JP2000081329A - Shape measurement method and device - Google Patents

Shape measurement method and device

Info

Publication number
JP2000081329A
JP2000081329A JP10251424A JP25142498A JP2000081329A JP 2000081329 A JP2000081329 A JP 2000081329A JP 10251424 A JP10251424 A JP 10251424A JP 25142498 A JP25142498 A JP 25142498A JP 2000081329 A JP2000081329 A JP 2000081329A
Authority
JP
Japan
Prior art keywords
shape
measured
error
measurement
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10251424A
Other languages
Japanese (ja)
Inventor
Koji Fukutomi
康志 福冨
Hisashi Shiozawa
久 塩澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP10251424A priority Critical patent/JP2000081329A/en
Publication of JP2000081329A publication Critical patent/JP2000081329A/en
Pending legal-status Critical Current

Links

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate an error peculiar to a device and an error with time for improving measurement accuracy by achieving a shape being approximated to an object to be measured, obtaining the amount of error of the device caused by the shape- measuring device according to the measurement value of a primary standard where designing shape data is clear and the shape data, and correcting the measurement value of the object to be measured. SOLUTION: A guide 5 of a shape-measuring device is provided with a stage 11 for mounting an object to be measured, and the stage 11 travels in an X direction along the guide 5. A probe 15 that is mounted to a stage 13 can travel in a Z direction. The stages 11 and 13 are provided with a position detection means for detecting the amount of travel. Then, the probe 15 is brought into contact with an object 9 to be measured, the object 9 to be measured is S canned with a beam, and the coordinates information on the surface of the object 9 to be measured that is a contacting point between the probe 15 and the object 9 to be measured is obtained according to the position information of the stages 11 and 13. The amount of device error of the shape-measuring device being obtained from the measurement value of a primary standard being approximated to the shape of the object to be measured and shape data is corrected for the obtained measurement value, thus obtaining an accurate surface shape.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被測定物表面を走
査して、被測定物表面の位置情報を2次元もしくは3次
元の座標値として取り込み、被測定物の形状を測定する
形状測定方法及び形状測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shape measuring method for scanning a surface of an object to be measured, taking in positional information on the surface of the object as two-dimensional or three-dimensional coordinate values, and measuring the shape of the object to be measured. And a shape measuring device.

【0002】[0002]

【従来の技術】一般的に、被測定物表面を2次元もしく
は3次元的に走査する形状測定装置により得られる測定
結果には、被測定物の形状の情報と、形状測定装置自身
が有する測定誤差(偏り)とが、渾然一体となって含ま
れている。
2. Description of the Related Art In general, a measurement result obtained by a shape measuring device which scans a surface of an object to be measured two-dimensionally or three-dimensionally includes information on the shape of the object to be measured and a measurement which the shape measuring device itself has. The error (bias) is included as a whole.

【0003】従来技術においては、前記測定結果から測
定誤差を分離して、被測定物の真の形状を得るために、
形状測定装置の誤差を誤差要因、例えば基準面の真直度
誤差、基準面の直角度誤差、プローブに依存した誤差等
に分解して、それぞれを個別に評価し、誤差要因毎に補
正値を得ていた。前記誤差要因毎の評価を行う方法とし
ては、それぞれを直接的に測定する方法、例えば基準面
の真直度なら真直度測定機で評価する方法、プローブの
真球度誤差なら真円度測定機で評価する方法、及び形状
測定装置上で種々の原器を用いて計測し、特定の誤差要
因を分離評価する方法等がある。
In the prior art, in order to separate the measurement error from the measurement result and obtain the true shape of the measured object,
The errors of the shape measuring device are decomposed into error factors such as straightness errors on the reference plane, squareness errors on the reference plane, errors dependent on the probe, etc., and each is evaluated individually to obtain a correction value for each error factor. I was As a method of performing the evaluation for each error factor, a method of directly measuring each, for example, a method of evaluating the straightness of the reference surface with a straightness measuring device, a method of measuring the probe sphericity error with a roundness measuring device. There are a method of evaluation, a method of measuring using various prototypes on a shape measuring device, and separating and evaluating a specific error factor.

【0004】次に、形状測定装置の測定値から前記誤差
要因毎に個別に評価された各誤差を減算することによ
り、補正された測定値を得ることができる。
Next, a corrected measurement value can be obtained by subtracting each error individually evaluated for each error factor from the measurement value of the shape measuring device.

【0005】[0005]

【発明が解決しようとする課題】前述した従来技術に
は、以下のような問題点があった。
The above-mentioned prior art has the following problems.

