JPS62291512A - Distance measuring apparatus - Google Patents

Distance measuring apparatus

Info

Publication number
JPS62291512A
JPS62291512A JP61136764A JP13676486A JPS62291512A JP S62291512 A JPS62291512 A JP S62291512A JP 61136764 A JP61136764 A JP 61136764A JP 13676486 A JP13676486 A JP 13676486A JP S62291512 A JPS62291512 A JP S62291512A
Authority
JP
Japan
Prior art keywords
light
mask
light source
image
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61136764A
Other languages
Japanese (ja)
Other versions
JPH0643893B2 (en
Inventor
Masahiro Tanmachi
反町 誠宏
Shigeru Yamada
茂 山田
Yasuaki Sakamoto
康朗 坂元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61136764A priority Critical patent/JPH0643893B2/en
Priority to DE19863642051 priority patent/DE3642051A1/en
Priority to FR868617220A priority patent/FR2591329B1/en
Publication of JPS62291512A publication Critical patent/JPS62291512A/en
Priority to US07/289,456 priority patent/US4867570A/en
Publication of JPH0643893B2 publication Critical patent/JPH0643893B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To obtain an apparatus available constantly for high-accuracy measurements and 3-dimensional informations, etc. of an object in comparatively short time, by installing a mask forming a pattern light flux and an elliptical reflecting mirror etc., oriented to the mask to the mask of a beam of light from a light source. CONSTITUTION:A light flux that passed light-transmitting unit 61, 65 from a light source 3 develops light images in positions P1, P2 on an object 5 after passing through a lens 1. Next, after passing through a lens 3 respectively, it develops light images in positions D1, D2 in an image sensor 4. An output wave form of this sensor 4 is observed by an image-processing apparatus for obtaining distance up to an image position on the surface of the object 5. And, on this apparatus, the light source 3 is set part from the mask 6 and outside a light path of a light flux reflected by an elliptic reflecting mirror 7 oriented to the mask 6 of a beam of light from the light source 3. Thus, only such a light flux which came from the specified direction is admitted into a light-transmitting unit 61, 62,...65. Further, the light-source 3 is set in the first focus of the reflecting mirror 7 and the center of incident pupil of the lens 1 in rough vicinity of the second focus of the mirror 7 and thus, all light fluxes obtainable by the mask 6 is irradiated on the object 5.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は距離測定装置に関し、特にアクティブ方式によ
り対象物の任意の位置までの距離が測定出来、対象物の
3次元形状の測定等にも適用可能な距離測定装置に関す
る。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a distance measuring device, and in particular, it is capable of measuring the distance to an arbitrary position of an object using an active method, and is also applicable to measuring the three-dimensional shape of an object. This invention relates to a distance measuring device.

〔従来技術〕[Prior art]

従来よりも、画像センサなどを用いて距離情報や3次元
形状に関する情報を取得する方法として、光切断法(ス
リット法)、ステレオ法などが知られている。
BACKGROUND ART Conventionally, light cutting methods (slit methods), stereo methods, and the like have been known as methods for acquiring distance information and information regarding three-dimensional shapes using image sensors and the like.

光切断法は、対象物表面にスリット光を投射し、対象物
面上の投射線を投射方向と別の方向から観測し、対象物
の断面形状、距離などの情報を得るものである。この方
法では、撮像側は固定され、スリット投射方向を少しず
つ換えながら複数枚の画像をスリット1本ごとに撮像し
て3次元情報を取得する。
In the optical sectioning method, a slit light is projected onto the surface of an object, and the projection line on the object surface is observed from a direction different from the projection direction to obtain information such as the cross-sectional shape and distance of the object. In this method, the imaging side is fixed, and three-dimensional information is acquired by capturing a plurality of images for each slit while changing the slit projection direction little by little.

また、出願人が提案した特願昭59−44920号など
におけるステレオ法は、像倍率の等しい光学系と組み合
わされた2次元の撮像素子を所定基線長だけ離して配置
し、異なる方向からみた2次元画像を得、2枚の画情報
のずれから対象物の各位置の高さく撮像系までの距離)
を算出するものである。
In addition, in the stereo method proposed by the applicant in Japanese Patent Application No. 59-44920, a two-dimensional image pickup device combined with an optical system with equal image magnification is placed apart by a predetermined baseline length, and two-dimensional images viewed from different directions are arranged. Obtain a dimensional image, and calculate the height of each position of the object based on the deviation of the two image information (the distance to the imaging system)
is calculated.

ところが、光切断法では、撮像時のスリット投射方向の
制御が面倒で、撮像に時間がかかる問題がある。また、
複数枚のスリット画像から3次元情報を得るため、処理
する情報量が多く、最終的な情報取得までに多大な時間
を要する欠点があった。
However, in the optical cutting method, there is a problem that controlling the slit projection direction during imaging is troublesome, and imaging takes time. Also,
Since three-dimensional information is obtained from a plurality of slit images, there is a large amount of information to be processed, and the disadvantage is that it takes a long time to finally obtain the information.

