JPH09113234A - Sensor for measuring two-dimensional shape - Google Patents

Sensor for measuring two-dimensional shape

Info

Publication number
JPH09113234A
JPH09113234A JP27085995A JP27085995A JPH09113234A JP H09113234 A JPH09113234 A JP H09113234A JP 27085995 A JP27085995 A JP 27085995A JP 27085995 A JP27085995 A JP 27085995A JP H09113234 A JPH09113234 A JP H09113234A
Authority
JP
Japan
Prior art keywords
light
dimensional
dimensional shape
mirror
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27085995A
Other languages
Japanese (ja)
Inventor
Takeshi Nomura
剛 野村
Daisuke Ogawara
大輔 大河原
Kohei Hamamura
公平 浜村
Seiji Hamano
誠司 浜野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP27085995A priority Critical patent/JPH09113234A/en
Publication of JPH09113234A publication Critical patent/JPH09113234A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a measuring sensor which has large measuring width and depth and high resolution. SOLUTION: In this sensor light is projected in line to an object by using a light projecting means 1, and the scattering light therefrom is measured based on the principle of triangulation so as to measure the position of the object 5 in light line direction and depth direction. The sensor is provided with a rotational scanning mirror 8 and a one-dimensional CCD 9 on the light receiving side thereof, and the position of the object 5 in line-wise direction of the light is obtained according to the rotational angle of the mirror 8, while the depth- wise direction of the object 5 is obtained according to the light reception position of the CCD 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、対象物の幅方向に
ライン状に光を照射し、その散乱光を受光素子にて受光
し、三角測量の原理を用いて対象物の幅方向と深さ方向
の形状を計測する2次元形状計測センサーに関し、この
2次元形状計測センサーを長さ方向に走査することによ
って3次元形状を計測する3次元形状計測装置に好適に
利用できる2次元形状計測センサーに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention irradiates light in a line shape in the width direction of an object, receives the scattered light by a light receiving element, and uses the principle of triangulation to detect the width direction and depth of the object. Regarding a two-dimensional shape measuring sensor for measuring a shape in the depth direction, a two-dimensional shape measuring sensor suitable for use in a three-dimensional shape measuring device for measuring a three-dimensional shape by scanning the two-dimensional shape measuring sensor in the length direction It is about.

【0002】[0002]

【従来の技術】従来の3次元形状計測装置の一構成例を
図7を参照して説明する。光源21からの光をガルバノ
ミラー22で反射させ、固定鏡23を介して対象物24
に照射し、その散乱光を固定鏡25を介してガルバノミ
ラー22の裏面で反射させて受光素子26にて受光する
ように構成されている。この場合、光源21からの光は
ガルバノミラー22の回転によってx方向に走査され、
対象物24に対してx方向のライン状に光が照射され、
x方向の各照射位置に対するz方向の位置が受光素子2
6における受光位置で測定される。そして、これをy方
向に走査することによって対象物の三次元形状が測定さ
れる。
2. Description of the Related Art A configuration example of a conventional three-dimensional shape measuring apparatus will be described with reference to FIG. The light from the light source 21 is reflected by the galvanometer mirror 22, and the object 24 is reflected via the fixed mirror 23.
The scattered light is reflected by the back surface of the galvano mirror 22 via the fixed mirror 25 and is received by the light receiving element 26. In this case, the light from the light source 21 is scanned in the x direction by the rotation of the galvanometer mirror 22,
The object 24 is irradiated with light in a line in the x direction,
The position in the z direction with respect to each irradiation position in the x direction is the light receiving element 2.
6 is measured at the light receiving position. Then, by scanning this in the y direction, the three-dimensional shape of the object is measured.