【0006】第1に、真直度測定機や真円度測定機で各
誤差を評価した場合、その評価結果には、これら誤差評
価を行なった測定機の誤差が必ず入り込んでしまい、各
誤差の評価を高精度に行うことが極めて困難である。第
2に、形状測定装置の誤差は、様々な誤差要因が複雑に
影響し合って生じるものであるため、原器等を用いた測
定結果からこれら要因毎の誤差を完全に分離し、補正す
ることは極めて困難である。
First, when each error is evaluated by a straightness measuring device or a roundness measuring device, the error of the measuring device which has performed the error evaluation is necessarily included in the evaluation result. It is extremely difficult to perform an evaluation with high accuracy. Secondly, since errors of the shape measuring apparatus are caused by various error factors intricately affecting each other, errors for each of these factors are completely separated and corrected from the measurement results using a prototype or the like. It is extremely difficult.

【0007】第3に、従来技術では、各誤差要因によっ
て生じる誤差が経時的に変化したとき、経時変化を正し
く評価することが困難な場合があり、誤った誤差補正を
行う可能性がある。したがって、従来技術では、非球面
光学素子の測定等で要求される高い測定精度を得ること
は極めて困難である。
Third, in the prior art, when an error caused by each error factor changes with time, it may be difficult to correctly evaluate the change with time, and there is a possibility that erroneous error correction may be performed. Therefore, it is extremely difficult to obtain the high measurement accuracy required in the measurement of the aspherical optical element and the like in the conventional technology.

【0008】本発明は、前述した課題に鑑み為されたも
ので、形状測定装置により得られた被測定物表面の測定
値から、形状測定装置に固有な誤差や誤差の経時変化の
影響等を確実に取り除くことを可能し、高い測定精度を
得ることを可能にする形状測定方法及び形状測定装置を
提供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and it is based on a measurement value of a surface of an object to be measured obtained by a shape measuring device to determine an error inherent to the shape measuring device and an influence of a change with time of the error. It is an object of the present invention to provide a shape measuring method and a shape measuring device which can be reliably removed and obtain high measurement accuracy.

【0009】[0009]

【課題を解決するための手段】請求項1に記載の形状測
定方法は、被測定物表面を走査して、被測定物表面の位
置情報を2次元もしくは3次元の座標値として取り込
み、被測定物表面の形状を測定する形状測定装置を用い
た形状測定方法において、被測定物に近似な形状を有
し、設計上の形状データが明らかな原器の形状を測定し
て第1の測定値を求める第1のステップと、第1の測定
値と前記原器の形状データとから形状測定装置に起因す
る装置誤差量を求める第2のステップと、被測定物の形
状を測定し、第2の測定値を求める第3のステップと、
装置誤差量を用いて第2の誤差量を補正し、被測定物の
測定値を求める第4のステップとから構成されることを
特徴とする。
According to a first aspect of the present invention, there is provided a shape measuring method comprising: scanning a surface of an object to be measured; acquiring position information of the surface of the object as two-dimensional or three-dimensional coordinate values; In a shape measuring method using a shape measuring device for measuring a shape of an object surface, a first measurement value is obtained by measuring a shape of a prototype having a shape approximate to an object to be measured and having apparent shape data in design. A second step of obtaining a device error caused by the shape measuring device from the first measured value and the shape data of the prototype, and a second step of measuring the shape of the object to be measured. A third step for determining a measurement of
A fourth step of correcting the second error amount using the device error amount and obtaining a measured value of the device under test.

【0010】請求項2に記載の形状測定装置は、被測定
物表面を走査して、被測定物表面の位置情報を2次元も
しくは3次元の座標値として取り込み、被測定物の形状
を測定する形状測定装置において、被測定物に近似な形
状を有し、設計上の形状データが明らかな原器を測定し
て第1の測定値を求め、第1の測定値から原器の形状デ
ータを減算して、前記形状測定装置に起因する装置誤差
量を求める測定誤差検出手段と、被測定物を測定して第
2の測定値を求め、さらに装置誤差量を用いて第2の測
定値を補正し、被測定物の測定値を求める形状測定手段
とを備えることを特徴とする。
According to a second aspect of the present invention, the shape measuring apparatus scans the surface of the object to be measured, takes in positional information of the surface of the object as two-dimensional or three-dimensional coordinate values, and measures the shape of the object. In a shape measuring device, a first prototype is obtained by measuring a prototype having a shape similar to the object to be measured, and the shape data in design is clear, and the shape data of the prototype is obtained from the first measured value. Measurement error detecting means for subtracting and obtaining an apparatus error amount caused by the shape measuring apparatus; and measuring a device under test to obtain a second measurement value, and further calculating a second measurement value using the apparatus error amount. And a shape measuring means for correcting the measured value of the object to be measured.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を用いて説明する。図2は、本発明の対象とな
る3次元(X,Y,Z空間)の形状測定装置の一例を示
す図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 is a diagram showing an example of a three-dimensional (X, Y, Z space) shape measuring apparatus to which the present invention is applied.