また、ステレオ法ではスリット走査などの制御が必要な
いが、一般に従来方式はパッシブ方式であるため、対象
物表面が滑らかで、一様な輝度を有している場合には2
つの撮像素子で得られる像のコントラストが低下し、2
枚の画像の比較による距。
In addition, although the stereo method does not require controls such as slit scanning, conventional methods are generally passive methods, so if the object surface is smooth and has uniform brightness,
The contrast of images obtained with two image sensors decreases, and two
Distance by comparing two images.

離測定が不可能になる問題がある。このような測定が不
可能になってしまうケースは像倍率が大きくなる近距離
において出現頻度が多く、シたがって対象物の形状、色
、サイズ、距離などが限定されてしまうという欠点を有
していた。
There is a problem that distance measurement becomes impossible. Cases in which such measurements become impossible occur frequently at short distances where the image magnification increases, and therefore have the disadvantage that the shape, color, size, distance, etc. of the object are limited. was.

〔発明の概要〕[Summary of the invention]

本発明の目的は、上記従来の問題点に鑑み、対象物の種
類によらず常に精度良い測定が出来、且つ比較的短時間
で対象物の任意の位置までの距離や対象物の3次元情報
を得ることが可能な距離測定装置を提供することにある
In view of the above-mentioned conventional problems, it is an object of the present invention to be able to always measure accurately regardless of the type of object, and to obtain distance to any position of the object and three-dimensional information of the object in a relatively short time. The object of the present invention is to provide a distance measuring device capable of obtaining the following.

本発明の更なる目的は、上記目的を満足し、且つ測距範
囲が広い距離測定装置を提供することにある。
A further object of the present invention is to provide a distance measuring device that satisfies the above objects and has a wide distance measuring range.

上記目的を達成する為に、本発明に係る距離測定装置は
、光軸を平行に、かつ基線距離隔てて配置された複数の
光学系と、前記の光学系の1つを通して複数のパターン
光束を対象物に照射する光源手段と、対象物上の前記パ
ターン光束による像を前記と異なる光学系を通して受像
する画像センサとを設け、この画像センサにより検出さ
れた前記対象物上のパターン光束による光像の位置から
、対象物の所定の位置までの距離を測定する装置であっ
て、前記光源手段が光源と光源からの光を受けてパター
ン光束を形成するマスクと光源からの光をマスクに指向
する楕円反射鏡とを有し、光源がマスクに指向される光
束の光路外に配されていることを特徴とする。
In order to achieve the above object, a distance measuring device according to the present invention includes a plurality of optical systems arranged with optical axes parallel to each other and spaced apart by a baseline distance, and a plurality of patterned light fluxes through one of the optical systems. A light source means for irradiating the object, and an image sensor that receives an image of the pattern light beam on the object through a different optical system, and a light image of the pattern light beam on the object detected by the image sensor. A device for measuring the distance from a position to a predetermined position of an object, wherein the light source means includes a light source and a mask that receives light from the light source to form a patterned light beam, and directs the light from the light source to the mask. It has an elliptical reflecting mirror, and is characterized in that the light source is arranged outside the optical path of the light beam directed toward the mask.

尚、本発明の更なる特徴は以下に示す実施例に記載され
ている。
Further features of the present invention are described in the Examples shown below.

