257945A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002357415A (en) * | 2001-06-04 | 2002-12-13 | Matsushita Electric Ind Co Ltd | Shape measuring method and device, and manufacturing method of object to be measured |
JP2008256365A (en) * | 2007-03-30 | 2008-10-23 | Morinaga Milk Ind Co Ltd | Scanning device of coagulation detection sensor, and scanning method using the same |
JP2011095239A (en) * | 2009-10-01 | 2011-05-12 | Canon Inc | Surface shape measuring device |
JP2011095240A (en) * | 2009-10-01 | 2011-05-12 | Canon Inc | Surface shape measuring device |
CN104515495A (en) * | 2015-01-20 | 2015-04-15 | 大连交通大学 | Coupler knuckle detector for train and detection method thereof |
CN108318363A (en) * | 2018-02-12 | 2018-07-24 | 三峡大学 | Detection device and its detection method for the abrasion of bottom pivot mushroom head |
CN108318363B (en) * | 2018-02-12 | 2023-10-27 | 三峡大学 | Detection device and detection method for wear of bottom pivot mushroom head |
CN115711589A (en) * | 2022-11-22 | 2023-02-24 | 哈尔滨工业大学 | Method for measuring rotor spherical surface profile of large-scale high-speed rotation equipment based on integration of multidimensional great circle projection centers |
CN115711589B (en) * | 2022-11-22 | 2023-12-22 | 哈尔滨工业大学 | Method for measuring spherical profile of rotor of large-sized high-speed rotary equipment based on multi-dimensional large-circle projection center integration |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3511450B2 (en) | Position calibration method for optical measuring device | |
US6173070B1 (en) | Machine vision method using search models to find features in three dimensional images | |
JP2748702B2 (en) | Error correction method for CMM | |
JP5908102B2 (en) | Preparation for operation of contact scanning coordinate measuring instrument | |
US6678057B2 (en) | Method and device for reduction in noise in images from shiny parts | |
JPH10311711A (en) | Optical profile sensor | |
Santolaria et al. | A one-step intrinsic and extrinsic calibration method for laser line scanner operation in coordinate measuring machines | |
US6985238B2 (en) | Non-contact measurement system for large airfoils | |
EP1422491B1 (en) | Method, apparatus and program for setting a workpiece coordinate system origin in a surface property measuring machine | |
CN109724532B (en) | Accurate testing device and method for geometric parameters of complex optical curved surface | |
US7142313B2 (en) | Interaxis angle correction method | |
US5760906A (en) | Shape measurement apparatus and method | |
JPH11257945A (en) | Probe type shape measuring apparatus and shape measuring method | |
JP2000081329A (en) | Shape measurement method and device | |
CN116381708A (en) | High-precision laser triangular ranging system | |
JP3999063B2 (en) | CMM, CMM calibration method, and computer-readable storage medium storing program for executing the method | |
JP2892826B2 (en) | Calibration method of CMM | |
JP2885422B2 (en) | Shape evaluation device and shape evaluation method | |
JP2005172810A (en) | Three-dimensional shape measuring method and three-dimensional shape measuring device | |
JP2006133059A (en) | Device for measuring interference | |
JPH11281306A (en) | Calibrated-value detection method for coordinate-measuring machine and calibration method for shape data using the same calibrated data | |
US20220179202A1 (en) | Compensation of pupil aberration of a lens objective | |
JP2579726B2 (en) | Contact probe | |
JPH1068602A (en) | Shape measuring apparatus | |
JPH1183450A (en) | Error correcting method for optical probe type shape measuring machine |