【0012】図2において、ベース1上にX軸用のガイ
ド5と1対のフレーム3が設けられ、フレーム3の間に
はY軸、Z軸用のガイド7が設けられている。ガイド5
は被測定物9を搭載する測定物用のステージ11を備
え、ステージ11はガイド5に沿ってX方向に移動可能
に構成されている。ガイド7はプローブ15を搭載した
プローブ用のステージ13を備え、ステージ13はガイ
ド7に沿ってY方向及びZ方向に移動可能に構成されて
いる。
In FIG. 2, an X-axis guide 5 and a pair of frames 3 are provided on a base 1, and Y-axis and Z-axis guides 7 are provided between the frames 3. Guide 5
Has a stage 11 for a measurement object on which the object 9 is mounted, and the stage 11 is configured to be movable in the X direction along the guide 5. The guide 7 includes a probe stage 13 on which a probe 15 is mounted, and the stage 13 is configured to be movable in the Y and Z directions along the guide 7.

【0013】また、それぞれのステージ11,13には
移動量を検出するための図示しない位置検出手段が設け
てある。図3は、本発明の対象となる2次元(X,Z空
間)の形状測定装置の一例を示す。図3に示す形状測定
装置は、ベース1上にガイド5とフレーム3が設けられ
ている。ガイド5は、被測定物9を搭載する測定物用の
ステージ11を備え、ステージ11はガイド5に沿って
X方向に移動可能に構成されている。
Each of the stages 11 and 13 is provided with position detecting means (not shown) for detecting the amount of movement. FIG. 3 shows an example of a two-dimensional (X, Z space) shape measuring apparatus to which the present invention is applied. The shape measuring device shown in FIG. 3 has a guide 5 and a frame 3 provided on a base 1. The guide 5 includes a stage 11 for an object on which the object 9 is mounted, and the stage 11 is configured to be movable in the X direction along the guide 5.

【0014】プローブ15を搭載したプローブ用のステ
ージ13は、Z軸スライド17に結合されている。Z軸
スライド17は、Z軸用のガイド7に沿ってZ方向に移
動可能に構成されている。したがって、プローブ15
は、Z方向に移動可能である。また、それぞれのステー
ジ11,13(又はZ軸スライド17)には移動量を検
出するための図示しない位置検出手段が設けてある。
A probe stage 13 on which the probe 15 is mounted is connected to a Z-axis slide 17. The Z-axis slide 17 is configured to be movable in the Z direction along the Z-axis guide 7. Therefore, the probe 15
Is movable in the Z direction. Each of the stages 11 and 13 (or the Z-axis slide 17) is provided with a position detecting means (not shown) for detecting a moving amount.

【0015】また、図3に示す形状測定装置は、各ステ
ージ11,13の走りの真直度誤差を補正するために、
ガイド5,7と平行な配置で基準面19,23を備えて
いる。ステージ11,13の走りの真直度誤差は、基準
面19,23を基準にして、変位センサ21,25によ
って検出される。したがって、図3に示す形状測定装置
は、ステージ11とステージ13の真直度誤差を除去し
た測定値を出力する。
The shape measuring device shown in FIG. 3 is used to correct the straightness error of the running of each of the stages 11 and 13.
Reference surfaces 19 and 23 are provided in parallel with the guides 5 and 7. The straightness error of the running of the stages 11 and 13 is detected by the displacement sensors 21 and 25 with reference to the reference surfaces 19 and 23. Therefore, the shape measuring apparatus shown in FIG. 3 outputs a measured value from which the straightness error between the stage 11 and the stage 13 has been removed.

【0016】図2又は図3に示す形状測定装置におい
て、プローブ15を被測定物9に接触させ、被測定物9
を相対的に走査し、あらかじめ定められた複数の位置に
おけるステージ11,13の位置情報を取り込む。これ
によって、プローブ15と被測定物9との接触点、すな
わち被測定物9表面の座標情報を測定値として得ること
ができる。
In the shape measuring apparatus shown in FIG. 2 or 3, the probe 15 is brought into contact with the object 9 to be measured, and
Are relatively scanned to acquire the position information of the stages 11 and 13 at a plurality of predetermined positions. Thereby, the contact point between the probe 15 and the object 9, that is, the coordinate information of the surface of the object 9 can be obtained as a measured value.

【0017】以後、被測定物9として非球面レンズを例
に取り、簡単のために図3に示す2次元の形状測定装置
を用いて説明する。図4は、被測定物9である非球面レ
ンズを、図3に示す形状測定装置を用いて、2次元的に
測定した測定値S1の一例を示す図である。図4に示す
測定値S1は、前記非球面レンズ表面の真の座標情報S
2と形状測定装置の有する測定誤差S3が足し合わされ
たものである。図4において、実線S1が測定値を示
し、破線S2が非球面レンズの真の形状の座標情報を示
し、一点鎖線S3が形状測定装置の有する測定誤差を示
している。
Hereinafter, an aspheric lens will be taken as an example of the object 9 to be measured, and for simplicity, a description will be given using a two-dimensional shape measuring apparatus shown in FIG. FIG. 4 is a diagram illustrating an example of a measurement value S1 obtained by two-dimensionally measuring the aspheric lens as the object 9 using the shape measuring apparatus illustrated in FIG. The measured value S1 shown in FIG. 4 is the true coordinate information S of the aspherical lens surface.
2 and the measurement error S3 of the shape measuring device are added. In FIG. 4, a solid line S1 indicates a measured value, a broken line S2 indicates coordinate information of a true shape of the aspherical lens, and a dashed line S3 indicates a measurement error of the shape measuring device.