〔実施例〕〔Example〕

第1図は本発明に係る距離測定装置の一実施例を示す光
学系概略図である。図中、1及び2は基線距離隔てて配
されたレンズで、互いの光軸は平行であり且つ、又夫々
のレンズ1.2の物体側主平面は同一平面上に存してい
る。又、本実施例に於てはレンズ1,2は互いに焦点距
離が等しいものを使用している。3は光源で比較的発光
部3′が小さなものが好ましい。4はCCD等から成る
画像センサ、5は測距の対象物、6はパターン投射用の
マスクで遮光性部材に複数の透光部61,62.・・・
65から成る開ロバターンが設けてあり、レンズ1の焦
点近傍に配置されている。又、7は楕円反射鏡で光源3
からの光の一部を反射する。第2図はマスク6の開ロバ
々−・ノ小−W(Iん7F:iたLlの7′−前号ホ1
.ナー上りご−マスク6には細い長方形のスリット状の
透光部61,62゜63、・・・は複数個配列されてい
る。図において透光部61.62.・・・はその横方向
の中心を細線AXで示すように、水平方向に疎、垂直方
向に比較的密な配列パターンとなっており、結果として
斜め方向に延びるスリット列を形成している。透光部6
1,62.・・・の密度、配列は必要な測定精度、使用
する画像センサの縦横の解像力に応じて定めればよいの
で、上記のような構成に限定されるものではな(、種々
のパターンを使用可能である。マスク6の透光部61゜
62・・・の水平方向の密度を第2図のように比較的低
くしたのは、後述のように対象物5の距離により画像セ
ンサ4上での光像の位置が水平方向に移動するため、検
出を行える距離範囲を大。きくとるためである。
FIG. 1 is a schematic diagram of an optical system showing an embodiment of a distance measuring device according to the present invention. In the figure, lenses 1 and 2 are arranged with a baseline distance apart, their optical axes are parallel to each other, and the object-side principal planes of each lens 1 and 2 lie on the same plane. Further, in this embodiment, lenses 1 and 2 are used that have the same focal length. Reference numeral 3 denotes a light source, which preferably has a relatively small light emitting portion 3'. Reference numeral 4 denotes an image sensor composed of a CCD or the like, 5 an object for distance measurement, and 6 a mask for pattern projection, which includes a light-shielding member and a plurality of light-transmitting parts 61, 62 . ...
An open rotor pattern consisting of 65 is provided and is located near the focal point of the lens 1. Also, 7 is an elliptical reflector and light source 3
reflects some of the light from the Figure 2 shows the opening of the mask 6.
.. A plurality of thin rectangular slit-shaped light transmitting parts 61, 62, 63, . . . are arranged on the upper mask 6. As shown in FIG. In the figure, transparent parts 61, 62. . . . have a sparse arrangement in the horizontal direction and a comparatively dense arrangement in the vertical direction, as shown by the thin line AX at their lateral centers, and as a result form slit rows extending in the diagonal direction. Translucent part 6
1,62. The density and arrangement of ... can be determined according to the required measurement accuracy and the vertical and horizontal resolution of the image sensor used, so it is not limited to the above configuration (various patterns can be used). The reason why the density in the horizontal direction of the transparent parts 61, 62, etc. of the mask 6 is made relatively low as shown in FIG. This is because the position of the optical image moves in the horizontal direction, so the distance range in which detection can be performed is widened.

第1図、第2図の構成において、光源3で照明され、透
光部6+、6sを通過した光束はレンズlを通って対象
物5の位置に応じてそれぞれ対象物5上の符号PI、P
2に示す位置に光像を結ぶ。そしてPI。
In the configurations shown in FIGS. 1 and 2, the light beams illuminated by the light source 3 and passed through the transparent parts 6+ and 6s pass through the lens l, and depending on the position of the object 5, the light beams PI and PI on the object 5, respectively. P
Focus the optical image at the position shown in 2. And P.I.

P2上の光像はそれぞれレンズ2を通って画像センサ4
上の位置DI、D2に光像を結ぶ。
The light images on P2 each pass through the lens 2 and reach the image sensor 4.
A light image is focused on the upper positions DI and D2.

ステレオ法の原理から分るように光像Dn (n=1゜
2・・・)の位置は反射点の距離、すなわち対象物5の
位置PI、P2の距離により、レンズ1.2の配置方向
に平行な直線上(基線方向)を移動することにな−る。
As can be seen from the principle of the stereo method, the position of the optical image Dn (n=1°2...) depends on the distance of the reflection point, that is, the distance between the positions PI and P2 of the object 5, and the direction in which the lens 1.2 is arranged. It will move on a straight line parallel to (baseline direction).

したがって、対象物5表面の測定装置からの距離分布を
光像Dn (n=1.2・・・)の水平方向の密度の分
布として検出することが可能となる。すなわち、画像セ
ンサ4の出力波形をコンピュータシステムなどを用いた
画像処理装置により観測することにより対象物5の表面
の光像位置(光束投射点)までの距離を3角測量の原理
により容易に求めることができる。
Therefore, it is possible to detect the distance distribution of the surface of the object 5 from the measuring device as a horizontal density distribution of the optical image Dn (n=1.2...). That is, by observing the output waveform of the image sensor 4 with an image processing device using a computer system or the like, the distance to the light image position (light beam projection point) on the surface of the object 5 can be easily determined based on the principle of triangulation. be able to.

さて、本実施例に於ては測距可能な距離範囲を拡げる為
に、レンズ1.2の被写界深度を大きくするだけでなく
、対象物5に照射するパターン光束に工夫を施している
。即ち、第1図に於て、マスク6の透光部61,62,
63.64.65は点光源と見なすことが出来、通常の
照明法によりマスク6の開ロバターンを照明する際、夫
々の透光部61.62・・・65から出射した光は拡散
し、レンズlの瞳全体を通過してレンズ1を介して対象
物5に指向される。この様な方法で対象物5にパターン
光束を照射すると、たとえレンズlに被写界深度の大き
いものを使用したとしても得られる測距範囲には限界が
あり、画像センサ4上には開ロバターンの光像のぼけた
像が結像されることになって、光像位置の検出を困難に
する。
Now, in this embodiment, in order to expand the measurable distance range, not only the depth of field of the lens 1.2 is increased, but also the pattern light beam irradiated onto the object 5 is devised. . That is, in FIG. 1, the transparent parts 61, 62,
63, 64, and 65 can be regarded as point light sources, and when illuminating the open pattern of the mask 6 using a normal illumination method, the light emitted from the respective transparent parts 61, 62...65 is diffused and the lens The light passes through the entire pupil of L and is directed to the object 5 via the lens 1. When the object 5 is irradiated with a patterned light beam in this way, there is a limit to the distance measurement range that can be obtained even if a lens l with a large depth of field is used, and an open pattern on the image sensor 4 is used. A blurred optical image is formed, making it difficult to detect the optical image position.