【0003】次に、他の構成例を図8を参照して説明す
る。光源31からの光が集光レンズ32を通ってガルバ
ノミラー33で反射し、ハーフミラー34で一部の光を
反射させてx方向検知素子35に入射させてx方向の照
射位置を検知し、ハーフミラー34を透過した光を対象
物36に照射し、その散乱光を受光レンズ37を介して
z方向検知素子38で受光し、その受光位置でx方向の
各照射位置に対するz方向の位置を測定するように構成
されている。
Next, another configuration example will be described with reference to FIG. The light from the light source 31 passes through the condenser lens 32 and is reflected by the galvano mirror 33, and a part of the light is reflected by the half mirror 34 to be incident on the x-direction detection element 35 to detect the irradiation position in the x-direction. The object 36 is irradiated with the light transmitted through the half mirror 34, the scattered light is received by the z-direction detecting element 38 via the light-receiving lens 37, and the position in the z-direction with respect to each irradiation position in the x-direction is detected at the light-receiving position. It is configured to measure.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、図7の
3次元形状計測装置の構成においては、受光素子26で
同一z方向位置と検出される位置は、図9(a)、
(b)に示すように、円弧Pを描くことになり、2等辺
三角形となる図9(a)から外れた図9(b)の状態で
はz方向の誤差が出てz方向に高い精度が得られ難く、
精度を高くするためには補正が必要となって構成が複雑
になるとともに計測に時間がかかり、高速化するにはコ
スト高になるという問題がある。
However, in the configuration of the three-dimensional shape measuring apparatus of FIG. 7, the position detected by the light receiving element 26 as the same z-direction position is as shown in FIG.
As shown in (b), a circular arc P is drawn, and in the state of FIG. 9 (b), which is deviated from FIG. 9 (a), which is an isosceles triangle, an error in the z direction occurs and high accuracy is obtained in the z direction. Hard to get,
There is a problem that correction is required to increase the accuracy, the configuration is complicated, the measurement takes time, and the cost is increased to increase the speed.

【0005】また、図8の3次元形状計測装置の構成に
おいては、z方向検知素子38が2次元CCDの場合、
100万画素(1000×1000画素)程度が汎用的
であるが、Z方向のみ見ると1000画素であり、深い
計測範囲、例えば100mm程度の場合では0.1mm
/画素となり、大きな分解能は得られないという問題が
ある。そこで、z方向のみの分解能を上げるために、3
000〜5000画素の1次元CCDを適用することが
考えられるが、その場合x方向の計測幅が極めて狭くな
ってしまい、実用的でないという問題がある。
In the configuration of the three-dimensional shape measuring apparatus shown in FIG. 8, when the z-direction detecting element 38 is a two-dimensional CCD,
About 1 million pixels (1000 x 1000 pixels) is generally used, but it is 1000 pixels when viewed only in the Z direction, and 0.1 mm in a deep measurement range, for example, about 100 mm.
There is a problem in that a large resolution cannot be obtained. Therefore, in order to increase the resolution only in the z direction, 3
It is conceivable to apply a one-dimensional CCD of 000 to 5000 pixels, but in that case, the measurement width in the x direction becomes extremely narrow, which is not practical.

【0006】本発明は、上記従来の問題点に鑑み、大き
な計測幅と計測深度、及び高い分解能を有する2次元形
状計測センサーを提供することを目的としている。
In view of the above conventional problems, it is an object of the present invention to provide a two-dimensional shape measuring sensor having a large measuring width and measuring depth and high resolution.

【0007】[0007]

【課題を解決するための手段】本発明の2次元形状計測
センサーは、対象物に光を投光し、その散乱光を三角測
量の原理を用いて計測して対象物における投光位置の2
次元方向の位置を計測する2次元形状計測センサーにお
いて、投光側に、対象物にライン状に光を投光する投光
手段を設け、受光側に、回転走査ミラーと、1次元の受
光素子と、結像手段とを設けたものである。
The two-dimensional shape measuring sensor of the present invention projects light onto an object and measures the scattered light using the principle of triangulation to determine the projected position of the object.
In a two-dimensional shape measuring sensor for measuring a position in a dimensional direction, a light projecting means for projecting light linearly on an object is provided on a light projecting side, and a rotary scanning mirror and a one-dimensional light receiving element are provided on a light receiving side. And an image forming means.

【0008】これによれば、対象物の光ライン方向(x
方向)の位置は、対象物からの散乱光を受ける回転走査
ミラーの回転角度で求められ、対象物の深さ方向(z方
向)の位置は受光素子の受光位置によって求められ、し
たがって回転走査ミラーの回転により大きな計測幅が得
られるとともに、1次元受光素子にて計測深度及び高い
分解能を共に得ることができる。
According to this, the optical line direction (x
Position) is determined by the rotation angle of the rotary scanning mirror that receives the scattered light from the target object, and the position in the depth direction (z direction) of the target object is determined by the light receiving position of the light receiving element. A large measurement width can be obtained by the rotation of, and both the measurement depth and the high resolution can be obtained by the one-dimensional light receiving element.