【0018】一般に、形状測定装置の測定誤差は、各ス
テージ11,13の走りの真直度、直角度、及びプロー
ブ15上の接触位置に依存したプローブ15の誤差が支
配的である。これは、換言すると、形状測定装置の測定
誤差は、被測定物9を形状測定装置のどの位置でどのよ
うな姿勢で測定を行ったかにより、ほぼ決まることを意
味する。
In general, the measurement error of the shape measuring apparatus is dominated by the error of the probe 15 depending on the straightness and the squareness of the running of each of the stages 11 and 13 and the contact position on the probe 15. In other words, this means that the measurement error of the shape measuring device is substantially determined by the position and the posture of the object 9 to be measured in the shape measuring device.

【0019】本発明の実施の形態では、以下の手法によ
り、真の非球面レンズの形状を示す座標情報S2を得
る。まず、被測定物9である非球面レンズに近似した別
の原器球面レンズ(ベストフィット球面)を用意する。
この原器球面レンズは、後述するように、あらかじめ計
算により正確な形状データが得られている。そして、前
記非球面レンズを測定する時と同じ位置、同じ姿勢で前
記原器球面レンズを測定し、原器球面レンズの実際の測
定値を得る。この動作により、前記原器球面レンズの測
定値には前述した形状測定装置の測定誤差の性質から、
非球面レンズ測定時とほぼ同一の測定誤差が含まれてい
る。
In the embodiment of the present invention, coordinate information S2 indicating the shape of a true aspheric lens is obtained by the following method. First, another prototype spherical lens (best-fit spherical surface) approximating the aspheric lens which is the object 9 is prepared.
As described later, accurate shape data is obtained in advance for this prototype spherical lens by calculation. Then, the original spherical lens is measured at the same position and the same posture as when measuring the aspherical lens, and an actual measurement value of the original spherical lens is obtained. By this operation, the measured value of the prototype spherical lens is determined from the nature of the measurement error of the shape measuring device described above.
The same measurement error as in the measurement of the aspherical lens is included.

【0020】ここで、非球面レンズに近似した原器球面
レンズとは、前記非球面の形状に最もフィットするよう
に曲率半径が調整された球面レンズ(ベストフィット球
面を備えたレンズ)という意味である。図5は、前記原
器球面レンズの実際の測定値S4、及び前記原器球面レ
ンズ(ベストフィット球面)について計算で求められた
形状データS5、測定誤差S6の関係を示す図である。
図中、実線S4がベストフィット球面の実際の測定値を
示し、破線S5がベストフィット球面の形状データを示
し、一点鎖線S6が測定誤差(以後、フィッティング残
渣と称する)を示している。
Here, a prototype spherical lens approximating an aspherical lens means a spherical lens (a lens having a best-fit spherical surface) whose radius of curvature is adjusted so as to best fit the shape of the aspherical surface. is there. FIG. 5 is a diagram showing the relationship between the actual measurement value S4 of the prototype spherical lens, the shape data S5 calculated by the prototype spherical lens (best-fit spherical surface), and the measurement error S6.
In the figure, a solid line S4 indicates an actual measurement value of the best-fit spherical surface, a broken line S5 indicates shape data of the best-fit spherical surface, and a dashed-dotted line S6 indicates a measurement error (hereinafter, referred to as a fitting residue).

【0021】ここで、前記原器球面レンズの測定値S4
からあらかじめ判明している該原器球面レンズの形状デ
ータS5を減算し、形状測定装置の当該測定位置におけ
るフィッティング残渣S6が求められる。このフィッテ
ィング残渣S6は、前記原器球面レンズの製造誤差(理
想球面からの乖離)と前記形状測定装置の測定誤差を含
んでいる。
Here, the measured value S4 of the prototype spherical lens
Is subtracted from the shape data S5 of the prototype spherical lens, which is known in advance, to obtain a fitting residue S6 at the measurement position of the shape measurement device. The fitting residue S6 includes a manufacturing error (deviation from the ideal spherical surface) of the prototype spherical lens and a measurement error of the shape measuring device.