しかしながら、本実施例では光源3をマスク6から離れ
た位置で、且つ光源3からの光をマスク6に指向する為
の楕円反射鏡7で反射される光束の光路外に光源3を配
することによりマスク6の透光部6+。
However, in this embodiment, the light source 3 is placed at a position away from the mask 6 and outside the optical path of the light beam reflected by the elliptical reflector 7 for directing the light from the light source 3 toward the mask 6. The light-transmitting portion 6+ of the mask 6 is defined as follows.

62、・・・65に所定の方向から来た光束のみが入射
する様に構成している。更に、本実施例では光源3(微
小発光部3′)を楕円反射鏡7の第1焦点に配し、且つ
楕円反射鏡7の第2焦点がレンズ1の入射瞳の中心と略
一致する様にすることで、マスク6で得られた複数のパ
ターン光束の全てがレンズ1を介して対照物5に照射さ
れる。
62, . . . , 65 so that only light beams coming from a predetermined direction are incident thereon. Furthermore, in this embodiment, the light source 3 (small light emitting section 3') is arranged at the first focal point of the elliptical reflecting mirror 7, and the second focal point of the elliptical reflecting mirror 7 is arranged so as to substantially coincide with the center of the entrance pupil of the lens 1. By doing so, all of the plurality of patterned light beams obtained by the mask 6 are irradiated onto the object 5 through the lens 1.

又、従来の映写機等で使用される楕円反射鏡を用いた照
明方法では光源からの直射光と反射光がどちらもマスク
を照明することによってマスク面に当る光量を増加させ
るという方法が採れらている。この場合、反射光と直射
光のマスクに入射する方向に差を生じる。従って、対象
物5がP2のように合焦点位置からずれた位置にある場
合には反射光と直射光とが物体を照射する位置に差を生
じ、・ 2点を照射することになり、画像センサ4で受
像する光像位置にも差を生じることになり、光像位置を
検出して物体距離を測定するためには支障となる。又反
射光が光源を封止している硝子管を透過してマスク6を
照明する場合も生じ、対象物5にマスクの開ロバターン
を照明する光束の広がり(NA)が大きくなって、合焦
位置から離れた位置にある物体上に照射するマスク6の
開ロバターンのぼけ量が大きくなるのは前述の通りであ
る。
Furthermore, in the lighting method using an elliptical reflector used in conventional projectors, etc., a method is adopted in which both direct light and reflected light from the light source illuminate the mask, thereby increasing the amount of light hitting the mask surface. There is. In this case, there is a difference in the direction in which the reflected light and the direct light enter the mask. Therefore, when the object 5 is located at a position shifted from the focal point position like P2, there will be a difference in the position at which the reflected light and the direct light illuminate the object, and two points will be illuminated, resulting in an image This also causes a difference in the position of the light image received by the sensor 4, which is a hindrance to detecting the position of the light image and measuring the object distance. In addition, there are cases where the reflected light passes through the glass tube that seals the light source and illuminates the mask 6, and the spread (NA) of the light beam illuminating the open pattern of the mask on the object 5 increases, making it difficult to focus. As described above, the amount of blur of the open pattern of the mask 6 irradiated onto an object located at a distance from the object is increased.

