JPH01202611A - Three-dimensional measurement method and apparatus - Google Patents

Three-dimensional measurement method and apparatus

Info

Publication number
JPH01202611A
JPH01202611A JP2846388A JP2846388A JPH01202611A JP H01202611 A JPH01202611 A JP H01202611A JP 2846388 A JP2846388 A JP 2846388A JP 2846388 A JP2846388 A JP 2846388A JP H01202611 A JPH01202611 A JP H01202611A
Authority
JP
Japan
Prior art keywords
probe
correction value
reference sphere
measurement
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2846388A
Other languages
Japanese (ja)
Other versions
JPH0663760B2 (en
Inventor
Hisayoshi Sakai
久嘉 境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP2846388A priority Critical patent/JPH0663760B2/en
Publication of JPH01202611A publication Critical patent/JPH01202611A/en
Publication of JPH0663760B2 publication Critical patent/JPH0663760B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enable accurate correction of measuring errors attributed to a lobing characteristic of a probe, by detecting the lobing characteristic in terms of a measuring direction actually measuring a division area of a reference ball from a normal to correct a measured value. CONSTITUTION:A reference ball measuring mechanism 156 divides the surface of a reference ball 150 having a specified diameter and a sufficient sphericity into specified areas and brings a touch signal probe 122 into contact with the surface from a normal of the areas to obtain a measurement signal. Then, a corrected value computing mechanism 158 determines a vertical spherical shape of the reference ball 150 from the measured value obtained by the mechanism 156 to be projected to a reference spherical shape so that a deviation is determined between the virtual spherical shape and the reference spherical shape to be stored corresponding to the divided surface as correction value. Then, a measured value correction mechanism 160 brings the probe 122 into contact with the measuring surface of work 124 roughly from a normal to detect position coordinates and a direction of movement at a contact point and a division area of the reference ball 150 in which the direction of movement almost coincides with the direction of measurement is selected. Thus, a correction value corresponding to the division area is read out to correct position coordinates.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は三次元測定方法及び装置、特にタッチ信号プロ
ーブを用いる方法及び装置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to improvements in three-dimensional measurement methods and apparatus, particularly methods and apparatus using touch signal probes.

[従来の技術] 被測定物の三次元形状などを測定するため三次元測定装
置が周知であり、被測定物の加工状態などを検査するた
め各種分野で用いられている。
[Prior Art] A three-dimensional measuring device is well known for measuring the three-dimensional shape of an object to be measured, and is used in various fields to inspect the processing state of an object to be measured.

このような三次元測定装置は、一般に第6図に示すよう
に構成されている。
Such a three-dimensional measuring device is generally configured as shown in FIG.

同図に示す三次元測定装置は、ベツド10上に設けられ
たテーブル12と、該テーブル両側に立設された支柱1
4.16と、該支柱14.16にY軸方向に摺動自在に
支持されたXビーム18と、該Xビーム18にX軸方向
に摺動自在に支持されたスライダーと、該スライダーに
X軸方向に摺動自在に支持されたZ軸スピンドル20と
、を含む。
The three-dimensional measuring device shown in the figure consists of a table 12 provided on a bed 10, and pillars 1 erected on both sides of the table.
4.16, an X beam 18 supported by the support column 14.16 so as to be slidable in the Y-axis direction, a slider supported by the X-beam 18 so as to be slidable in the X-axis direction, and an A Z-axis spindle 20 is slidably supported in the axial direction.

前記Z軸スピンドル20の下端にはタッチ信号プローブ
22が設置されている。
A touch signal probe 22 is installed at the lower end of the Z-axis spindle 20 .

そ1ノで、キーボード23からの人力情報に基づき、前
記タッチ信号プローブ22をテーブル】2上に載置され
たワーク24に接触させ、その発生する接触信号により
検出される位置座標をマイクロコンピュータ−26で演
算処理し、前記ワークなどの寸法等をプリンター等に出
力する。
In step 1, the touch signal probe 22 is brought into contact with the workpiece 24 placed on the table 2 based on the manual information from the keyboard 23, and the position coordinates detected by the contact signal generated are detected by the microcomputer. 26 performs arithmetic processing and outputs the dimensions of the workpiece etc. to a printer or the like.

ところで、このような三次元測定装置の測定誤差は、測
定装置本体の精度と、プローブ検出精度に起因するが、
従来は測定装置のスピンドルのたわみ等に由来する本体
精度がプローブの検出精度に比較し低く、各々の要因の
精度的バランスからプローブ側の要因は許容されてきた
By the way, the measurement error of such a three-dimensional measuring device is caused by the accuracy of the measuring device itself and the probe detection accuracy.
Conventionally, the accuracy of the main body due to deflection of the spindle of the measuring device, etc. has been lower than the detection accuracy of the probe, and the factors on the probe side have been allowed from the accuracy balance of each factor.

しかしながら、近年の高精度測定の要望から、測定装置
本体側の要因に対して高剛性で高精度な構造及び有効な
補正方法が確立されつつあり、測定装置本体の精度は向
上している。
However, due to the recent demand for high-precision measurement, highly rigid and highly accurate structures and effective correction methods are being established for factors on the measuring device main body side, and the accuracy of the measuring device main body is improving.

これに対し、プローブ側の要因は、例えば接触子を円盤
により支持したり、接触子の支持点を増加させたり、接
触子の変位を検出する手段として圧電素子を用いるなど
種々ロービング特性についての改善がなされてきた。
On the other hand, factors on the probe side include various improvements in roving characteristics, such as supporting the contact with a disk, increasing the number of support points for the contact, and using a piezoelectric element as a means of detecting the displacement of the contact. has been done.