【0022】しかし、球面レンズは極めて高精度(1n
m rms以下)に製造することが可能であるため、こ
のような球面レンズを原器として用いれば前記製造誤差
は無視することができ、前記フィッティング残渣S6は
形状測定装置の測定誤差を表すことになる。上記の手法
により、形状測定装置の所定の位置((X,Z)座標)
における測定誤差S3=フィッティング残渣S6を得る
ことができる。
However, the spherical lens has extremely high accuracy (1n
(m rms or less), the manufacturing error can be ignored if such a spherical lens is used as a prototype, and the fitting residue S6 represents a measurement error of the shape measuring device. Become. By the above method, a predetermined position ((X, Z) coordinates) of the shape measuring device
Measurement error S3 = fitting residue S6 can be obtained.

【0023】前記の通り図4は、非球面レンズの測定値
S1と測定誤差S3との関係を示す図である。図5に示
すように、前記原器球面レンズのフィッティング残渣S
6をデータとして記憶しておき、測定誤差S3とS6が
同じ値であることから、図4における前記非球面レンズ
の測定値S1から減算補正する。これによって、非球面
レンズの真の座標情報S2を求めることが可能となる。
As described above, FIG. 4 is a diagram showing the relationship between the measured value S1 of the aspherical lens and the measurement error S3. As shown in FIG. 5, fitting residue S of the prototype spherical lens
6 is stored as data, and since the measurement errors S3 and S6 are the same value, subtraction correction is performed from the measurement value S1 of the aspherical lens in FIG. This makes it possible to obtain the true coordinate information S2 of the aspherical lens.

【0024】前記した実施の形態では、被測定物9およ
び近似球面を凸面として図示したが、本発明はこれに限
定されるものではなく、他の如何なる形状、例えば凹面
であっても構わない。また、極めて高精度に製造された
球面を用いる代わりに、球面レンズの製造誤差を別の測
定機、例えばフィゾー型の干渉計で計測しておき、その
結果をあらかじめ該球面レンズ測定結果から差し引いて
おくことでも同様の効果が得られる。
In the above-described embodiment, the DUT 9 and the approximate spherical surface are illustrated as convex surfaces, but the present invention is not limited to this, and may have any other shape, for example, a concave surface. In addition, instead of using a spherical surface manufactured with extremely high precision, the manufacturing error of the spherical lens is measured by another measuring device, for example, a Fizeau-type interferometer, and the result is previously subtracted from the spherical lens measurement result. The same effect can be obtained by placing the same.

【0025】図1は、前記実施の形態に基づいて、被測
定物体の真の形状を求める手順を示すフローチャートで
ある。最初に、ステップS101において、被測定物の
形状に近いベストフィット形状を有する原器の測定を形
状測定装置を用いて行う。次に、ステップS102にお
いて、ベストフィット形状を有する原器について、ステ
ップS101で得られた測定値からあらかじめ計算によ
り求められている形状データを減算し、フィッティング
残渣を求める。
FIG. 1 is a flowchart showing a procedure for obtaining the true shape of the measured object based on the above embodiment. First, in step S101, a prototype having a best-fit shape close to the shape of the measured object is measured using a shape measuring device. Next, in step S102, for the prototype having the best-fit shape, the shape data previously calculated is subtracted from the measured values obtained in step S101 to obtain a fitting residue.

【0026】次に、ステップS103において、被測定
物の形状測定を形状測定装置を用いて行う。最後に、ス
テップS104において、ステップS103で得られた
被測定物の測定値からフィッティング残渣を減算補正
し、真の被測定物の座標情報を求める。なお、前記実施
の形態において、フィッティング残渣の算出や被測定物
の測定結果からフィッティング誤差を補正する処理は、
形状測定装置に接続された計算機により自動的に行うこ
とができる。したがって、作業者は被測定物とその近似
形状の原器の測定を行うだけでよい。
Next, in step S103, the shape of the object to be measured is measured using a shape measuring device. Finally, in step S104, the fitting residue is subtracted and corrected from the measured value of the DUT obtained in step S103 to obtain true coordinate information of the DUT. In the above-described embodiment, the process of calculating the fitting residue and correcting the fitting error from the measurement result of the device under test includes:
It can be performed automatically by a computer connected to the shape measuring device. Therefore, the operator need only measure the object to be measured and a prototype having an approximate shape thereof.

【0027】また、形状が比較的近い被測定物を連続し
て測定する場合には、先に述べた形状測定装置の測定誤
差の性質より、測定結果にはほとんど同じ測定誤差を生
じる。したがって、形状が比較的近い被測定物を連続し
て測定する場合には、近似形状の原器の測定を各被測定
物の測定毎に行う必要は無く、ステップS101とステ
ップS102の処理は最初の一回だけ行うようにしても
良い。
In the case of continuously measuring an object having a relatively close shape, almost the same measurement error occurs in the measurement result due to the nature of the measurement error of the shape measuring apparatus described above. Therefore, when measuring an object having a relatively similar shape continuously, it is not necessary to measure a prototype having an approximate shape for each measurement of the object to be measured. May be performed only once.