一方、本発明に基く第1図に示す配置では、光源3から
発し直接マスク6を照明する光はレンズlに入射しない
。従って、マスク6の開ロバターンを物体に照射する光
束は光源3から出て楕円反射鏡7でEn+六七 昭射1
ノ・ノブ1の入射瞳の山、1ゝ、廿4斤を一生中る光だ
けとなり、マスク6の透光部61.62・・・の一点を
透過する光束の広がりはこの点から見た光源3の微小発
光部3′が反射鏡に写った際のその大きさの見込み角と
なり、図示する如く透光部53の一点を透過する光は実
線で示したように広がり角の小さい光束となる。この結
束合焦点位置から離れた位置P2上のぼけの大きさはd
′となり小さくすることができる。又前記した楕円反射
鏡の性質からマスク6の縁にある透光窓55を透過する
光もレンズlの入射瞳の中心に向うのでレンズ1による
けられを生じることがな(レンズの口径を小さくするこ
とが可能になる。さらに、楕円反射鏡7で反射されレン
ズ1に入射する光束の光路から光源3の保持部材や硝子
封止体を外すことが可能となりマスク6の透光窓を透過
光量のむらを少なくすることができる。
On the other hand, in the arrangement shown in FIG. 1 according to the invention, the light emitted from the light source 3 and directly illuminating the mask 6 does not enter the lens l. Therefore, the light beam that irradiates the object with the open pattern of the mask 6 comes out from the light source 3 and is reflected by the elliptical reflector 7.
Only the light that passes through the peak of the entrance pupil of No. 1, 1 cm x 4 lbs., and the spread of the light flux that passes through one point of the light-transmitting part 61, 62 of the mask 6, is seen from this point. The viewing angle is the size of the minute light emitting part 3' of the light source 3 reflected on the reflecting mirror, and the light that passes through one point of the transparent part 53 as shown in the figure is a luminous flux with a small spread angle as shown by the solid line. Become. The size of the blur at the position P2 away from this united focal point position is d
′ and can be made smaller. Furthermore, due to the properties of the elliptical reflector described above, the light that passes through the transparent window 55 at the edge of the mask 6 also goes toward the center of the entrance pupil of the lens 1, so that vignetting by the lens 1 does not occur (the aperture of the lens is made small). Furthermore, it becomes possible to remove the holding member and glass sealing body of the light source 3 from the optical path of the light beam reflected by the elliptical reflector 7 and incident on the lens 1, so that the amount of light transmitted through the transparent window of the mask 6 can be reduced. It is possible to reduce unevenness.

第3図は画像センサ4としてTVカメラ用の2次元CC
Dセンサを用いた場合の1本の走査線(第2図の細線A
Xに対応)の出力波形Oを示したものである。ここでは
図の左右方向を画像センサ4の水平方向の距離に対応さ
せである。上記から明らかなように、この走査線と同一
直線上にあるマスク板6の透光部6n (n=1.2.
・・・)に対応して出力値が極大値Mを示す。1つの透
光部6n (n=1.2.・・・)に対応して出現する
出力波形の極大値の左右位置はその位置が限定されてお
り、他の透光部による極大値出現範囲と分離されている
ので、透光部6n(n=1.2.・・・)とそこを通過
した光束の画像センサ4への入射位置は容易に対応づけ
ることができる。
Figure 3 shows a two-dimensional CC for a TV camera as the image sensor 4.
One scanning line when using the D sensor (thin line A in Figure 2)
This figure shows the output waveform O (corresponding to X). Here, the horizontal direction of the figure corresponds to the horizontal distance of the image sensor 4. As is clear from the above, the transparent portion 6n of the mask plate 6 (n=1.2.
), the output value shows the local maximum value M. The left and right positions of the maximum value of the output waveform that appears corresponding to one transparent part 6n (n=1.2...) are limited, and the range in which the maximum value appears due to other transparent parts is limited. Since the light transmitting portion 6n (n=1.2, . . . ) is separated from the light transmitting portion 6n (n=1.2, . . . ), the incident position of the light beam passing therethrough onto the image sensor 4 can be easily correlated.

したがって、従来のステレオ法におけるように近距離に
おけるコントラスト低下による測定不能などの不都合を
生じることなく、確実に対象物5の任意の位置までの距
離や3次元情報を取得することができる。また、従来の
ステレオ方式と異なり、光源を用いて照明を行うアクテ
ィブ方式を採用しているので、近距離の対象物の測定で
は光源の光量が小さくて済む利点がある。また、画像セ
ンサ出力の極大値の大きさから、対象物の光像位置の傾
斜角を推定することも可能である。
Therefore, the distance to an arbitrary position of the object 5 and three-dimensional information can be reliably acquired without causing problems such as inability to measure due to a decrease in contrast at short distances as in the conventional stereo method. Furthermore, unlike the conventional stereo system, an active system is adopted in which illumination is performed using a light source, which has the advantage that the amount of light from the light source can be small when measuring objects at short distances. Furthermore, it is also possible to estimate the inclination angle of the optical image position of the object from the magnitude of the maximum value of the image sensor output.

以上のようにして、対象物5表面の測定系からの距離を
2次元の画像センサ4を介して測定することができる。
As described above, the distance of the surface of the object 5 from the measurement system can be measured via the two-dimensional image sensor 4.

以上の構成によれば、光切断法のように機械的な走査を
行う必要なく、対象物5全面の3次元情報を1回の画像
読み取りで抽出することができる。
According to the above configuration, three-dimensional information on the entire surface of the object 5 can be extracted by one image reading without the need for mechanical scanning as in the optical cutting method.

また、後の画像処理も光像の左右方向の分布のみに関し
て行えばよいので、簡単かつ光束な処理が可能である。
In addition, since subsequent image processing only needs to be performed on the distribution of the light image in the left and right direction, simple and luminous processing is possible.