このロービング特性は、プローブのワークへの接触方向
毎に異なって生じる測定誤差であり、例えば、プローブ
先端の接触子が3点支持されている場合、該支持点方向
に接触子が移動してワークに接触した場合と、各支持点
の中間方向に接触子が移動してワークに接触した場合と
では、接触子とワークとの間に生じる測定力に差異を生
じ、測定子のたわみあるいは不感量の相違などにより誤
差が生じてしまうのである。
This roving characteristic is a measurement error that occurs differently depending on the direction in which the probe contacts the workpiece. For example, when the contact at the tip of the probe is supported at three points, the contact moves in the direction of the support points and the workpiece is moved. There is a difference in the measuring force generated between the contact and the workpiece when the contactor touches the workpiece, and when the contactor moves in the middle direction between each support point and contacts the workpiece, causing deflection of the contactor or dead amount. Errors occur due to differences in the numbers.

[発明が解決しようとする課題] /    l8 しかしながら、従来においてはこのロービング特性(方
向性)について、未だ十分な解決策がなされていなかっ
た。
[Problems to be Solved by the Invention] / 18 However, in the past, no sufficient solution to this roving characteristic (directivity) has been made yet.

すなわち、このような従来の構造面で改善されたタッチ
信号プローブによると、複雑かつ正確なプローブ構造が
必要となり高価となると共に、三次元金ての方向でのロ
ービング特性を十分に改善するには至ってはいない。
In other words, such a conventional touch signal probe with improved structure requires a complicated and precise probe structure, which is expensive, and it is difficult to sufficiently improve the roving characteristics in the three-dimensional direction. Not quite yet.

主工辺且珀 本発明は前記従来技術の問題点に鑑みなされたものであ
り、その目的は取扱が容易でしかもプローブの有するロ
ービング特性を的確に補正することのできる三次元測定
方法及び装置を提供することにある。
The present invention was made in view of the problems of the prior art, and its purpose is to provide a three-dimensional measuring method and apparatus that are easy to handle and that can accurately correct the roving characteristics of a probe. It is about providing.

[課題を解決するための手段] 前記目的を達成するために、本発明にかかる三次元測定
方法は、基準球測定工程と、補正値演算工程と、測定値
補正工程と、を含む。
[Means for Solving the Problems] In order to achieve the above object, a three-dimensional measurement method according to the present invention includes a reference sphere measurement step, a correction value calculation step, and a measured value correction step.

前記基準球測定工程は、所定の直径及び十分な真球度を
有する基準球の表面を所定の複数領域に分割し、各分割
領域に対し各々法線方向からタッチ信号プローブを接触
させて測定信号を得る。
In the reference sphere measurement step, the surface of the reference sphere having a predetermined diameter and sufficient sphericity is divided into a plurality of predetermined regions, and a touch signal probe is brought into contact with each divided region from the normal direction to obtain a measurement signal. get.

前記補正値演算工程は、前記基準球測定工程で得られた
測定値から基準球の仮想球形状を求め、該仮想球形状を
前記基準球形状に投影し、前記仮想球形状と前記基準球
形状の偏差を求め、さらにこの偏差を補正値として前記
分割表面に対応して記憶する。
The correction value calculation step calculates a virtual spherical shape of the reference sphere from the measured values obtained in the reference sphere measurement step, projects the virtual spherical shape onto the reference spherical shape, and calculates the virtual spherical shape and the reference spherical shape. The deviation is determined, and this deviation is stored as a correction value corresponding to the divided surface.

補正値演算工程は、ワーク測定面に対し略法線方向から
タッチ信号プローブを接触させ、この接触点における位
置座標及び移動方向を検出し、この移動方向から測定方
向が略一致する前記基準球の分割領域を選択し、この分
割領域に相当する補正値を読みだし、前記位置座標を補
正する。
In the correction value calculation step, a touch signal probe is brought into contact with the workpiece measurement surface from a substantially normal direction, the position coordinates and movement direction at this contact point are detected, and from this movement direction, the reference sphere whose measurement direction substantially coincides with the touch signal probe is detected. A divided area is selected, a correction value corresponding to this divided area is read out, and the position coordinates are corrected.

なお、補正値演算工程では、測定機本体に起因する誤差
の補正値を併せて補正・記憶することが好適である。
In addition, in the correction value calculation step, it is preferable to also correct and store correction values for errors caused by the measuring instrument main body.

また、本発明にかかる三次元測定装置は、タッチ信号プ
ローブと、プローブ駆動機構と、座標読み取り機構と、
基準球と、基準球測定機構と、補正値演算機構と、測定
値補正機構と、を備える。
Further, the three-dimensional measuring device according to the present invention includes a touch signal probe, a probe driving mechanism, a coordinate reading mechanism,
It includes a reference sphere, a reference sphere measurement mechanism, a correction value calculation mechanism, and a measured value correction mechanism.

そして、前記基準球は、所定の直径及び十分な真球度を
有する。
The reference sphere has a predetermined diameter and sufficient sphericity.

基準球測定機構は、該基準球を所定の複数領域に分割し
、該分割領域の代表点にプローブを接触させその座標を
読み取る。
The reference sphere measuring mechanism divides the reference sphere into a plurality of predetermined regions, brings a probe into contact with a representative point of the divided regions, and reads the coordinates thereof.

補正値演算機構は、前記基準球測定機構で得られた測定
値から基準球の仮想形状を求め、該仮想球形状を前記基
準球形状に投影し、前記仮想球形状と前記基準球形状の
偏差を求め、さらにこの偏差を前記分割表面に対応して
補正値として記憶する。
The correction value calculating mechanism calculates a virtual shape of a reference sphere from the measurement value obtained by the reference sphere measuring mechanism, projects the virtual sphere shape onto the reference sphere shape, and calculates the deviation between the virtual sphere shape and the reference sphere shape. is determined, and this deviation is stored as a correction value corresponding to the divided surface.

測定値補正機構は、ワーク測定面に対し略法線方向から
タッチ信号プローブを接触させ、この接触点における位
置座標及び移動方向を検出し、この移動方向から測定方
向が略一致する前記基準球の分割領域を選択し、この分
割領域に相当する補正値を読みだし、前記位置座標を補
正する。
The measurement value correction mechanism brings the touch signal probe into contact with the workpiece measurement surface from a substantially normal direction, detects the position coordinates and movement direction at this contact point, and detects the position coordinates and movement direction of the reference sphere from this movement direction, with which the measurement direction substantially coincides. A divided area is selected, a correction value corresponding to this divided area is read out, and the position coordinates are corrected.

なお、本発明において、補正値演算機構は、測定機本体
に起因する誤差を併せて補正・記憶することが好適であ
る。
In the present invention, it is preferable that the correction value calculation mechanism also corrects and stores errors caused by the measuring instrument itself.

[作用] 本発明にかかる三次元測定方法及び測定装置は前述した
手段を有するので、テーブル上の基準球を所定の分割領
域に分vlシ、プローブ移動機構により各分割領域の代
表点にプローブを法線方向より移動・接触させ、座標読
み取り機構により各分割領域の代表点の座標を読み取る
[Operation] Since the three-dimensional measuring method and measuring device according to the present invention have the above-described means, the reference sphere on the table is divided into predetermined divided regions, and the probe moving mechanism is used to place the probe at the representative point of each divided region. It is moved and brought into contact in the normal direction, and the coordinates of the representative point of each divided area are read by the coordinate reading mechanism.

そして、代表点座標より演算された基準球の仮想形状と
、該基準球の実形状が比較され、その偏差がロービング
特性の補正値として用いられる。
Then, the virtual shape of the reference sphere calculated from the coordinates of the representative point and the actual shape of the reference sphere are compared, and the deviation thereof is used as a correction value for the roving characteristic.

従って、三次元方向へのプローブの移動方向毎のロービ
ング特性に対応した補正値を得ることができる。
Therefore, it is possible to obtain correction values corresponding to the roving characteristics for each direction of movement of the probe in three-dimensional directions.

また、補正値演算の段階で、測定装置本体に由来する誤
差の補正値も加味することで、ロービング特性の補正に
対する本体補正の干渉を排除することができ、より高精
度な測定を行うことができる。
In addition, by taking into account the correction value for errors originating from the measuring device itself at the stage of calculating the correction value, it is possible to eliminate the interference of the main body correction with the correction of the roving characteristics, making it possible to perform more accurate measurements. can.

以上のように、本発明によれば、個々の測定に当たって
の位置座標、移動方向により最適の補正量を得ることが
でき、個々のプローブなどによって異なるロービング特
性を適切に補正することが可能となる。
As described above, according to the present invention, it is possible to obtain the optimum correction amount depending on the position coordinates and movement direction for each measurement, and it is possible to appropriately correct the roving characteristics that differ depending on the individual probe etc. .

[実施例] 以下、図面に基づいて本発明の好適な実施例を説明する
[Embodiments] Hereinafter, preferred embodiments of the present invention will be described based on the drawings.

第1図には、本発明の一実施例にかかる三次元測定装置
の主要構成が模式的に示されている。なお、前記従来技
術と対応する部分には符号100を加えて示し、説明を
省略する。
FIG. 1 schematically shows the main configuration of a three-dimensional measuring device according to an embodiment of the present invention. Note that parts corresponding to those in the prior art described above are indicated by the reference numeral 100, and their explanation will be omitted.

本実施例にかかる三次元測定装置は、テーブル112上
に基準球150を設け、該基準球150の測定をワーク
124の測定に先立って行うことによりロービング特性
の影響を除去しようとするものである。
The three-dimensional measuring device according to this embodiment is intended to remove the influence of roving characteristics by installing a reference sphere 150 on the table 112 and measuring the reference sphere 150 before measuring the workpiece 124. .

すなわち、同図に示す装置は、プローブ駆動機構152
と、座標読み取り機構154と、基準球測定機構156
と、補正値演算機構158と、測定値補正機構160と
、を含む。
That is, the device shown in the figure has a probe drive mechanism 152.
, a coordinate reading mechanism 154 , and a reference sphere measuring mechanism 156
, a correction value calculation mechanism 158 , and a measurement value correction mechanism 160 .

そして、前記プローブ駆動機構152は、測定器の支柱
、Xビーム、スライダーに各設置された駆動モーター1
62を駆動制御し、タッチ信号プローブ122を所定位
置に移動する。
The probe drive mechanism 152 includes drive motors 1 installed on the pillar, X beam, and slider of the measuring instrument.
62 to move the touch signal probe 122 to a predetermined position.

また、座標読み取り機構154は、同じく測定器の支柱
、Xビーム、スライダーに設けられたエンコーダ164
よりプローブの移動量をX軸、Y軸、Z軸の各軸毎に読
み取り、プローブ122の(X、Y、Z)座標を出力す
る。
The coordinate reading mechanism 154 also includes an encoder 164 provided on the support, X beam, and slider of the measuring instrument.
The amount of movement of the probe is read for each of the X, Y, and Z axes, and the (X, Y, Z) coordinates of the probe 122 are output.

基準球測定機構156は、仮中心座標演算部166、分
割領域演算部16日、方向信号演算部170よりなる。
The reference sphere measuring mechanism 156 includes a temporary center coordinate calculation section 166, a divided area calculation section 16, and a direction signal calculation section 170.

そして、仮中心座標演算部は、所定の半径Rの基準球1
50にプローブ122を3点接触させて得た座標値より
該基準球150の仮中心座標を演算する。
Then, the temporary center coordinate calculating section calculates a reference sphere 1 having a predetermined radius R.
The tentative center coordinates of the reference sphere 150 are calculated from the coordinate values obtained by touching the probe 122 at three points on the reference sphere 150.

分割領域演算部168は、前記基準球150の仮中心座
標及び半径Rより特定される基準球150を予め設定さ
れた所定数の分割領域に分割する。
The divided area calculation unit 168 divides the reference sphere 150 specified from the temporary center coordinates and radius R of the reference sphere 150 into a predetermined number of divided areas.

方向信号演算部170は、前記各分割領域の代表点を定
め、該代表点に対しその法線方向からブロー1122を
接触させるよう方向信号を演算する。
The direction signal calculation unit 170 determines a representative point of each of the divided regions, and calculates a direction signal so as to bring the blow 1122 into contact with the representative point from the direction normal to the representative point.

そして、該方向信号はプローブ駆動機構152に人力さ
れ、プローブ122を基準球150の各代表点に接触さ
せ、座標読み取り機構154により各代表点の座標が読
み取られる。
Then, the direction signal is manually applied to the probe driving mechanism 152 to bring the probe 122 into contact with each representative point of the reference sphere 150, and the coordinate reading mechanism 154 reads the coordinates of each representative point.

補正値演算機構15Bは、中心座標演算部172、代表
点位置演算部174.補正値演算部176、補正値記憶
部178よりなる。
The correction value calculation mechanism 15B includes a center coordinate calculation section 172, a representative point position calculation section 174. It consists of a correction value calculation section 176 and a correction value storage section 178.

中心座標演算部172は、前記基準球150の各代表点
座標より統計的に基準球150の中心座標を演算する。
The center coordinate calculation unit 172 statistically calculates the center coordinates of the reference sphere 150 from the coordinates of each representative point of the reference sphere 150.

代表点位置演算部174は、中心より各代表点の離隔距
離rを演算する。
The representative point position calculation unit 174 calculates the separation distance r of each representative point from the center.

補正値演算部176は、基準球150の半径Rと、中心
より各代表点の離隔距離rを比較し、その差を該分割領
域の補正値として補正値記憶部178に記憶する。
The correction value calculation section 176 compares the radius R of the reference sphere 150 and the separation distance r of each representative point from the center, and stores the difference in the correction value storage section 178 as a correction value for the divided area.

一方、測定値補正機構160は、移動方向判別部180
.補正値読み出し部182.測定値補正部184よりな
る。
On the other hand, the measured value correction mechanism 160
.. Correction value reading unit 182. It consists of a measured value correction section 184.

そして、移動方向判別部180は、プローブ122が実
際にワーク124を測定する際、そのプローブ移動方向
を判別する。
Then, the moving direction determining unit 180 determines the moving direction of the probe 122 when the probe 122 actually measures the workpiece 124 .

補正値読み出し部182は、前記プローブ移動方向と略
一致する方向の分割領域を選択し、該分割領域に対応し
た補正値を前記補正値記憶部178より読み出す。
The correction value reading unit 182 selects a divided area in a direction that substantially coincides with the probe moving direction, and reads out a correction value corresponding to the divided area from the correction value storage unit 178.

そして、測定値補正部184は、ワークの測定座標を前
記読み出された補正値により補正し、出力する。
Then, the measured value correction unit 184 corrects the measured coordinates of the workpiece using the read correction value and outputs the corrected value.

なお、本実施例において、各機構は制御部186により
制御されており、初期データはキーボード18Bを介し
て入力されると共に、補正された測定座標は制御部18
6を介してデイスプレィあるいはプリンターなどの出力
器190に出力される。
In this embodiment, each mechanism is controlled by the control unit 186, initial data is input via the keyboard 18B, and corrected measurement coordinates are input to the control unit 186.
6 to an output device 190 such as a display or printer.

本実施例にかかる三次元測定装置は概略以上のように構
成され、以下にその作用について説明する。
The three-dimensional measuring device according to this embodiment is roughly configured as described above, and its operation will be explained below.

まず、測定者はキーボードより基準球150の半径Rを
入力し、その上でプローブ122を移動させ基準球15
0に三点で接触させる。なお、半径Rが定まっているた
め三点測定で基準球150は一応特定される。
First, the measurer inputs the radius R of the reference sphere 150 from the keyboard, and then moves the probe 122 to form the reference sphere 150.
0 at three points. Note that since the radius R is fixed, the reference sphere 150 can be specified by three-point measurement.

そして、仮中心座標演算部166は、その特定された基
準球150の仮中心09の座標(x o’。
Then, the tentative center coordinate calculation unit 166 calculates the coordinates (x o') of the tentative center 09 of the specified reference sphere 150.

yo’、  zo’)を算出し、基準点(0,0,0)
とする。
yo', zo') and set the reference point (0, 0, 0)
shall be.

次に、第2図にも示されるように、分割領域演算部16
8により基準球150を所定数に分割する。
Next, as shown in FIG.
8, the reference sphere 150 is divided into a predetermined number.

すなわち、三次元測定機本体の座標系におけるxZ平面
及びXY平面を基準として、基準球150を各々経度方
向及び緯度方向に所定ピッチθl。
That is, the reference sphere 150 is moved at a predetermined pitch θl in the longitude and latitude directions, respectively, using the xZ plane and the XY plane in the coordinate system of the three-dimensional measuring machine body as references.

φ1で分割すると、球表面上に投影される各々の分割境
界点座標は球座標ベクトル(θC9φj)Rとして求め
られる。
When dividing by φ1, the coordinates of each division boundary point projected onto the spherical surface are obtained as a spherical coordinate vector (θC9φj)R.

ここで、球表面の各分割された分割領域を考えると、そ
の微細表面は第3図に示すように隣接する4本のベクト
ル(θ1.φJ) Rt  (θi+1.φj)R,(
θi、φJ”l) Re  (θi+1.φj+1) 
Rで特定され、本実施例においては、方向信号演算部1
70により各微細表面の中心点を代表点として前記4本
のベクトルからその代表点ベクトル(θ10゜φjO)
 Rを求める。
Now, considering each divided region of the spherical surface, its fine surface is divided into four adjacent vectors (θ1.φJ) Rt (θi+1.φj)R, (
θi, φJ”l) Re (θi+1.φj+1)
R, and in this embodiment, the direction signal calculation unit 1
70, the representative point vector (θ10°φjO) is calculated from the four vectors using the center point of each microscopic surface as the representative point.
Find R.

(θi0.  φjO) R そして、第4図に示すように、方向信号演算部170は
この代表点ベクトルより、法線方向から各代表点を測定
するための測定機の直角座標系における方向信号(1,
m、n)を算出する。
(θi0. φjO) R Then, as shown in FIG. 4, the direction signal calculation unit 170 uses this representative point vector to calculate the direction signal ( 1,
m, n).

1=−RcosφjOcosθ10 m=−Rcosφjosinθ10 n=−RsinφjO この方向信号はプローブ駆動機構152に順次入力され
、該プローブ駆動機構152はその方向信号にしたがっ
て基準球150の各分割領域の代表点を自動的に測定す
る。
1=-RcosφjOcosθ10 m=-Rcosφjosinθ10 n=-RsinφjO This direction signal is sequentially input to the probe drive mechanism 152, and the probe drive mechanism 152 automatically determines the representative point of each divided area of the reference sphere 150 according to the direction signal. Measure.

そして、基準球150の各代表点の座標が座標読み取り
機構154により読み取られると、その代表点座標信号
は中心座標演算部172に入力される。
Then, when the coordinates of each representative point of the reference sphere 150 are read by the coordinate reading mechanism 154, the representative point coordinate signal is input to the center coordinate calculating section 172.

該中心座標演算部172では、統計的演算により基準球
150の中心Oの座標(Xo、yO9zO)が求められ
る。
The center coordinate calculation unit 172 calculates the coordinates (Xo, yO9zO) of the center O of the reference sphere 150 by statistical calculation.

そして、前記各代表点の座標(xi、 yi、  zi
)をこの中心Oの座標からの値に修正すると共に、各測
定値の中心座標からの離隔距離rを求める。
Then, the coordinates (xi, yi, zi
) is corrected to the value from the coordinates of the center O, and the separation distance r from the center coordinates of each measured value is determined.

この段階で、ロービング特性による誤差を含んだ基準球
の仮想形状が得られることとなる。
At this stage, a virtual shape of the reference sphere including errors due to roving characteristics is obtained.

そして、該仮想形状と基準球の実形状を比較することに
よりロービング特性による誤差を得ることができる。
Then, by comparing the virtual shape and the actual shape of the reference sphere, the error due to the roving characteristic can be obtained.

そこで、この各代表点の中心座標からの離隔距離rより
基準球半径Rを差し引き、その値を各々の分割領域に対
応した補正値N1j=r−Rとして、第5図に示すよう
な補正値記憶部178のメモリテーブル上に記憶される
Therefore, the reference sphere radius R is subtracted from the separation distance r from the center coordinates of each representative point, and the value is set as the correction value N1j=r−R corresponding to each divided area, and the correction value as shown in FIG. 5 is calculated. It is stored on the memory table of the storage unit 178.

以上のようにして、プローブ122の移動方向別のロー
ビング特性の補正量が決定された後、実際のワーク12
4の測定が行われる。
After the correction amount of the roving characteristic for each moving direction of the probe 122 is determined as described above, the actual workpiece 12
4 measurements are taken.

すなわち、制御部186よりの所定の制御によりプロー
ブ122が移動し、ワーク124と接触した時点で座標
読み取り機構154が接触位置座標を読み取る。
That is, the probe 122 moves under predetermined control from the control unit 186, and when it comes into contact with the workpiece 124, the coordinate reading mechanism 154 reads the contact position coordinates.

なお、プローブの移動は、ワーク124に対して所望接
触点でワーク表面の略法線方向より接触するよう予めプ
ログラムされている。
Note that the movement of the probe is programmed in advance so that it contacts the workpiece 124 at a desired contact point from a substantially normal direction of the workpiece surface.

そして、座標読み取り機構154より出力される座標信
号は測定値補正機構160の移動方向判別部180及び
測定値補正部184に入力される。
The coordinate signals output from the coordinate reading mechanism 154 are input to the moving direction determining section 180 and the measured value correcting section 184 of the measured value correcting mechanism 160.

前記移動方向判別部180では、プローブ122の移動
方向(ビ、m’、n’)が検出され、この移動方向を第
4図に示すよるにして極座標方向成分(θ9.φ′)に
変換する。
The moving direction determining unit 180 detects the moving direction (bi, m', n') of the probe 122, and converts this moving direction into polar coordinate direction components (θ9, φ') as shown in FIG. .

φ′)を前記補正値記憶部178に記憶されたテーブル
の分割領域の方向成分(θ1.φj)と比較し、はぼ一
致する分割領域を選択し、その補正量が読み出される。
φ') is compared with the direction component (θ1.φj) of the divided area of the table stored in the correction value storage section 178, a divided area that closely matches is selected, and its correction amount is read out.

該補正値は、測定値補正部184に人力され、前記測定
値を補正した上で出力される。
The correction value is manually input to the measurement value correction section 184, and the measurement value is corrected and then output.

そして、制御部186は出力器190上に補正された測
定値を表示する。
Then, the control unit 186 displays the corrected measurement value on the output device 190.

以上のように、本実施例にかかる三次元測定装置によれ
ば、プローブ122のワーク124への接触方向毎に異
なるロービング特性を的確に補正することが可能となる
As described above, according to the three-dimensional measuring apparatus according to the present embodiment, it is possible to accurately correct the roving characteristics that differ depending on the contact direction of the probe 122 with the workpiece 124.

なお、本実施例においては、測定機本体の誤差について
は、他の手段による検査に依存することとしたが、本発
明において、ロービング特性の修正と併せて本体誤差の
修正を行うことも好適である。
Note that in this example, the error in the measuring machine body was determined to depend on inspection by other means, but in the present invention, it is also suitable to correct the body error in addition to correcting the roving characteristics. be.

すなわち、測定機本体には、例えばスピンドルのたわみ
等による誤差が生じているが、それはいわゆる空間多点
補正により修正される。
That is, although errors occur in the measuring instrument body due to, for example, deflection of the spindle, these errors are corrected by so-called spatial multi-point correction.

この空間多点補正では、例えばプローブ取り付は位置に
移動リフレクタを設置し、他の固定点上にレーザー発振
器を該移動リフレクタに向けて配置する。
In this spatial multi-point correction, for example, a movable reflector is installed at a position where a probe is attached, and a laser oscillator is placed on another fixed point to face the movable reflector.

そして、レーザー発振器よりのビームをビームスプリッ
タにより分離し、基準位置に設けられた固定リフレクタ
と前記移動リフレクタの双方にレーザービームを照射し
、その反射光の干渉より固定リフレクタと移動リフレク
タの相対位置間係を検出する。
Then, the beam from the laser oscillator is separated by a beam splitter, the laser beam is irradiated to both the fixed reflector provided at the reference position and the movable reflector, and the relative positions of the fixed reflector and the movable reflector are determined by interference of the reflected light. Detect the person in charge.

さらに、このレーザー干渉計による距離出力と三次元測
定装置の変位出力との差を読むことにより測定機本体の
誤差を測定することができる。
Furthermore, by reading the difference between the distance output from the laser interferometer and the displacement output from the three-dimensional measuring device, it is possible to measure the error in the measuring device itself.

そこで、本発明において、第1図に示すように、本体側
補正値演算部200を設け、前記補正値演算機構158
の補正値演算部176にこの測定機本体の誤差を併せて
入力し、補正値記憶部17Bに記憶させることにより、
きわめて高精度の補正を行うことが可能となる。
Therefore, in the present invention, as shown in FIG.
By inputting the error of the measuring device main body into the correction value calculation section 176 and storing it in the correction value storage section 17B,
It becomes possible to perform correction with extremely high precision.

すなわち、本実施例によれば、基準球測定値から本体側
誤差を解消した状態で純粋なロービング特性の補正値が
得られ、実際のワーク測定において本体側補正値の干渉
が避けられ、より高精度の測定値を得ることができるの
である。
In other words, according to this embodiment, a pure roving characteristic correction value can be obtained with the main body side error removed from the reference ball measurement value, and interference of the main body side correction value can be avoided in actual workpiece measurement, resulting in higher accuracy. Accuracy measurements can then be obtained.

[発明の効果] 本発明は以上のように構成されているので、次のような
効果を奏する。
[Effects of the Invention] Since the present invention is configured as described above, the following effects are achieved.

請求項1に記載の三次元測定方法によれば、基準球の分
割領域をその法線方向より実際に測定して測定方向毎の
ロービング特性を検出し、測定値を補正することとした
ので、プローブのロービング特性に基づく測定誤差を的
確に修正することができる。
According to the three-dimensional measurement method according to claim 1, the divided regions of the reference sphere are actually measured from the normal direction thereof, the roving characteristics are detected in each measurement direction, and the measured values are corrected. Measurement errors based on the roving characteristics of the probe can be accurately corrected.

請求項2に記載の三次元測定方法によれば、別個に測定
された本体側に起因する測定誤差も併せて補正すること
としたので、本体側誤差の干渉を除去した状態でロービ
ング特性の補正を行うことが可能となる。
According to the three-dimensional measurement method according to claim 2, since the measurement error caused by the main body side that is measured separately is also corrected, the roving characteristics can be corrected while the interference of the main body side error is removed. It becomes possible to do this.

請求項3に記載の三次元測定装置によれば、基準球と、
該基準球の分割領域をそれぞれ測定する基準球測定機構
と、その測定結果に基づきロービング特性補正値を算出
する補正値演算機構を備えたので、プローブのロービン
グ特性による誤差を解消した状態で高精度の測定を行う
ことができる。
According to the three-dimensional measuring device according to claim 3, a reference sphere;
Equipped with a reference sphere measurement mechanism that measures each divided area of the reference sphere and a correction value calculation mechanism that calculates a roving characteristic correction value based on the measurement results, high accuracy is achieved while eliminating errors caused by the probe's roving characteristics. can be measured.

請求項4に記載の三次元測定装置によれば、測定値演算
機構には、本体の誤差も併せて演算・記憶されるので、
ロービング特性の補正を本体誤差の干渉を排除した状態
で行うことができ、より高精度の測定が可能となる。
According to the three-dimensional measuring device according to claim 4, the measurement value calculation mechanism also calculates and stores the error of the main body.
The roving characteristics can be corrected while eliminating the interference of main body errors, making it possible to perform more accurate measurements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明にかかる三次元測定装置の要部の構成
図、 第2図は、第1図に示した装置に用いられる基準球の説
明図、 第3図は、第2図に示した基準球の分割領域の説明図、 第4図は、プローブ移動時の方向信号の演算状態を示す
説明図、 第5図は、補正値記憶部の記憶テーブルの説明図、 第6図は、−船釣な三次元測定装置の外観斜視図である
。 12.112   ・・・ テーブル 22.122   ・・・ タッチ信号プローブ24.
124   ・・・ ワーク 150      ・・・ 基準球 152     ・・・ プローブ駆動機構154  
   ・・・ 座標読み取り機構156     ・・
・ 基準球測定機構15B      ・・・ 補正値
演算機構160      ・・・ 測定値補正機構第
2図 第5図 第6図
FIG. 1 is a configuration diagram of the main parts of the three-dimensional measuring device according to the present invention, FIG. 2 is an explanatory diagram of a reference sphere used in the device shown in FIG. 1, and FIG. FIG. 4 is an explanatory diagram showing the calculation state of the direction signal when the probe moves. FIG. 5 is an explanatory diagram of the storage table of the correction value storage unit. , - is an external perspective view of a three-dimensional measuring device for boat fishing. 12.112 ... Table 22.122 ... Touch signal probe 24.
124... Work 150... Reference sphere 152... Probe drive mechanism 154
... Coordinate reading mechanism 156 ...
- Reference sphere measurement mechanism 15B... Correction value calculation mechanism 160... Measured value correction mechanism Fig. 2, Fig. 5, Fig. 6

Claims (4)

【特許請求の範囲】[Claims] (1)ワークにタッチ信号プローブを接触させ、該プロ
ーブより発するタッチ信号によりワークとプローブとの
接触位置の三次元座標を得る三次元測定装置において、 所定の直径及び十分な真球度を有する基準球の表面を所
定の複数領域に分割し、各分割領域に対し各々法線方向
からタッチ信号プローブを接触させて測定信号を得る基
準球測定工程と、 前記基準球測定工程で得られた測定値から基準球の仮想
形状を求め、該仮想球形状を前記基準球形状に投影し、
前記仮想球形状と前記基準球形状の偏差を求め、さらに
この偏差を前記分割表面に対応する補正値として記憶す
る補正値演算工程と、ワーク測定面に対し略法線方向か
らタッチ信号プローブを接触させて該接触点における位
置座標及び移動方向を検出し、この移動方向から測定方
向が略一致する前記基準球の分割領域を選択し、この分
割領域に相当する補正値を読みだし、前記位置座標を補
正する測定値補正工程と、 を備えたことを特徴とする三次元測定方法。
(1) In a three-dimensional measuring device that brings a touch signal probe into contact with a workpiece and obtains the three-dimensional coordinates of the contact position between the workpiece and the probe using the touch signal emitted from the probe, a standard having a predetermined diameter and sufficient sphericity. a reference sphere measuring step of dividing the surface of the sphere into a plurality of predetermined regions and contacting each divided region with a touch signal probe from the normal direction to obtain a measurement signal; and a measurement value obtained in the reference sphere measuring step. Find a virtual shape of a reference sphere from , project the virtual sphere shape onto the reference sphere shape,
a correction value calculation step of determining a deviation between the virtual spherical shape and the reference spherical shape and further storing this deviation as a correction value corresponding to the dividing surface; and contacting a touch signal probe from a substantially normal direction to the workpiece measurement surface. Detect the position coordinates and movement direction at the contact point, select a divided area of the reference sphere whose measurement direction substantially coincides from this movement direction, read the correction value corresponding to this divided area, and calculate the position coordinates. A three-dimensional measurement method comprising: a measured value correction step for correcting; and a three-dimensional measurement method.
(2)請求項(1)に記載の方法において、補正値演算
工程では、測定機本体に起因する誤差の補正値を併せて
補正・記憶することを特徴とする三次元測定方法。
(2) A three-dimensional measuring method according to claim (1), characterized in that in the correction value calculation step, correction values for errors caused by the measuring machine body are also corrected and stored.
(3)三次元方向に移動可能に支持され、テーブル上の
ワークとの接触によりタッチ信号を発するタッチ信号プ
ローブと、 該タッチ信号プローブを所定方向に移動させるプローブ
移動機構と、 プローブより発するタッチ信号に基づき、プローブとワ
ークとの接触点の位置座標を読み取る座標読み取り機構
と、 を備えた三次元測定装置において、 所定の直径及び十分な真球度を有する基準球と、該基準
球を所定の複数領域に分割し、該分割領域の代表点にプ
ローブを接触させその座標を読み取る基準球測定機構と
、 前記基準球測定機構で得られた測定値から基準球の仮想
形状を求め、該仮想球形状を前記基準球形状に投影し、
前記仮想球形状と前記基準球形状の偏差を求め、さらに
この偏差を前記分割表面に対応する補正値として記憶す
る補正値演算機構と、ワーク測定面に対し略法線方向か
らタッチ信号プローブを接触させ、この接触点における
位置座標及び移動方向を検出し、この移動方向から測定
方向が略一致する前記基準球の分割領域を選択し、この
分割領域に相当する補正値を読みだし、前記位置座標を
補正する測定値補正機構と、 を備えたことを特徴とする三次元測定装置。
(3) A touch signal probe that is supported movably in three dimensions and that emits a touch signal upon contact with a workpiece on a table; a probe moving mechanism that moves the touch signal probe in a predetermined direction; and a touch signal that is emitted from the probe. A coordinate reading mechanism for reading the positional coordinates of the contact point between the probe and the workpiece based on the above, and a three-dimensional measuring device equipped with the following: a reference sphere having a predetermined diameter and sufficient sphericity; A reference sphere measuring mechanism that divides the divided areas into a plurality of areas and reads the coordinates of the divided areas by contacting a probe with a representative point thereof; A virtual shape of the reference sphere is determined from the measurement values obtained by the reference sphere measuring mechanism; Projecting the shape onto the reference spherical shape,
a correction value calculation mechanism that calculates a deviation between the virtual spherical shape and the reference spherical shape and further stores this deviation as a correction value corresponding to the divided surface; and a touch signal probe that contacts the workpiece measurement surface from a substantially normal direction. Detect the position coordinates and movement direction at this contact point, select a divided area of the reference sphere whose measurement direction substantially coincides with this movement direction, read the correction value corresponding to this divided area, and calculate the position coordinates. A three-dimensional measuring device comprising: a measured value correction mechanism for correcting;
(4)請求項(3)に記載の装置において、補正値演算
機構は、測定機本体に起因する誤差を演算する本体側補
正値演算部を有し、本体側誤差を併せて補正・記憶する
ことを特徴とする三次元測定装置。
(4) In the device according to claim (3), the correction value calculation mechanism has a main body side correction value calculation section that calculates errors caused by the measuring machine main body, and also corrects and stores the main body side errors. A three-dimensional measuring device characterized by:
JP2846388A 1988-02-09 1988-02-09 Three-dimensional measuring method and measuring device Expired - Lifetime JPH0663760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2846388A JPH0663760B2 (en) 1988-02-09 1988-02-09 Three-dimensional measuring method and measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2846388A JPH0663760B2 (en) 1988-02-09 1988-02-09 Three-dimensional measuring method and measuring device

Publications (2)

Publication Number Publication Date
JPH01202611A true JPH01202611A (en) 1989-08-15
JPH0663760B2 JPH0663760B2 (en) 1994-08-22

Family

ID=12249351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2846388A Expired - Lifetime JPH0663760B2 (en) 1988-02-09 1988-02-09 Three-dimensional measuring method and measuring device

Country Status (1)

Country Link
JP (1) JPH0663760B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5353510A (en) * 1987-02-26 1994-10-11 Klaus Ulbrich Probe, motion guiding device, position sensing apparatus, and position sensing method
JP2002528709A (en) * 1998-10-24 2002-09-03 レニショウ パブリック リミテッド カンパニー Analog probe calibration and error mapping method
JP2002328018A (en) * 2001-03-02 2002-11-15 Mitsutoyo Corp Method and system for calibrating measuring machine
JP2005181293A (en) * 2003-11-25 2005-07-07 Mitsutoyo Corp Surface-copying measuring instrument, and method of preparing correction table for copying probe
US7191535B2 (en) * 2005-02-28 2007-03-20 United Technologies Corporation On-machine automatic inspection of workpiece features using a lathe rotary table

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5353510A (en) * 1987-02-26 1994-10-11 Klaus Ulbrich Probe, motion guiding device, position sensing apparatus, and position sensing method
JP2002528709A (en) * 1998-10-24 2002-09-03 レニショウ パブリック リミテッド カンパニー Analog probe calibration and error mapping method
JP2002328018A (en) * 2001-03-02 2002-11-15 Mitsutoyo Corp Method and system for calibrating measuring machine
JP2005181293A (en) * 2003-11-25 2005-07-07 Mitsutoyo Corp Surface-copying measuring instrument, and method of preparing correction table for copying probe
JP4695374B2 (en) * 2003-11-25 2011-06-08 株式会社ミツトヨ Surface scanning measuring device and scanning probe correction table creation method
US7191535B2 (en) * 2005-02-28 2007-03-20 United Technologies Corporation On-machine automatic inspection of workpiece features using a lathe rotary table

Also Published As

Publication number Publication date
JPH0663760B2 (en) 1994-08-22

Similar Documents

Publication Publication Date Title
JP4504818B2 (en) Workpiece inspection method
US10591271B2 (en) Method and apparatus for calibrating a rotating device attached to a movable part of a coordinate measuring device
EP1528355B1 (en) Dynamic artefact comparison
JPH1183438A (en) Position calibration method for optical measuring device
US6701267B2 (en) Method for calibrating probe and computer-readable medium
JP2007183184A (en) Calibration method for profiling probe
US7142313B2 (en) Interaxis angle correction method
JP2020046301A (en) Measuring error evaluation method and program of machine tool
CN113733102B (en) Error calibration device for industrial robot
JP5297749B2 (en) Automatic dimension measuring device
JPH01202611A (en) Three-dimensional measurement method and apparatus
JP2000081329A (en) Shape measurement method and device
JPH10332304A (en) Calibrating method and device for measuring machine
JP2020139848A (en) Calibration apparatus for three-dimensional measuring machine
JP2000298011A (en) Method and apparatus for measuring shape
JP2006343255A (en) Three-dimensional shape measurement device and method
JP2572936B2 (en) Shape measuring instruments
JP2553352Y2 (en) Automatic dimension measuring device
JP2549802Y2 (en) Automatic dimension measuring device
JP2825429B2 (en) Measurement method and device
JPH06185908A (en) Contact probe
JP2005069775A (en) Three dimensional-shape measuring method
JPH0463664A (en) Measuring method in optional direction by touch probe
JPH06194139A (en) Shape measuring method
JPS5930005A (en) Measuring device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 14