【0028】また、前記実施の形態においては、2次元
の測定について説明したが、言うまでもなく、本発明は
3次元の測定に対しても適用可能である。さらに、本発
明によれば測定機が有する測定誤差が経時的に変化する
ような場合でも正しい補正が可能となる。以上の説明か
ら明らかなにように、前記実施の形態によれば、形状測
定装置によって得られた被測定物表面の座標値から形状
測定装置に固有の測定誤差を取り除き、高精度の測定値
を得ることが可能になる。
Further, in the above-described embodiment, two-dimensional measurement has been described, but it is needless to say that the present invention can be applied to three-dimensional measurement. Further, according to the present invention, correct correction can be performed even when the measurement error of the measuring instrument changes with time. As is clear from the above description, according to the embodiment, the measurement error unique to the shape measuring device is removed from the coordinate value of the surface of the measured object obtained by the shape measuring device, and the high-precision measured value is obtained. It is possible to obtain.

【0029】したがって、例えば、非球面光学素子の測
定などで要求される高い測定精度を実現することができ
る。
Therefore, for example, it is possible to realize a high measurement accuracy required for measuring an aspherical optical element.

【0030】[0030]

【発明の効果】請求項1記載の形状測定方法によれば、
形状測定装置の装置誤差量をあらかじめ正確に求めるこ
とができるので(第2のステップ)、被測定物の測定値
から装置誤差量を減算することにより(第4のステッ
プ)、被測定物の形状(座標情報)を高精度に求めるこ
とができる。
According to the shape measuring method of the first aspect,
Since the apparatus error amount of the shape measuring apparatus can be accurately obtained in advance (second step), the shape of the object to be measured is subtracted by subtracting the apparatus error amount from the measured value of the object to be measured (fourth step). (Coordinate information) can be obtained with high accuracy.

【0031】また、真直度測定機や真円度測定機を使用
し、これらの測定機の誤差が入り込んだ場合において
も、上記測定機の誤差を含めて様々な誤差要因が複雑に
影響し合っている測定誤差を除去することができるの
で、被測定物の形状(座標情報)を高精度に求めること
ができる。また、各誤差要因によって生じる誤差が経時
的に変化する場合においても、被測定物の形状(座標情
報)を高精度に求めることができる。
Further, when a straightness measuring instrument or a roundness measuring instrument is used and errors of these measuring instruments are introduced, various error factors including the errors of the measuring instruments affect each other in a complicated manner. Since the measurement error can be removed, the shape (coordinate information) of the measured object can be obtained with high accuracy. Further, even when an error caused by each error factor changes with time, the shape (coordinate information) of the measured object can be obtained with high accuracy.

【0032】請求項2記載の形状測定装置によれば、測
定誤差検出手段が形状測定装置の装置誤差量をあらかじ
め正確に求め、形状測定手段が被測定物の測定値から測
定誤差検出手段によって求められた装置誤差量を用いて
補正することにより、被測定物の形状(座標情報)を高
精度に求めることができる。また、真直度測定機や真円
度測定機を使用し、これらの測定機の誤差が入り込んだ
場合においても、上記測定機の誤差を含めて様々な誤差
要因が複雑に影響し合っている測定誤差を除去すること
ができるので、被測定物の形状(座標情報)を高精度に
求めることができる。
According to the second aspect of the present invention, the measuring error detecting means accurately obtains the device error amount of the shape measuring apparatus in advance, and the shape measuring means obtains the measuring error of the measured object by the measuring error detecting means. The shape (coordinate information) of the device under test can be obtained with high accuracy by performing correction using the obtained device error amount. In addition, when using a straightness measuring instrument or a roundness measuring instrument, and errors of these measuring instruments are included, various error factors including the errors of the measuring instruments described above are complicatedly affecting each other. Since the error can be removed, the shape (coordinate information) of the measured object can be obtained with high accuracy.

【0033】また、各誤差要因によって生じる誤差が経
時的に変化する場合においても、被測定物の形状(座標
情報)を高精度に求めることができる。
Further, even when the error caused by each error factor changes with time, the shape (coordinate information) of the measured object can be obtained with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】被測定物体の真の形状を求める手順を示すフロ
ーチャートである。
FIG. 1 is a flowchart illustrating a procedure for obtaining a true shape of an object to be measured.

【図2】本発明の対象となる3次元(X,Y,Z空間)
の形状測定装置の一例を示す図である。
FIG. 2 is a three-dimensional (X, Y, Z space) subject to the present invention.
FIG. 2 is a diagram showing an example of a shape measuring device.

【図3】本発明の対象となる2次元(X,Z空間)の形
状測定装置の一例を示す図である。
FIG. 3 is a diagram showing an example of a two-dimensional (X, Z space) shape measuring apparatus to which the present invention is applied.