さらに、本実施例によれば、画像センサ4上の構造の画
像をそのまま2値化するなどしてCRTディスプレイや
、ハードコピー装置に出力して視覚的な3次元表現を行
うことができる。
Further, according to this embodiment, the image of the structure on the image sensor 4 can be directly binarized and output to a CRT display or a hard copy device to provide a visual three-dimensional representation.

本実施例による距離測定方式もしくは3次元情報処理力
式は、いわば多数の触針を物体に押し付けて触針の基準
面からの突出量の変化により物体形状を知覚する方法を
光学的に非接触で行うものであり、高速かつ正確な処理
が可能なため、実時間処理が必要とされるロボットなど
の視覚センサとして用いることが可能である。特に比較
的近距離に配置された対象物の形状、姿勢などを知覚し
、対象物の把握、回避などの動作を行なわせる場合に有
効である。
The distance measurement method or three-dimensional information processing power method according to this embodiment is an optical non-contact method in which a large number of styli are pressed against an object and the shape of the object is perceived by changes in the amount of protrusion of the stylus from a reference surface. Since it is possible to perform high-speed and accurate processing, it can be used as a visual sensor for robots and other devices that require real-time processing. This is particularly effective when perceiving the shape, posture, etc. of an object placed at a relatively close distance, and causing actions such as grasping and avoiding the object.

また、以上の説明では、簡略化のために装置の主要部の
みを図示し、信号処理系や連間のための筐体等の図示を
省略したが、これらの部材は必要に応じて当業者におい
て従来どおり適当なものを設ければよい。また光学系は
単レンズのみを図示したが、複数エレメントから成る光
学系、ミラーなどを含む光学系を用いることもできる。
In addition, in the above explanation, for the sake of simplicity, only the main parts of the device are illustrated, and illustrations of the signal processing system, the housing for the connections, etc. are omitted, but these parts can be explained by those skilled in the art as necessary. An appropriate one may be provided in the conventional manner. Further, although only a single lens is shown as an optical system, an optical system including a plurality of elements, a mirror, etc. can also be used.

更に、上記の各実施例では、2つの同一焦点距離の光学
系を用いる構成を示したが、必要に応じて異なる焦点距
離の光学系を3系統以上を用いることも考えられる。た
だし、諸収差のそろった同一焦点距離の同一の光学系を
用いるのが最も簡単である。
Further, in each of the above embodiments, a configuration is shown in which two optical systems having the same focal length are used, but it is also possible to use three or more optical systems having different focal lengths, if necessary. However, it is easiest to use the same optical system with the same focal length and with the same aberrations.

又、以上説明した実施例に於いては、2次元に配列され
た複数の透光部を有する開ロバターンの光像をCCD等
の2次元画像センサで検出して測定を行う方法を示した
が、例えば複数の透光部を一次元に所定間隔毎に配した
開ロバターンを対象物に橙D+1.  技Ffflロバ
ターンのろに4’11を再千方面にセンサ列を有する画
像センサで受像して特定の方向に沿った対象物の形状を
検知しても良い。
Furthermore, in the embodiments described above, a method was shown in which measurement was performed by detecting an optical image of an open pattern having a plurality of transparent parts arranged two-dimensionally with a two-dimensional image sensor such as a CCD. For example, an open pattern in which a plurality of transparent parts are arranged one-dimensionally at predetermined intervals is set to an orange D+1. It is also possible to detect the shape of the object along a specific direction by receiving the image of the robot pattern 4'11 with an image sensor having sensor rows in 1,000 directions.

又、対象物からパターン光束を受ける第2の光学系を2
つ以上とし、測距の視野を広げることも可能であり、更
に第2の光学系を所定の駆動装置を用いて平行移動させ
ることによても測距の視野を広げることが可能である。
In addition, the second optical system that receives the pattern light beam from the object is
It is also possible to widen the field of view for distance measurement by using two or more optical systems, and it is also possible to widen the field of view for distance measurement by moving the second optical system in parallel using a predetermined drive device.

又、逆に複数のパターン光束を対象物に照射する第1の
光学系と光源手段とを所定の駆動装置を用いて平行移動
させても同様の機能を得ることが出来る。
Alternatively, the same function can be obtained by moving the first optical system that irradiates the object with a plurality of patterned light beams and the light source means in parallel using a predetermined drive device.

本発明によれば、対象物に照射されるパターン光束は出
来る限り広がり角が小さい細い光ビームであることが好
ましいが、その限界は主として画像センサの感度に依存
する為、使用可能なセンサの感度や光源出力、要求され
る測定精度、仕様に併せて決定される。
According to the present invention, it is preferable that the pattern light beam irradiated onto the object be a narrow light beam with a spread angle as small as possible, but since its limit depends mainly on the sensitivity of the image sensor, the sensitivity of the available sensor It is decided in conjunction with the light source output, required measurement accuracy, and specifications.