【0009】また、結像手段に2方向の散乱光を集める
2つのシリンドリカルレンズを備えることにより、大き
な計測幅と計測深度を確保しながら軽量化を図り、コン
パクトな構成とすることができ、また受光側に光路長を
同じにする手段を設けることにより精度の良い計測がで
き、かつ回転走査ミラーを非球面の曲面ミラーにて構成
することにより簡単・安価に光路長を同じにでき、また
受光側の回転走査ミラーと同期をとって受光素子の結像
位置演算を行なう計測制御手段を設けることにより、自
動計測することができる。
Further, by providing the image forming means with two cylindrical lenses that collect scattered light in two directions, it is possible to achieve a large measurement width and measurement depth while achieving weight reduction and a compact structure. By providing a means for making the optical path length the same on the light receiving side, accurate measurement can be performed, and by configuring the rotary scanning mirror with an aspherical curved surface mirror, the optical path length can be made the same easily and inexpensively. Automatic measurement can be performed by providing measurement control means for calculating the image forming position of the light receiving element in synchronization with the rotary scanning mirror on the side.

【0010】[0010]

【発明の実施の形態】以下、本発明の一実施形態の2次
元形状計測センサーについて、図1〜図6を参照して説
明する。
DETAILED DESCRIPTION OF THE INVENTION A two-dimensional shape measuring sensor according to an embodiment of the present invention will be described below with reference to FIGS.

【0011】図1、図2において、1は、対象物5にラ
イン状に光を投光する投光手段で、楕円錐状のレーザー
光を発する半導体レーザー2と、レーザー光を円柱状の
光に変形させるコリメートレンズ3と、円柱状の光を扇
状に広げるシリンドリカルレンズ4にて構成されてい
る。5は形状を計測すべき対象物である。対象物5から
の反射光は、シリンドリカルレンズ6、7を通り、非球
面の曲面にて光路長を同じにする回転走査ミラー8で反
射されて1次元受光素子としての1次元CCD9に結像
されるように構成されている。回転走査ミラー8はパル
スモータ10にて駆動される。
In FIGS. 1 and 2, reference numeral 1 denotes a light projecting means for projecting light linearly onto an object 5, a semiconductor laser 2 which emits an elliptic cone laser light, and a cylindrical laser light. It is composed of a collimating lens 3 which is deformed into a cylindrical shape and a cylindrical lens 4 which spreads cylindrical light in a fan shape. Reference numeral 5 is an object whose shape is to be measured. The reflected light from the object 5 passes through the cylindrical lenses 6 and 7, and is reflected by the rotary scanning mirror 8 having the same optical path length on the curved surface of the aspherical surface and imaged on the one-dimensional CCD 9 as a one-dimensional light receiving element. Is configured to. The rotary scanning mirror 8 is driven by a pulse motor 10.

【0012】次に、図4に示す計測制御手段11につい
て説明すると、18は全体制御部で、半導体レーザ2
と、パルスモータ10を駆動するモータ駆動部12と、
1次元CCD9を駆動する受光素子駆動部13を制御
し、x,z演算部14に演算指令を出力する。受光素子
駆動部13からは1次元CCD9による検出データが位
置演算部15に出力され、その演算結果がx,z演算部
14に出力される。また、モータ駆動部12から回転走
査ミラー8の回転角度を演算する角度演算部16に駆動
信号が出力され、演算結果がx,z演算部14に出力さ
れる。x,z演算部14の演算結果は出力部17に出力
され、この出力部17から計測結果が適当な形態で出力
される。
Next, the measurement control means 11 shown in FIG. 4 will be described. 18 is an overall control section, which is the semiconductor laser 2
And a motor drive unit 12 that drives the pulse motor 10,
It controls the light-receiving element drive unit 13 that drives the one-dimensional CCD 9, and outputs a calculation command to the x, z calculation unit 14. The detection data from the one-dimensional CCD 9 is output from the light receiving element drive unit 13 to the position calculation unit 15, and the calculation result is output to the x, z calculation unit 14. Further, a drive signal is output from the motor drive unit 12 to the angle calculation unit 16 that calculates the rotation angle of the rotary scanning mirror 8, and the calculation result is output to the x, z calculation unit 14. The calculation result of the x, z calculation unit 14 is output to the output unit 17, and the output unit 17 outputs the measurement result in an appropriate form.

【0013】次に、以上の構成の2次元形状計測センサ
ーによる計測動作について、図1〜図3を参照して説明
する。半導体レーザー2から発した光は、コリメートレ
ンズ3を通ることによりコリメート光になり、シリンド
リカルレンズ4を介してx方向に沿うライン状の光aと
なって対象物5に照射される。その光は対象物5で反射
して散乱光bとなる。x方向の各位置の散乱光bは、シ
リンドリカルレンズ6とシリンドリカルレンズ7を介し
て回転走査ミラー8の回転位置に応じて1次元CCD9
に結像される。その際、回転走査ミラー8は光路長を一
定にする非球面の曲面に形成されているため、誤差を生
じることなく精度良く1次元CCD9に結像される。ま
た、シリンドリカルレンズ6はz方向の計測範囲Cz を
1次元CCD9による検出範囲に縮小するようにz方向
に集光し、シリンドリカルレンズ7はx方向の計測範囲
Cx の散乱光bが小型の回転走査ミラー8の回転走査に
て1次元CCD9に結像されるようにx方向に集光する
作用を有している。かくして、図3において、斜線で示
す計測範囲のうち、回転走査ミラー8がある回転位置に
位置している状態でz方向に沿うラインCxi上に存在す
る対象物5の反射散乱光が1次元CCD9に当たり、そ
のz方向の位置Cziがこの1次元CCD9にて計測され
る。
Next, the measuring operation of the two-dimensional shape measuring sensor having the above structure will be described with reference to FIGS. The light emitted from the semiconductor laser 2 becomes a collimated light by passing through the collimator lens 3, and becomes a linear light a along the x direction via the cylindrical lens 4 and is applied to the object 5. The light is reflected by the object 5 and becomes scattered light b. The scattered light b at each position in the x direction passes through the cylindrical lens 6 and the cylindrical lens 7 and the one-dimensional CCD 9 according to the rotational position of the rotary scanning mirror 8.
Is imaged. At that time, since the rotary scanning mirror 8 is formed on an aspherical curved surface that makes the optical path length constant, an image is accurately formed on the one-dimensional CCD 9 without causing an error. The cylindrical lens 6 focuses the light in the z direction so that the measurement range Cz in the z direction is reduced to the detection range by the one-dimensional CCD 9, and the cylindrical lens 7 scans the scattered light b in the measurement range Cx in the x direction in a small size. It has a function of condensing in the x direction so that an image is formed on the one-dimensional CCD 9 by the rotational scanning of the mirror 8. Thus, in FIG. 3, the reflected and scattered light of the object 5 existing on the line Cxi along the z direction in the state where the rotary scanning mirror 8 is located at a certain rotational position in the measurement range indicated by the diagonal lines is the one-dimensional CCD 9 Then, the position Czi in the z direction is measured by the one-dimensional CCD 9.

【0014】次に、回転走査ミラー8を微小角度振る
と、計測範囲のラインCxiのx方向の位置が変わり、そ
の振れ角度によりx方向の位置が決まり、このx方向の
位置におけるz方向の位置が上記と同様に1次元CCD
9にて計測される。以上の動作の繰り返しにより対象物
5におけるライン状の光aが照射された位置における
x、z方向の2次元位置が計測される。
Next, when the rotary scanning mirror 8 is shaken by a slight angle, the position of the line Cxi in the measurement range in the x direction changes, the position in the x direction is determined by the shake angle, and the position in the z direction at this x position. Is a one-dimensional CCD as above
Measured at 9. By repeating the above operation, the two-dimensional position in the x and z directions at the position where the linear light a is irradiated on the object 5 is measured.

【0015】上記計測過程における図4の計測制御手段
による制御について、図4、図5を参照して説明する
と、図5(a)に示すように、ある時刻t0 において全
体制御部18からモーター駆動部12にパルスuが出力
され、そのパルスによりパルスモータ10がある微小角
度θαだけ回転し、次のパルスvまではその位置を動か
ない。一方、パルスuが終わる時刻t1 になると、図5
(b)に示すように、位置演算を開始するパルスwが受
光素子駆動部13に出力されて位置演算が行なわれ、モ
ータ駆動部12に対して次のパルスvが出力されるt2
時刻までに位置演算部15での演算が終了する。このよ
うにして回転走査ミラー8の振り角度からx方向の位置
が、1次元CCD9の受光位置から三角測量によるz方
向位置が計測され、以上の動作を繰り返すことにより対
象物5のx,z方向の2次元位置が計測される。
[0015] Control by the measurement control unit in FIG. 4 in the above measurement process, FIG. 4, will be described with reference to FIG. 5, as shown in FIG. 5 (a), from the overall control unit 18 at a certain time t 0 Motor A pulse u is output to the drive unit 12, the pulse motor 10 rotates a certain small angle θα by the pulse, and the position does not move until the next pulse v. On the other hand, at time t 1 when the pulse u ends, as shown in FIG.
As shown in (b), the pulse w for starting the position calculation is output to the light receiving element drive unit 13 to perform the position calculation, and the next pulse v is output to the motor drive unit t 2
The calculation by the position calculation unit 15 is completed by the time. In this way, the position in the x direction from the swing angle of the rotary scanning mirror 8 and the z direction position from the light receiving position of the one-dimensional CCD 9 are measured by triangulation. By repeating the above operation, the object 5 in the x and z directions is measured. The two-dimensional position of is measured.

【0016】なお、投光手段1において、半導体レーザ
ー2に代えて、LEDやガスレーザー等の他のレーザー
を用いても良く、その場合にはコリメートレンズ3は不
要である。また、シリンドリカルレンズ4にて光を扇状
に広げる代わりに、図6に示すように、半導体レーザー
2とコリメートレンズ3等の点光源からの光をガルバノ
ミラー19で走査してもよい。
In the light projecting means 1, another laser such as an LED or a gas laser may be used in place of the semiconductor laser 2, in which case the collimator lens 3 is not necessary. Further, instead of spreading the light in a fan shape by the cylindrical lens 4, light from a point source such as the semiconductor laser 2 and the collimating lens 3 may be scanned by the galvano mirror 19 as shown in FIG.

【0017】一方、受光側でも、非球面の曲面を有する
回転走査ミラー8にて光路長を同じにした例を示した
が、光路長を同じにする機能をシリンドリカルレンズ7
に分担させ、回転走査ミラー8は平面鏡にすることも可
能である。また、コンパクトに構成するために光路に鏡
を介装することも可能である。また、場合によってはシ
リンドリカルレンズ6、7を省略したり、複合レンズを
採用したりすることもできる。また、1次元の受光素子
として、1次元CCD9に代えてPSD等を用いること
もできる。
On the other hand, on the light receiving side as well, an example has been shown in which the optical path length is made the same by the rotary scanning mirror 8 having an aspherical curved surface, but the cylindrical lens 7 has the function of making the optical path length the same.
Alternatively, the rotary scanning mirror 8 may be a plane mirror. It is also possible to insert a mirror in the optical path for a compact structure. Further, depending on the case, the cylindrical lenses 6 and 7 may be omitted, or a compound lens may be adopted. Further, as the one-dimensional light receiving element, a PSD or the like can be used instead of the one-dimensional CCD 9.

【0018】[0018]

【発明の効果】本発明によれば、以上の説明から明らか
なように、対象物にライン状に光を投光し、受光側の回
転走査ミラーと高画素の1次元受光素子により対象物の
光ライン方向と深さ方向の位置を計測するようにしてい
るので、回転走査ミラーの走査にて光ライン方向(x方
向)に大きな計測範囲を確保でき、高画素の1次元受光
素子により深さ方向(z方向)に大きな計測範囲を高分
解能で計測することができ、広い計測範囲を高分解能で
計測することができる。
As is apparent from the above description, according to the present invention, light is linearly projected onto an object, and the object is provided with a rotary scanning mirror on the light receiving side and a one-dimensional light receiving element having a large number of pixels. Since the position in the light line direction and the position in the depth direction are measured, it is possible to secure a large measurement range in the light line direction (x direction) by scanning the rotary scanning mirror, and the depth can be ensured by the one-dimensional light receiving element with high pixels. A large measurement range in the direction (z direction) can be measured with high resolution, and a wide measurement range can be measured with high resolution.

【0019】また、結像手段に2方向の散乱光を集める
2つのシリンドリカルレンズを備えることにより、大き
な計測幅と計測深度を確保しながら軽量化を図り、コン
パクトな構成とすることができる。
Further, by providing the image forming means with two cylindrical lenses for collecting scattered light in two directions, it is possible to reduce the weight while ensuring a large measuring width and measuring depth, and to make a compact structure.

【0020】また、受光側に光路長を同じにする手段を
設けることにより、補正を必要とせず簡単な構成で精度
の良い計測ができる。
Further, by providing means for making the optical path lengths the same on the light receiving side, it is possible to perform accurate measurement with a simple structure without requiring correction.

【0021】また、回転走査ミラーを、光路長を同じに
する非球面の曲面ミラーにて構成することにより、簡単
・安価に光路長を同じにすることができる。
Further, by forming the rotary scanning mirror by an aspherical curved mirror having the same optical path length, the optical path length can be easily made inexpensive.

【0022】また、受光側の回転走査ミラーと同期をと
って受光素子の結像位置演算を行なう計測制御手段を設
けることにより、対象物のライン上の2次元位置が順次
自動計測され、自動的に対象物の2次元形状を計測でき
る。
Further, by providing the measurement control means for calculating the image forming position of the light receiving element in synchronism with the rotary scanning mirror on the light receiving side, the two-dimensional position of the object on the line is automatically measured sequentially and automatically. The two-dimensional shape of the object can be measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の2次元形状計測センサーの
全体概略構成を示す斜視図である。
FIG. 1 is a perspective view showing an overall schematic configuration of a two-dimensional shape measuring sensor according to an embodiment of the present invention.

【図2】同実施例の側面図である。FIG. 2 is a side view of the embodiment.

【図3】同実施例の位置計測範囲の説明図である。FIG. 3 is an explanatory diagram of a position measurement range of the embodiment.

【図4】同実施例の計測制御手段の構成図である。FIG. 4 is a configuration diagram of measurement control means of the embodiment.

【図5】同実施例の計測制御手段による動作タイミング
の説明図である。
FIG. 5 is an explanatory diagram of operation timing by the measurement control means of the embodiment.

【図6】同実施例における投光手段の他の構成例を示す
斜視図である。
FIG. 6 is a perspective view showing another configuration example of the light projecting means in the embodiment.

【図7】従来例の3次元形状計測装置の要部の概略構成
を示す斜視図である。
FIG. 7 is a perspective view showing a schematic configuration of a main part of a conventional three-dimensional shape measuring apparatus.

【図8】他の従来例の三次元形状計測装置の要部の概略
構成を示す斜視図である。
FIG. 8 is a perspective view showing a schematic configuration of a main part of another conventional three-dimensional shape measuring apparatus.

【図9】従来例の問題点の説明図である。FIG. 9 is an explanatory diagram of a problem of the conventional example.

【符号の説明】[Explanation of symbols]

1 投光手段 5 対象物 6 シリンドリカルレンズ 7 シリンドリカルレンズ 8 回転走査ミラー 9 1次元CCD(1次元受光素子) 11 計測制御手段 DESCRIPTION OF SYMBOLS 1 Projection means 5 Target object 6 Cylindrical lens 7 Cylindrical lens 8 Rotating scanning mirror 9 One-dimensional CCD (one-dimensional light receiving element) 11 Measurement control means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浜野 誠司 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Seiji Hamano 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 対象物に光を投光し、その散乱光を三角
測量の原理を用いて計測して対象物における投光位置の
2次元方向の位置を計測する2次元形状計測センサーで
あって、投光側に、対象物にライン状に光を投光する投
光手段を設け、受光側に、回転走査ミラーと、1次元の
受光素子と、結像手段とを設けたことを特徴とする2次
元形状計測センサー。
1. A two-dimensional shape measuring sensor for projecting light on an object and measuring the scattered light using the principle of triangulation to measure the position of the projected position on the object in the two-dimensional direction. The light-projecting side is provided with a light-projecting means for projecting light linearly on the object, and the light-receiving side is provided with a rotary scanning mirror, a one-dimensional light-receiving element, and an image forming means. 2D shape measurement sensor.
【請求項2】 結像手段に、2方向の散乱光を集める2
つのシリンドリカルレンズを備えることを特徴とする請
求項1記載の2次元形状計測センサー。
2. An image forming means for collecting scattered light in two directions 2
The two-dimensional shape measurement sensor according to claim 1, comprising two cylindrical lenses.
【請求項3】 受光側に、光路長を同じにする手段を備
えることを特徴とする請求項1記載の2次元形状計測セ
ンサー。
3. The two-dimensional shape measuring sensor according to claim 1, wherein the light receiving side is provided with means for making the optical path length the same.
【請求項4】 光路長を同じにする手段として、回転走
査ミラーを非球面の曲面ミラーにて構成したことを特徴
とする請求項1記載の2次元形状計測センサー。
4. The two-dimensional shape measuring sensor according to claim 1, wherein the rotary scanning mirror is composed of an aspherical curved mirror as means for making the optical path length the same.
【請求項5】 受光側の回転走査ミラーと同期をとって
受光素子の結像位置演算を行なう計測制御手段を有する
ことを特徴とする請求項1、2又は3記載の2次元形状
計測センサー。
5. The two-dimensional shape measurement sensor according to claim 1, further comprising a measurement control unit that calculates an image forming position of the light receiving element in synchronization with the rotary scanning mirror on the light receiving side.
JP27085995A 1995-10-19 1995-10-19 Sensor for measuring two-dimensional shape Pending JPH09113234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27085995A JPH09113234A (en) 1995-10-19 1995-10-19 Sensor for measuring two-dimensional shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27085995A JPH09113234A (en) 1995-10-19 1995-10-19 Sensor for measuring two-dimensional shape

Publications (1)

Publication Number Publication Date
JPH09113234A true JPH09113234A (en) 1997-05-02

Family

ID=17491974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27085995A Pending JPH09113234A (en) 1995-10-19 1995-10-19 Sensor for measuring two-dimensional shape

Country Status (1)

Country Link
JP (1) JPH09113234A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016151938A1 (en) * 2015-03-23 2016-09-29 三菱重工業株式会社 Laser radar device and traveling body
WO2016151939A1 (en) * 2015-03-23 2016-09-29 三菱重工業株式会社 Laser radar device and traveling body
WO2018135734A1 (en) * 2017-01-20 2018-07-26 (주) 인텍플러스 Three-dimensional shape measuring apparatus and measuring method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016151938A1 (en) * 2015-03-23 2016-09-29 三菱重工業株式会社 Laser radar device and traveling body
WO2016151939A1 (en) * 2015-03-23 2016-09-29 三菱重工業株式会社 Laser radar device and traveling body
JP2016180623A (en) * 2015-03-23 2016-10-13 三菱重工業株式会社 Laser radar apparatus and travel body
JP2016180624A (en) * 2015-03-23 2016-10-13 三菱重工業株式会社 Laser radar apparatus and travel body
US10534085B2 (en) 2015-03-23 2020-01-14 Mitsubishi Heavy Industries, Ltd. Laser radar device and traveling body
US11009606B2 (en) 2015-03-23 2021-05-18 Mitsubishi Heavy Industries, Ltd. Laser radar device and traveling body
WO2018135734A1 (en) * 2017-01-20 2018-07-26 (주) 인텍플러스 Three-dimensional shape measuring apparatus and measuring method

Similar Documents

Publication Publication Date Title
US6741082B2 (en) Distance information obtaining apparatus and distance information obtaining method
JP2009236774A (en) Three dimensional ranging device
KR0179224B1 (en) Distance measuring device
JPS6249562B2 (en)
JPH09113234A (en) Sensor for measuring two-dimensional shape
US4973152A (en) Method and device for the noncontact optical measurement of paths, especially in the triangulation method
KR20070015267A (en) Light displacement measuring apparatus
JPS6044810A (en) Device for detecting position of spot light
JPH06258040A (en) Laser displacement meter
JPH05215528A (en) Three-dimensional shape measuring apparatus
KR20050077577A (en) Apparatus for three dimensional scanning
JP2858678B2 (en) Shape measuring device
JPS62291512A (en) Distance measuring apparatus
JPH02276908A (en) Three-dimensional position recognizing device
JPS62804A (en) Method and instrument for measuring surface shape
JP2004177287A (en) Actuator and displacement detection method
JPS62218802A (en) Optical type distance and inclination measuring apparatus
JPH0357914A (en) Optical probe
JP2022059662A (en) Measurement device, measurement method, control method, and control program
JPH0626842A (en) One-dimensional scanning type surface displacement meter
JP2535779B2 (en) Non-contact three-dimensional information distribution detection method using rectangular type optical sheet
JPH0267911A (en) Distance measuring apparatus
JPH0318887Y2 (en)
JPS61231407A (en) Triangular range finder apparatus
JPH10148512A (en) Shape measuring apparatus