【図4】被測定物である非球面レンズを、図3に示す形
状測定装置を用いて、2次元的に測定した測定値の一例
を示す図である。
4 is a diagram showing an example of measured values obtained by two-dimensionally measuring an aspheric lens as an object to be measured using the shape measuring device shown in FIG.

【図5】原器球面レンズの実際の測定値と原器球面レン
ズ(ベストフィット球面)の形状データとフィッティン
グ残渣の関係を示す図である。
FIG. 5 is a diagram showing a relationship between actual measured values of a prototype spherical lens, shape data of the prototype spherical lens (best-fit spherical surface), and fitting residues.

【符号の説明】[Explanation of symbols]

1 ベース 3 フレーム 5,7 ガイド 9 被測定物 11,13 ステージ 15 プローブ 17 Z軸スライド 19,23 基準面 21,25 変位センサ S1,S4 測定値 S2 真の座標情報 S3 測定誤差 S5 形状データ S6 測定誤差(フィッティング残渣) 1 Base 3 Frame 5, 7 Guide 9 Object to be measured 11, 13 Stage 15 Probe 17 Z-axis slide 19, 23 Reference plane 21, 25 Displacement sensor S1, S4 Measured value S2 True coordinate information S3 Measurement error S5 Shape data S6 Measurement Error (fitting residue)

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F062 AA04 AA51 CC20 DD23 DD33 EE04 EE62 FF04 FF13 HH01 HH13 2F069 AA04 AA66 DD19 EE20 FF07 GG01 GG11 GG62 GG71 HH01 JJ07 JJ13 LL02  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2F062 AA04 AA51 CC20 DD23 DD33 EE04 EE62 FF04 FF13 HH01 HH13 2F069 AA04 AA66 DD19 EE20 FF07 GG01 GG11 GG62 GG71 HH01 JJ07 JJ13 LL02

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被測定物表面を走査して、被測定物表面
の形状を測定する形状測定装置を用いた形状測定方法に
おいて、 被測定物に近似な形状を有し、設計上の形状データが明
らかな原器を測定して第1の測定値を求める第1のステ
ップと、 前記第1の測定値と前記原器の形状データとから前記形
状測定装置に起因する装置誤差量を求める第2のステッ
プと、 前記被測定物を測定して、第2の測定値を求める第3の
ステップと、 前記装置誤差量を用いて第2の測定値を補正し、被測定
物の測定値を求める第4のステップとを有することを特
徴とする形状測定方法。
1. A shape measuring method using a shape measuring apparatus for measuring the shape of a surface of an object to be scanned by scanning the surface of the object to be measured. A first step of measuring a prototype that is known to obtain a first measurement value, and a second step of determining a device error amount caused by the shape measurement device from the first measurement value and the shape data of the prototype. Step 2, measuring the object to be measured, a third step of obtaining a second measured value, correcting the second measured value using the apparatus error amount, and measuring the measured value of the object to be measured. And a fourth step of obtaining the shape.
【請求項2】 被測定物表面を走査して、被測定物の形
状を測定する形状測定装置において、 被測定物に近似な形状を有し、設計上の形状データが明
らかな原器を測定して第1の測定値を求め、前記第1の
測定値と前記原器の形状データとから前記形状測定装置
に起因する装置誤差量を求める測定誤差検出手段と、 前記被測定物を測定して第2の測定値を求め、さらに前
記装置誤差量を用いて第2の測定値を補正し、被測定物
の測定値を求める形状測定手段と を備えることを特徴とする形状測定装置。
2. A shape measuring apparatus for measuring the shape of an object to be measured by scanning the surface of the object to be measured, wherein a prototype having a shape similar to the object to be measured and whose shape data in design is clear is measured. A first measurement value, and a measurement error detecting means for obtaining a device error amount caused by the shape measurement device from the first measurement value and the shape data of the prototype, and measuring the object to be measured. A shape measurement unit for obtaining a second measurement value by using the apparatus error amount, and further correcting the second measurement value using the device error amount to obtain a measurement value of the object to be measured.
JP10251424A 1998-09-04 1998-09-04 Shape measurement method and device Pending JP2000081329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10251424A JP2000081329A (en) 1998-09-04 1998-09-04 Shape measurement method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10251424A JP2000081329A (en) 1998-09-04 1998-09-04 Shape measurement method and device

Publications (1)

Publication Number Publication Date
JP2000081329A true JP2000081329A (en) 2000-03-21

Family

ID=17222651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10251424A Pending JP2000081329A (en) 1998-09-04 1998-09-04 Shape measurement method and device

Country Status (1)