又、光学系の倍率や基線長の長さ、即ち第1図の第1の
光学系と第2の光学系との間の距離、マスクの透光部の
ピッチ等は測定すべき測距範囲を考慮して決定すれば良
い。
In addition, the magnification and baseline length of the optical system, that is, the distance between the first optical system and the second optical system in Figure 1, the pitch of the light-transmitting part of the mask, etc., determine the distance measurement range to be measured. You should take this into consideration when deciding.

又、本発明で言う画像セー゛ンサはフォトダイオードや
COD等に代表される全ての光電変換素子を含んでおり
、1次元アレイ、2次元アレイ等配列状態にも限定はな
い。
Further, the image sensor referred to in the present invention includes all photoelectric conversion elements such as photodiodes and CODs, and there is no limitation to the arrangement state such as a one-dimensional array or a two-dimensional array.

又、第1図に示す様に本発明で用いる楕円ミラーは楕円
ミラーの一部で構成しても良いし、又楕円ミラー全体を
そのまま配して構成しても良(、少な(とも楕円ミラー
の第2焦点近傍に第1の光学系、望ましくはその入射瞳
が位置するようにすることにより、収差の影響が少ない
細い光ビームを得ることができる。即ち、マスクから出
射する光束の殆どが第1の光学系中でその先軸近傍を通
過する様に構成するのが良い。
Further, as shown in FIG. 1, the elliptical mirror used in the present invention may be constructed from a part of the elliptical mirror, or may be constructed by arranging the entire elliptical mirror as it is. By locating the first optical system, preferably its entrance pupil, near the second focal point of the mask, it is possible to obtain a narrow light beam that is less affected by aberrations.In other words, most of the light flux emitted from the mask It is preferable to configure it so that it passes near the front axis of the first optical system.

〔発明の効果〕〔Effect of the invention〕

以上、本発明に係る距離測定装置はアクティブ方式を採
用することで対象物の種類や位置によらず短時間且つ高
精度の測距を達成し、又、マスクや微小発光源やミラー
等を用い対象物に照射せしめるパターン光束径を細い光
ビームとすることにより、広い測定範囲を備えたもので
ある。
As described above, the distance measuring device according to the present invention achieves short-time and highly accurate distance measurement regardless of the type or position of the object by adopting an active method, and also uses a mask, a small light emitting source, a mirror, etc. A wide measurement range is provided by making the pattern light beam diameter irradiated onto the object a narrow light beam.

更に、本発明によれば短時間且つ高精度で対象物からの
3次元情報を取得することが出来、ロボット等の視覚セ
ンサとして好適な装置である。
Further, according to the present invention, it is possible to acquire three-dimensional information from an object in a short time and with high precision, making the device suitable as a visual sensor for robots and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る距離測定装置の一実施例を示す光
学系概略図。 第2図はマスクの開ロバターンの一例を示す図。 第3図は画像センサとしてCDDを用いた際の1本の走
査線の出力波形を示す図。 1.2・・・・レン Y、 3・・・・・ E光源装置、 3 s 、 32.・、3n・・・小型発光源、4・・
・・・ 鞫怎センサ、 5・・・・・ E対象物、 6・・・・・ Eマスク、 61.62.・、6n・・・透光部、 7・・・・・ 円反射鏡。
FIG. 1 is a schematic diagram of an optical system showing an embodiment of a distance measuring device according to the present invention. FIG. 2 is a diagram showing an example of an open pattern of a mask. FIG. 3 is a diagram showing the output waveform of one scanning line when a CDD is used as an image sensor. 1.2... Len Y, 3... E light source device, 3 s, 32.・, 3n...small light emitting source, 4...
... Disgusting sensor, 5... E object, 6... E mask, 61.62.・, 6n... Translucent part, 7... Circular reflecting mirror.

Claims (2)