Country Link
JP (1) JP2000081329A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039908A (en) * 2000-07-25 2002-02-06 Canon Inc Method for evaluating shape, and method for manufacturing part
JP2005024567A (en) * 2004-09-07 2005-01-27 Hitachi Kokusai Electric Inc Location finding apparatus
JP2006349410A (en) * 2005-06-14 2006-12-28 Toshiba Mach Co Ltd Calibration method and program for creating calibration execution program for measurement device
JP2006349411A (en) * 2005-06-14 2006-12-28 Toshiba Mach Co Ltd Calibration gauge
JP2012198241A (en) * 2002-03-06 2012-10-18 Renishaw Plc Coordinate measuring apparatus
JP2013088341A (en) * 2011-10-20 2013-05-13 Toshiba Mach Co Ltd Measuring device, measuring method, touch probe, and calibration gauge
JP2014132264A (en) * 2012-12-06 2014-07-17 Canon Inc Contour shape measurement method
CN105180747A (en) * 2015-10-14 2015-12-23 无锡市迈日机器制造有限公司 Floating measuring device
JP2016090478A (en) * 2014-11-07 2016-05-23 株式会社ミツトヨ Measurement value correcting method, measurement value correcting program, and measuring device
JP2016090479A (en) * 2014-11-07 2016-05-23 株式会社ミツトヨ Measurement value correcting method, measurement value correcting program, and measuring device
CN114152236A (en) * 2021-11-18 2022-03-08 哈尔滨工业大学 High-precision sphericity measuring method based on spherical coordinate sphericity instrument

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039908A (en) * 2000-07-25 2002-02-06 Canon Inc Method for evaluating shape, and method for manufacturing part
JP4564632B2 (en) * 2000-07-25 2010-10-20 キヤノン株式会社 Shape evaluation method and component manufacturing method
JP2012198241A (en) * 2002-03-06 2012-10-18 Renishaw Plc Coordinate measuring apparatus
JP2005024567A (en) * 2004-09-07 2005-01-27 Hitachi Kokusai Electric Inc Location finding apparatus
JP2006349410A (en) * 2005-06-14 2006-12-28 Toshiba Mach Co Ltd Calibration method and program for creating calibration execution program for measurement device
JP2006349411A (en) * 2005-06-14 2006-12-28 Toshiba Mach Co Ltd Calibration gauge
JP2013088341A (en) * 2011-10-20 2013-05-13 Toshiba Mach Co Ltd Measuring device, measuring method, touch probe, and calibration gauge
JP2014132264A (en) * 2012-12-06 2014-07-17 Canon Inc Contour shape measurement method
JP2016090478A (en) * 2014-11-07 2016-05-23 株式会社ミツトヨ Measurement value correcting method, measurement value correcting program, and measuring device
JP2016090479A (en) * 2014-11-07 2016-05-23 株式会社ミツトヨ Measurement value correcting method, measurement value correcting program, and measuring device
CN105180747A (en) * 2015-10-14 2015-12-23 无锡市迈日机器制造有限公司 Floating measuring device
CN114152236A (en) * 2021-11-18 2022-03-08 哈尔滨工业大学 High-precision sphericity measuring method based on spherical coordinate sphericity instrument
CN114152236B (en) * 2021-11-18 2024-06-04 哈尔滨工业大学 High-precision sphericity measuring method based on spherical coordinate sphericity instrument

Similar Documents

Publication Publication Date Title
JP5069287B2 (en) Error correction method
US7131207B2 (en) Workpiece inspection method
US7286949B2 (en) Method of error correction
EP1446636B1 (en) Dynamic artefact comparison
US6990215B1 (en) Photogrammetric measurement system and method
JPH1183438A (en) Position calibration method for optical measuring device
JP2748702B2 (en) Error correction method for CMM
US6985238B2 (en) Non-contact measurement system for large airfoils
Santolaria et al. A one-step intrinsic and extrinsic calibration method for laser line scanner operation in coordinate measuring machines
KR100704831B1 (en) System and method for guiding real time inspection using 3D scanners
JP2000081329A (en) Shape measurement method and device
EP1703251B1 (en) Interaxis angle correction method
CN114396929B (en) Method for detecting form and position tolerance of diaphragm hole of laser gyro cavity
JP3999063B2 (en) CMM, CMM calibration method, and computer-readable storage medium storing program for executing the method
JPH11257945A (en) Probe type shape measuring apparatus and shape measuring method
JP2885422B2 (en) Shape evaluation device and shape evaluation method
JPH11281306A (en) Calibrated-value detection method for coordinate-measuring machine and calibration method for shape data using the same calibrated data
JP3633863B2 (en) Autonomous determination method of systematic error of surface profile measurement system using calibration object
JPH01202611A (en) Three-dimensional measurement method and apparatus
JP2006133059A (en) Device for measuring interference
JP2003254747A (en) Straightness measurement method
JP2003121131A (en) Measuring method for straightness by scanning gap amount detection
JP3638120B2 (en) Method for determining systematic error of surface shape measuring system and surface shape measuring device
JP2003035529A (en) Systematic error measuring method in flatness measuring system on object surface to be inspected, flatness measuring method and apparatus using the same
JP2003227712A (en) Autonomous calibration method of surface shape measuring system using area sensor