【特許請求の範囲】[Claims] (1)光軸を平行に、かつ基線距離隔てて配置された複
数の光学系と、前記の光学系の1つを通して複数のパタ
ーン光束を対象物に照射する光源手段と、る 対象物上の前記パターン光束による像を前記と異なる光
学系を通して受像する画像センサとを設け、この画像セ
ンサにより検出された前記対象物上のパターン光束によ
る光像の位置から対象物の所定の位置までの距離を測定
する装置であって、前記光源手段が光源と光源からの光
を受けてパターン光束を形成するマスクと光源からの光
をマスクに指向する楕円反射鏡とを有し、光源がマスク
に指向される光束の光路外に配されていることを特徴と
する距離測定装置。
(1) A plurality of optical systems arranged with their optical axes in parallel and separated by a baseline distance, and a light source means for irradiating the object with a plurality of patterned light beams through one of the optical systems; an image sensor that receives an image of the patterned light beam through an optical system different from the above, and a distance from a position of the light image of the patterned light beam on the object detected by the image sensor to a predetermined position of the object; The light source means includes a light source, a mask that receives light from the light source to form a patterned light beam, and an elliptical reflector that directs the light from the light source toward the mask, and the light source is directed toward the mask. A distance measuring device characterized in that it is arranged outside the optical path of a light beam.
(2)前記楕円反射鏡の2つの焦点位置に夫々光源及び
前記の光学系の1つを配したことを特徴とする特許請求
の範囲第(1)項記載の距離測定装置。
(2) The distance measuring device according to claim 1, wherein a light source and one of the optical systems are arranged at two focal positions of the elliptical reflecting mirror, respectively.
JP61136764A 1985-12-10 1986-06-11 Distance measuring device Expired - Fee Related JPH0643893B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61136764A JPH0643893B2 (en) 1986-06-11 1986-06-11 Distance measuring device
DE19863642051 DE3642051A1 (en) 1985-12-10 1986-12-09 METHOD FOR THREE-DIMENSIONAL INFORMATION PROCESSING AND DEVICE FOR RECEIVING THREE-DIMENSIONAL INFORMATION ABOUT AN OBJECT
FR868617220A FR2591329B1 (en) 1985-12-10 1986-12-09 APPARATUS AND METHOD FOR PROCESSING THREE-DIMENSIONAL INFORMATION
US07/289,456 US4867570A (en) 1985-12-10 1988-12-22 Three-dimensional information processing method and apparatus for obtaining three-dimensional information of object by projecting a plurality of pattern beams onto object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61136764A JPH0643893B2 (en) 1986-06-11 1986-06-11 Distance measuring device

Publications (2)

Publication Number Publication Date
JPS62291512A true JPS62291512A (en) 1987-12-18
JPH0643893B2 JPH0643893B2 (en) 1994-06-08

Family

ID=15182960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61136764A Expired - Fee Related JPH0643893B2 (en) 1985-12-10 1986-06-11 Distance measuring device

Country Status (1)

Country Link
JP (1) JPH0643893B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2395262A (en) * 2002-11-11 2004-05-19 Qinetiq Ltd Optical proximity sensor with array of spot lights and a mask
US7589825B2 (en) 2002-11-11 2009-09-15 Qinetiq Limited Ranging apparatus
JP2010060582A (en) * 2008-09-01 2010-03-18 Nikon Corp Compound optical system and optical device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100885998B1 (en) * 2008-04-14 2009-03-03 에이티아이 주식회사 Apparatus for obtaining image of 3-dimensional object

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2395262A (en) * 2002-11-11 2004-05-19 Qinetiq Ltd Optical proximity sensor with array of spot lights and a mask
US7459670B2 (en) 2002-11-11 2008-12-02 Qinetiq Limited Proximity sensor based on projection of structured light
US7589825B2 (en) 2002-11-11 2009-09-15 Qinetiq Limited Ranging apparatus
JP2010060582A (en) * 2008-09-01 2010-03-18 Nikon Corp Compound optical system and optical device

Also Published As

Publication number Publication date
JPH0643893B2 (en) 1994-06-08

Similar Documents

Publication Publication Date Title
US4867570A (en) Three-dimensional information processing method and apparatus for obtaining three-dimensional information of object by projecting a plurality of pattern beams onto object
US6862097B2 (en) Three-dimensional shape measuring method, and three-dimensional shape measuring apparatus
EP2840353B1 (en) Scanning apparatus with patterned probe light
CN102087483B (en) Optical system for focal plane detection in projection lithography
JP2002139304A (en) Distance measuring device and distance measuring method
EP2813809A1 (en) Device and method for measuring the dimensions of an objet and method for producing an item using said device
JPH0762614B2 (en) Optical sensor
JP2510786B2 (en) Object shape detection method and apparatus
JP3428122B2 (en) 3D shape measuring device
JPH05306915A (en) Method and instrument for measuring shape
JPS62291512A (en) Distance measuring apparatus
JP6362058B2 (en) Test object measuring apparatus and article manufacturing method
US5815272A (en) Filter for laser gaging system
JP2677351B2 (en) 3D object external inspection system
JP2922250B2 (en) Shape measuring device
JP2504944B2 (en) Three-dimensional information processing method
JPS62291511A (en) Distance measuring apparatus
JPS62291509A (en) Distance measuring apparatus
JPS62291510A (en) Distance measuring apparatus
JP2737271B2 (en) Surface three-dimensional shape measuring method and device
EP1139090A2 (en) Leaded integrated circuit inspection system
JPH04110706A (en) Device for taking three-dimensional form data
JP2005331413A (en) Distance image acquiring system
JP2003185420A (en) Method and apparatus for measuring three-dimensional shape
JPH0833915B2 (en) Three-dimensional information processing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees