JP2009236774A - Three dimensional ranging device - Google Patents

Three dimensional ranging device Download PDF

Info

Publication number
JP2009236774A
JP2009236774A JP2008084854A JP2008084854A JP2009236774A JP 2009236774 A JP2009236774 A JP 2009236774A JP 2008084854 A JP2008084854 A JP 2008084854A JP 2008084854 A JP2008084854 A JP 2008084854A JP 2009236774 A JP2009236774 A JP 2009236774A
Authority
JP
Japan
Prior art keywords
light
axis
measurement
light projecting
deflection mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008084854A
Other languages
Japanese (ja)
Inventor
Toshihiro Mori
利宏 森
Naohiro Shimaji
直広 嶋地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuyo Automatic Co Ltd
Original Assignee
Hokuyo Automatic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuyo Automatic Co Ltd filed Critical Hokuyo Automatic Co Ltd
Priority to JP2008084854A priority Critical patent/JP2009236774A/en
Publication of JP2009236774A publication Critical patent/JP2009236774A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small and high precision three dimensional ranging device which can ensure scanning angle of 180 degrees. <P>SOLUTION: This ranging device includes: scanning mechanism which rotates a deflecting mirror 9 obliquely-positioned to level surface around its perpendicular axial center P1; light projector 3 for emitting measured light along light axis L1 located around the axial center and slanted by a certain degree of θ to the axial center; a light collection optical system 6 for collecting reflections to the measured light emitted from the light projector and deviation-reflected by the deflecting mirror 9; a single light-receiving section 5 for detecting the collected reflections; a drive controller which drives the light projector so that one measured light may be emitted at different timing from each mutually-different position along circumferential direction of the axial center P1; and a distance calculating section which calculates angle of the measuring object from scanning angle of the measured light emitted from the scanning mechanism, while calculating distance to the above measuring object from delay time of the reflection to the measured light scanned from the light projector towards measuring target space by the scanning mechanism. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、被測定物の三次元的形状を取得するために、測定対象空間を三次元的に走査して被測定物までの距離を計測する三次元測距装置に関する。   The present invention relates to a three-dimensional distance measuring apparatus that measures a distance to a measurement object by three-dimensionally scanning a measurement object space in order to acquire a three-dimensional shape of the measurement object.

図10に示すように、レーザ光源LDから出力される測定光に変調を加えて対象物Rに照射し、対象物Rからの反射光を受光素子PDで検出して距離を測定する測距装置では、測定光の変調方式としてAM(amplitude modulation)方式とTOF(Time of Flight)方式の二種類が実用化されている。   As shown in FIG. 10, a distance measuring device that modulates the measurement light output from the laser light source LD and irradiates the object R, and detects the reflected light from the object R with a light receiving element PD to measure the distance. In this case, two types of modulation methods for measuring light, an AM (amplitude modulation) method and a TOF (Time of Flight) method, have been put into practical use.

AM方式は、図10(a)及び(数1)に示すように、正弦波でAM変調された測定光とその反射光を光電変換して、それらの信号間の位相差Δφを計算し、位相差Δφから距離を演算する方式であり、TOF方式は、図10(b)及び(数2)に示すように、パルス状に変調された測定光とその反射光を光電変換し、それらの信号間の遅延時間Δtから距離を演算する方式である。ここに、Lは対象物Rまでの距離、Cは光速、fは変調周波数、Δφは位相差、Δtは遅延時間を示す。
(数1) L=Δφ・C/(4π・f)
(数2) L=Δt・C/2
In the AM method, as shown in FIGS. 10A and 10, the measurement light modulated with a sine wave and the reflected light are photoelectrically converted, and a phase difference Δφ between these signals is calculated, This is a method for calculating the distance from the phase difference Δφ, and the TOF method photoelectrically converts the measurement light modulated in a pulse shape and its reflected light as shown in FIGS. In this method, the distance is calculated from the delay time Δt between signals. Here, L is the distance to the object R, C is the speed of light, f is the modulation frequency, Δφ is the phase difference, and Δt is the delay time.
(Equation 1) L = Δφ · C / (4π · f)
(Expression 2) L = Δt · C / 2

図10に示す検出原理を採用した二次元測距装置として、例えば図11に示すように、投光部3から出力された測定光を、モータ11により軸心P1回りに回転する第一偏向ミラー9aにより偏向させて軸心P1と直交する平面上で回転走査し、被測定物Rからの反射光を第二偏向ミラー9bで偏向して受光部5により検出することにより、被測定物までの距離を算出する信号処理回路90を備えた二次元測距装置が本願発明者らにより提案されている(特願2006−253833号)。   As a two-dimensional distance measuring device employing the detection principle shown in FIG. 10, for example, as shown in FIG. 11, a first deflection mirror that rotates measurement light output from the light projecting unit 3 around the axis P <b> 1 by the motor 11. By deflecting by 9a and rotating and scanning on a plane orthogonal to the axis P1, the reflected light from the object R to be measured is deflected by the second deflecting mirror 9b and detected by the light receiving unit 5, so that The inventors of the present application have proposed a two-dimensional distance measuring device including a signal processing circuit 90 for calculating a distance (Japanese Patent Application No. 2006-253833).

この種の二次元測距装置は、主にロボットや無人搬送車の視覚センサ、或いは、ドアの開閉センサや監視領域への侵入者の有無を検出する監視センサ、さらには、危険な装置に人や物が近づくのを検出し、機械を安全に停止する安全センサ等に利用される。   This type of two-dimensional distance measuring device is mainly used for visual sensors of robots and automatic guided vehicles, door opening / closing sensors, monitoring sensors for detecting the presence or absence of intruders in the monitoring area, and for dangerous devices. It is used as a safety sensor that detects the approach of objects and objects and stops the machine safely.

さらに、車の形状や人の形状を認識する場合にも利用され、例えば、ETCシステムでは、車種を判別し、通過する車の数をカウントするセンサとして利用され、人の数をカウントして込み具合や、人の流れを検出する監視センサに利用される。   Furthermore, it is also used when recognizing the shape of a car or a person. For example, in an ETC system, it is used as a sensor that discriminates the vehicle type and counts the number of passing cars. It is used as a monitoring sensor that detects the condition and the flow of people.

しかし、ロボットの視覚装置や危険な機械の安全用のエリアセンサに使用される場合、検出エリアが二次元平面となるため、測定光の走査面から上下の方向に存在する対象物や障害物を検出することができない。特にロボット等の環境認識に使う場合、上下に適切な幅を有するワイドな画角領域のデータを得ることが重要であり、また、その領域内をなるべく均一な密度で走査することが望まれる。   However, when used in a robot vision device or an area sensor for the safety of dangerous machines, the detection area is a two-dimensional plane, so objects and obstacles that exist in the vertical direction from the scanning surface of the measurement light can be detected. It cannot be detected. In particular, when used for environment recognition of a robot or the like, it is important to obtain data of a wide field angle area having an appropriate width in the vertical direction, and it is desired to scan the area with as uniform density as possible.

そこで、特許文献1には、図12に示すように、光源3から発せられた光信号を、ガルバノメータスキャナ14aのミラー13aに入射させ、ガルバノメータスキャナ14aのミラー13aから、さらに二つ目のガルバノメータスキャナ14bのミラー13bを介して検出対象物がある空間に照射される三次元測距装置が提案されている。   Therefore, in Patent Document 1, as shown in FIG. 12, the optical signal emitted from the light source 3 is incident on the mirror 13a of the galvanometer scanner 14a, and the second galvanometer scanner is further transmitted from the mirror 13a of the galvanometer scanner 14a. There has been proposed a three-dimensional distance measuring device that irradiates a space where a detection target is present via a mirror 13b of 14b.

特許文献2には、図13に示すように、図12に示すような二次元測距装置102を第一軸心P1と斜交する第二軸心P2周りに回転駆動して、第一軸心P1のロール角度及びピッチ角度を変化させる第二回転機構20と、第一軸心P1周りに回転する第一回転機構と当該第二回転機構とを回転制御する回転制御手段を備えた三次元測距装置200が提案されている。   In Patent Document 2, as shown in FIG. 13, a two-dimensional distance measuring device 102 as shown in FIG. 12 is rotationally driven around a second axis P2 obliquely intersecting the first axis P1, and the first axis A three-dimensional unit comprising a second rotation mechanism 20 that changes the roll angle and pitch angle of the core P1, a first rotation mechanism that rotates around the first axis P1, and a rotation control means that controls the rotation of the second rotation mechanism. A distance measuring device 200 has been proposed.

当該三次元測距装置では、シンプルな機構により第一軸心周りに回転走査される測定光により形成される平面が第二軸心周りに傾斜して、第一軸心のロール角度及びピッチ角度が変化するため、走査式二次元測距装置を用いて、第二軸心に沿った所定範囲で一定の走査密度で三次元的に走査することが可能となる。   In the three-dimensional distance measuring device, a plane formed by measurement light rotated and scanned around the first axis by a simple mechanism is inclined around the second axis, and the roll angle and pitch angle of the first axis Therefore, it becomes possible to scan three-dimensionally with a constant scanning density in a predetermined range along the second axis by using the scanning two-dimensional distance measuring device.

尚、図11から図13に示す符号は各特許文献の符号をそのまま用いており、以下に述べる本発明の実施形態で使用される符号と重複する場合があっても互いに関連は無い。
特開2001−147269号公報 特許第4059911号公報
11 to 13 use the codes of each patent document as they are, and are not related to each other even if they overlap with the codes used in the embodiments of the present invention described below.
JP 2001-147269 A Japanese Patent No. 4059911

しかし、測距装置は一般に検出感度を高くするために、特に受光軸の光芒が広くなるように設計され、高感度長距離計測の測距装置では走査するミラーが受光軸の光芒の大きさに比例して大きくなる。   However, distance measuring devices are generally designed to increase the light sensitivity of the light receiving axis in order to increase the detection sensitivity. In a distance measuring device for high sensitivity and long distance measurement, the scanning mirror has the size of the light beam of the light receiving axis. Increase proportionally.

そのため特許文献1に記載された技術では、原理的に走査角度が180度に制限され、その範囲で走査角度を大きくする場合であっても、それに対応して大きなミラーが必要となり、装置全体が大きくなるばかりかミラーを精度よく制御することが困難になるという問題がある。特に、側面方向の視野を必要とするロボットに装着する場合には、180度以上の走査角度が要求されるため、この方式を採用するのは困難である。   Therefore, in the technique described in Patent Document 1, in principle, the scanning angle is limited to 180 degrees, and even when the scanning angle is increased within that range, a correspondingly large mirror is required, and the entire apparatus is There is a problem that it becomes difficult to control the mirror with high accuracy as well as the size. In particular, when mounting on a robot that requires a field of view in the lateral direction, a scanning angle of 180 degrees or more is required, and this method is difficult to adopt.

また、特許文献2に記載された技術では、第二回転機構を構成するモータやクランク機構等の大きな部品が装置本体の外部に配置されるため、装置全体を覆う安全カバーが必要となるばかりか装置全体が大型化して、パーソナルロボット等に搭載することが容易ではないという問題があった。   Moreover, in the technique described in Patent Document 2, since large parts such as a motor and a crank mechanism constituting the second rotation mechanism are arranged outside the apparatus main body, not only a safety cover that covers the entire apparatus is required. There is a problem that the entire apparatus becomes large and cannot be easily mounted on a personal robot or the like.

本発明の目的は、上述した問題点に鑑み、180度以上の走査角度を確保しながらも、小型で高精度な三次元測距装置を提供する点にある。   In view of the above-described problems, an object of the present invention is to provide a small and highly accurate three-dimensional distance measuring device while ensuring a scanning angle of 180 degrees or more.

この目的達成をするため、本発明による三次元測距装置の第一の特徴構成は、特許請求の範囲の書類の請求項1に記載した通り、基準平面に対して傾斜配置された偏向ミラーを、前記偏向ミラーを通り前記基準平面に垂直な軸心周りに回転する走査機構と、前記軸心から離隔した位置に配置され前記軸心に対して所定角度傾斜した光軸に沿って測定光を出射する投光部と、前記投光部から出射され前記偏向ミラーで偏向反射された測定光のうち、被測定物からの反射光を集光する集光光学系と、前記集光光学系により集光された反射光を検出する単一の受光部と、前記軸心の周方向に沿って互いに異なる位置から異なるタイミングで一つの測定光が出射されるように前記投光部を駆動する駆動制御部と、前記走査機構により前記投光部から測定対象空間に向けて走査された測定光に対する反射光の遅延時間または位相差から前記被測定物までの距離を算出するとともに、前記走査機構から出射される測定光の走査角度から前記被測定物の角度を算出する距離算出部を備えている点にある。   In order to achieve this object, a first characteristic configuration of the three-dimensional distance measuring device according to the present invention includes a deflecting mirror inclined with respect to a reference plane, as described in claim 1 of the document of the claims. A scanning mechanism that rotates around an axis perpendicular to the reference plane through the deflection mirror, and a measuring beam that is arranged at a position spaced from the axis and inclined at a predetermined angle with respect to the axis. A light projecting unit that emits light, a condensing optical system that condenses the reflected light from the object to be measured among the measurement light that is emitted from the light projecting unit and deflected and reflected by the deflecting mirror, and the condensing optical system A single light receiving unit that detects the condensed reflected light and a drive that drives the light projecting unit so that one measurement light is emitted from different positions along the circumferential direction of the axis at different timings. Measurement from the light projecting unit by the control unit and the scanning mechanism. The distance to the object to be measured is calculated from the delay time or phase difference of the reflected light with respect to the measuring light scanned toward the target space, and the object to be measured is calculated from the scanning angle of the measuring light emitted from the scanning mechanism. It is in the point provided with the distance calculation part which calculates an angle.

上述の構成によれば、投光部から出射された測定光が軸心に対して所定角度傾斜した光軸に沿って偏向ミラーに入射するため、走査機構により回転する偏向ミラーで偏向反射された測定光が、基準平面に対して傾斜した平面上で走査されるようになる。   According to the above configuration, since the measurement light emitted from the light projecting unit enters the deflection mirror along the optical axis inclined by a predetermined angle with respect to the axis, it is deflected and reflected by the deflection mirror rotated by the scanning mechanism. The measurement light is scanned on a plane inclined with respect to the reference plane.

偏向ミラーがある走査角度に位置するときに、測定対象空間に向けて偏向出射される測定光と基準平面との傾斜角度が幾何学的に算出できるため、測定光に対する被測定物からの反射光に基づいて距離を算出すれば、被測定物に対する角度と距離が求まる。   When the deflection mirror is positioned at a certain scanning angle, the tilt angle between the measurement light deflected and emitted toward the measurement target space and the reference plane can be calculated geometrically, so that the reflected light from the object to be measured with respect to the measurement light If the distance is calculated based on the above, the angle and distance with respect to the object to be measured can be obtained.

そして、駆動制御部により、軸心の周方向に沿って互いに異なる位置から異なるタイミングで一つの測定光が出射されるように投光部が駆動されることにより、軸心の周方向に沿って異なる位置から出射された夫々の測定光の走査面は、基準平面に対して傾斜し、且つ、互いに異なる角度で傾斜した平面上で走査されるようになる。   Then, the light projecting unit is driven by the drive control unit so that one measurement light is emitted from different positions along the circumferential direction of the shaft center at different timings, thereby along the circumferential direction of the shaft center. The scanning surfaces of the respective measurement beams emitted from different positions are scanned on planes that are inclined with respect to the reference plane and inclined at different angles.

図4に示すように、例えば、投光部から出射された測定光が偏向ミラー上で軸心と交差するように照射される場合に、測定光の光軸と軸心とのなす角度をθとすると、軸心を中心とする半径Lの仮想円筒の周面に照射される各測定光の軌跡は、±L・tanθの振れ幅のリサージュ形状を描くようになる。   As shown in FIG. 4, for example, when the measurement light emitted from the light projecting unit is irradiated on the deflection mirror so as to intersect the axis, the angle between the optical axis of the measurement light and the axis is θ Then, the trajectory of each measurement light irradiated on the peripheral surface of the virtual cylinder having the radius L with the axis at the center draws a Lissajous shape with a shake width of ± L · tan θ.

各測定光に対する被測定物からの反射光に基づいて距離を算出すれば、測定対象空間に存在する被測定物に対する三次元的な距離を算出することができるのである。   If the distance is calculated based on the reflected light from the object to be measured with respect to each measurement light, the three-dimensional distance to the object to be measured existing in the measurement target space can be calculated.

このような投光部によれば、ケーシング内に極めて小型且つ精度良く配置できるため、小型で高精度な三次元測距装置を構築することができるようになる。   According to such a light projecting unit, since it can be extremely small and accurately arranged in the casing, a small and highly accurate three-dimensional distance measuring device can be constructed.

同第二の特徴構成は、同請求項2に記載した通り、上述の第一特徴構成に加えて、前記偏向ミラーが、前記投光部から出射された測定光を測定対象空間に向けて偏向反射するとともに、前記被測定物からの反射光を前記受光部に向けて偏向反射する単一の偏向ミラーで構成され、前記集光光学系及び前記受光部が前記軸心上に配置されるとともに、前記複数の投光部が前記受光部の周囲に配置されている点にある。   In the second feature configuration, as described in claim 2, in addition to the first feature configuration described above, the deflection mirror deflects the measurement light emitted from the light projecting unit toward the measurement target space. A single deflecting mirror that reflects and deflects and reflects reflected light from the object to be measured toward the light receiving unit, and the condensing optical system and the light receiving unit are disposed on the axis. The plurality of light projecting units are arranged around the light receiving unit.

上述の構成によれば、測定光を測定対象空間に導く偏向ミラーと、被測定物からの反射光を受光部に導くミラーが兼用されることにより、装置を軸心方向に沿って小型化することができるようになる。   According to the above-described configuration, the deflection mirror that guides the measurement light to the space to be measured and the mirror that guides the reflected light from the object to be measured to the light receiving unit are combined to reduce the size of the apparatus along the axial direction. Will be able to.

同第三の特徴構成は、同請求項3に記載した通り、上述の第一特徴構成に加えて、前記偏向ミラーが前記投光部から出射された測定光を測定対象空間に向けて偏向反射する第一偏向ミラーと、前記被測定物からの反射光を前記受光部に向けて偏向反射する第二偏向ミラーとを備えて構成され、前記受光部が前記偏向ミラーを挟んで前記投光部と対向する位置に配置されている点にある。   In the third feature configuration, as described in claim 3, in addition to the first feature configuration described above, the deflection mirror deflects and reflects the measurement light emitted from the light projecting unit toward the measurement target space. And a second deflecting mirror that deflects and reflects reflected light from the object to be measured toward the light receiving unit, and the light receiving unit sandwiches the deflection mirror and the light projecting unit. It is in the point arrange | positioned in the position which opposes.

上述した構成によれば、第一偏向ミラーで測定対象空間に照射された測定光の一部が装置の光学窓から反射する迷光が発生する場合であっても、当該迷光が第二偏向ミラーに入射することが抑制されるので、迷光による誤検出を招くことが抑制され、装置の信頼性を向上することができる。   According to the configuration described above, even when stray light is generated in which part of the measurement light irradiated to the measurement target space by the first deflection mirror is reflected from the optical window of the apparatus, the stray light is transmitted to the second deflection mirror. Since the incidence is suppressed, it is possible to suppress erroneous detection due to stray light and to improve the reliability of the apparatus.

同第四の特徴構成は、同請求項4に記載した通り、上述の第一から第三の何れかに特徴構成に加えて、前記集光光学系は、反射光を合焦させる受光レンズと、前記受光レンズによる合焦位置から前記受光部に反射光を導く導光部材を備えている点にある。   In the fourth feature configuration, in addition to any one of the first to third feature configurations described above, the condensing optical system includes a light receiving lens that focuses reflected light. And a light guide member that guides reflected light from the in-focus position by the light receiving lens to the light receiving portion.

投光部から出射された測定光が軸心に対して所定角度傾斜した光軸に沿って偏向ミラーに入射するため、偏向ミラーで受光部に向けて偏向反射された当該測定光に対する反射光の光軸も軸心に対して傾斜する。そこで、受光レンズによる反射光の合焦位置から反射光を受光部に導く導光部材を備えることにより、受光部で適切に反射光を検出することができるようになる。   Since the measurement light emitted from the light projecting unit is incident on the deflection mirror along the optical axis inclined by a predetermined angle with respect to the axis, the reflected light with respect to the measurement light deflected and reflected toward the light receiving unit by the deflection mirror is reflected. The optical axis is also inclined with respect to the axis. Therefore, by providing a light guide member that guides the reflected light from the focus position of the reflected light by the light receiving lens to the light receiving unit, the reflected light can be appropriately detected by the light receiving unit.

尚、導光部材を備えることなく、軸心に対して傾斜した反射光を受光面積の大きな受光部で検出する場合には、反射光に対する受光部の応答性が低下して、精度の良い測距ができなくなるが、導光部材を備えることにより受光面積の狭い応答性に優れた受光素子を用いることができ、精度の高い測距が可能になる。   Note that when the reflected light inclined with respect to the axial center is detected by the light receiving unit having a large light receiving area without providing the light guide member, the response of the light receiving unit to the reflected light is lowered, and the measurement is performed with high accuracy. Although the distance cannot be obtained, a light receiving element having a narrow light receiving area and excellent response can be used by providing the light guide member, and highly accurate distance measurement is possible.

同第五の特徴構成は、同請求項5に記載した通り、上述の第一から第四の何れかの特徴構成に加えて、前記投光部は、前記投光部から出射される測定光の光軸が前記偏向ミラー上で前記軸心と交差するように配置されている点にある。   The fifth feature configuration is the measurement light emitted from the light projecting portion in addition to any of the first to fourth feature configurations described above, as described in claim 5. Are arranged so as to intersect the axis on the deflection mirror.

上述した構成によれば、軸心の周方向に沿って異なる位置から出射された夫々の測定光の走査面の中心が基準平面の中心点で交差し、且つ、互いに異なる角度で傾斜した平面上で走査されるようになるため、被測定物に対する角度を容易に算出できるようになる。   According to the above-described configuration, the center of the scanning surface of each measurement light emitted from different positions along the circumferential direction of the axis intersects at the center point of the reference plane and is on a plane inclined at different angles. Therefore, the angle with respect to the object to be measured can be easily calculated.

同第六の特徴構成は、同請求項6に記載した通り、上述の第一から第四の何れかの特徴構成に加えて、前記投光部は、前記投光部から出射される測定光の光軸が、前記偏向ミラー上で前記軸心が交差する点より手前側または奥側で交差するように配置されている点にある。   The sixth feature configuration is the measurement light emitted from the light projecting unit in addition to any of the first to fourth feature configurations described above, as described in claim 6. The optical axes are arranged on the deflection mirror so as to intersect on the near side or the far side with respect to the point where the axes intersect.

上述した構成によれば、リサージュ形状の上下方向の幅が縮小または拡大される。測定光の光軸が偏向ミラー上で軸心が交差する点より手前側で交差するように配置されると振れ幅が小さくなるが分解能が上がる。このような構成を採用すると、感度を高くするため大きな受光光学系を用いる場合であっても、装置をコンパクトに構成することができる。また、測定光の光軸が偏向ミラー上で軸心が交差する点より奥側で交差するように配置されると分解能は低下するが振れ幅が大きくなり検出範囲が広がる。   According to the configuration described above, the vertical width of the Lissajous shape is reduced or enlarged. If the optical axis of the measurement light is arranged on the deflection mirror so that it intersects in front of the point where the axes intersect, the fluctuation width decreases but the resolution increases. By adopting such a configuration, the apparatus can be configured compactly even when a large light receiving optical system is used to increase sensitivity. Further, if the optical axis of the measurement light is arranged on the deflection mirror so that it intersects behind the point where the axis intersects, the resolution is lowered but the fluctuation width is increased and the detection range is widened.

同第七の特徴構成は、同請求項7に記載した通り、上述の第一から第六の何れかの特徴構成に加えて、前記投光部が、前記軸心の周方向に沿って互いに異なる位置で複数配置され、前記駆動制御部は、前記偏向ミラーの一走査に同期して前記複数の投光部から何れか一つを選択して順次駆動する点にある。   In the seventh feature configuration, as described in claim 7, in addition to any of the first to sixth feature configurations described above, the light projecting portions may be arranged along the circumferential direction of the axis. A plurality of them are arranged at different positions, and the drive control unit selects one of the plurality of light projecting units in synchronization with one scanning of the deflection mirror and sequentially drives it.

駆動制御部により、偏向ミラーの一走査に同期して複数の投光部から何れか一つが駆動されることにより、他の投光部からの測定光を誤検出することなく、各投光部からの測定光に対して確実に被測定物を検出することができるようになる。   By driving one of the plurality of light projecting units in synchronization with one scanning of the deflecting mirror by the drive control unit, each light projecting unit without erroneously detecting measurement light from other light projecting units Thus, the object to be measured can be reliably detected with respect to the measurement light from the.

同第八の特徴構成は、同請求項8に記載した通り、上述の第一から第六の何れかの特徴構成に加えて、前記投光部が、前記軸心周りに回転する回転体に支持された単一の投光部で構成され、前記駆動制御部は、前記偏向ミラーの一走査に同期して前記回転体を所定角度回転駆動する点にある。   In the eighth feature configuration, in addition to any one of the first to sixth feature configurations described above, the light projecting unit may be a rotating body that rotates about the axis. The driving control unit is configured to rotate the rotating body by a predetermined angle in synchronization with one scanning of the deflection mirror.

上述の構成によれば、単一の投光部でありながら、投光部が軸心の周方向に沿って互いに異なる位置で複数配置される場合と同様の三次元測距が可能になり、高価な投光部の部品点数を少なくして、安価な三次元測距装置を構成することができる。   According to the above-described configuration, it is possible to perform the same three-dimensional distance measurement as in the case where a plurality of light projecting units are arranged at different positions along the circumferential direction of the axis while being a single light projecting unit. An inexpensive three-dimensional distance measuring device can be configured by reducing the number of parts of the expensive light projecting unit.

以上説明したように、本発明によれば、180度以上の走査角度を確保しながらも、小型で高精度な三次元測距装置を提供することができるようになった。   As described above, according to the present invention, it is possible to provide a small and highly accurate three-dimensional distance measuring device while ensuring a scanning angle of 180 degrees or more.

以下、本発明による三次元測距装置について説明する。
図1に示すように、三次元測距装置1は、周囲に一定の上下幅で円筒状の光学窓2aが配置された円筒状のケーシング2内に、ケーシング2の底面と平行な水平面である基準平面に対して45度の角度で傾斜配置された偏向ミラー8を、当該偏向ミラー9を通り基準平面に垂直な軸心P1周りに回転する走査機構4と、軸心P1から離隔した位置に配置され、軸心P1に対して所定角度θ傾斜した光軸L1に沿って測定光を出射する複数の投光部3と、各投光部3から出射され、偏向ミラー9で偏向反射された測定光のうち、被測定物からの反射光を集光する集光光学系6と、集光光学系6により集光された反射光を検出する単一の受光部5と、当該三次元測距装置1を駆動して被測定物に対する距離及び角度を算出する信号処理基板90を備えている。
Hereinafter, a three-dimensional distance measuring device according to the present invention will be described.
As shown in FIG. 1, the three-dimensional distance measuring device 1 is a horizontal plane parallel to the bottom surface of the casing 2 in a cylindrical casing 2 in which a cylindrical optical window 2 a having a constant vertical width is arranged around the circumference. The scanning mirror 4 that rotates the deflection mirror 8 inclined at an angle of 45 degrees with respect to the reference plane and rotates around the axis P1 passing through the deflection mirror 9 and perpendicular to the reference plane is positioned away from the axis P1. A plurality of light projecting units 3 that are arranged and emit measurement light along an optical axis L1 inclined by a predetermined angle θ with respect to the axis P1, and are emitted from each light projecting unit 3 and deflected and reflected by the deflecting mirror 9. Of the measurement light, the condensing optical system 6 that condenses the reflected light from the object to be measured, the single light receiving unit 5 that detects the reflected light collected by the condensing optical system 6, and the three-dimensional measurement. A signal processing board 90 for driving the distance device 1 to calculate the distance and angle with respect to the object to be measured. Eteiru.

偏向ミラー9は、投光部3から出射された測定光を測定対象空間に向けて偏向反射するとともに、被測定物からの反射光を受光部5に向けて偏向反射する。   The deflecting mirror 9 deflects and reflects the measurement light emitted from the light projecting unit 3 toward the measurement target space and deflects and reflects the reflected light from the object to be measured toward the light receiving unit 5.

集光光学系6及び受光部5が軸心P1上に配置されるとともに、複数の投光部3が受光部5の周囲に配置されている。   The condensing optical system 6 and the light receiving unit 5 are disposed on the axis P <b> 1, and the plurality of light projecting units 3 are disposed around the light receiving unit 5.

投光部3は、互いに異なる位置で複数配置されていればよく、ここでは、軸心P1の周方向に沿って等間隔に8個配置されている。各投光部3は、半導体レーザまたはLEDでなる光源31a〜38aと、各光源31a〜38aから出力された光線束を平行光に形成するレンズ31b〜38bで構成されている。   A plurality of light projecting units 3 may be arranged at different positions, and here, eight light projecting units 3 are arranged at equal intervals along the circumferential direction of the axis P1. Each light projecting unit 3 includes light sources 31a to 38a made of semiconductor lasers or LEDs, and lenses 31b to 38b that form light beams output from the light sources 31a to 38a into parallel light.

各投光部3は、各光源31a〜38aから出力された測定光の光軸L11〜L18が、軸心P1に対して角度θ傾斜するように配置され、且つ、測定光の光軸L11〜L18が偏向ミラー9上で軸心P1と交差するように配置されている。   Each light projecting unit 3 is arranged such that the optical axes L11 to L18 of the measurement light output from the respective light sources 31a to 38a are inclined at an angle θ with respect to the axis P1, and the optical axes L11 to L11 of the measurement light L18 is arranged on the deflection mirror 9 so as to intersect the axis P1.

走査機構4は、ケーシング2の底部で支持されたモータ11と、モータ11により軸心P1周りに回転駆動される支持部8と支持部8の傾斜上面に固定された偏向ミラー9で構成されている。   The scanning mechanism 4 includes a motor 11 supported at the bottom of the casing 2, a support portion 8 that is driven to rotate around the axis P <b> 1 by the motor 11, and a deflection mirror 9 that is fixed to the inclined upper surface of the support portion 8. Yes.

支持部8の周部には、周方向に複数の光学的スリットが形成されたスリット板15aが設置されるとともに、スリット板15aの回転経路上にフォトインタラプタ15bが配置され、これらにより走査機構4の回転走査角度を検出する走査角度検出部15が構成されている。   A slit plate 15a having a plurality of optical slits formed in the circumferential direction is installed on the peripheral portion of the support portion 8, and a photo interrupter 15b is disposed on the rotation path of the slit plate 15a. A scanning angle detector 15 for detecting the rotational scanning angle is configured.

走査機構4により偏向ミラー9が軸心P1周りに回転すると、各投光部3から出射された測定光が光学窓2aから測定対象空間に向けて照射される。例えば、光源31aから出射された測定光は偏向ミラー9により変更反射されて、光軸L11に沿って測定対象空間に向けて照射され、光源35aから出射された測定光は偏向ミラー9により変更反射されて、光軸L15に沿って測定対象空間に向けて照射される。   When the deflecting mirror 9 is rotated about the axis P1 by the scanning mechanism 4, the measurement light emitted from each light projecting unit 3 is emitted from the optical window 2a toward the measurement target space. For example, the measurement light emitted from the light source 31a is changed and reflected by the deflecting mirror 9 and irradiated toward the measurement target space along the optical axis L11, and the measuring light emitted from the light source 35a is changed and reflected by the deflecting mirror 9. Then, it is irradiated toward the measurement object space along the optical axis L15.

図5に示すように、信号処理基板90には、軸心P1の周方向に沿って互いに異なる位置から異なるタイミングで一つの測定光が出射されるように投光部3を駆動する駆動制御部93と、走査機構4により投光部3から測定対象空間に向けて走査された測定光に対する反射光の遅延時間から被測定物までの距離を算出するとともに、走査機構4から出射される測定光の走査角度から被測定物の角度を算出する距離算出部95を備えている。   As shown in FIG. 5, the signal processing board 90 has a drive control unit that drives the light projecting unit 3 so that one measurement beam is emitted from different positions along the circumferential direction of the axis P1 at different timings. 93 and the measurement light emitted from the scanning mechanism 4 while calculating the distance from the delay time of the reflected light to the measurement light scanned from the light projecting unit 3 toward the measurement target space by the scanning mechanism 4. A distance calculation unit 95 is provided for calculating the angle of the object to be measured from the scanning angle.

駆動制御部93は、走査角度検出部15から入力されるパルス信号に基づいて走査機構4の一周期、つまり、軸心P1周りに偏向ミラー9が位置回転する度に、各光源31a〜38aの何れか一つを点灯駆動する。   Based on the pulse signal input from the scanning angle detection unit 15, the drive control unit 93 rotates the position of each of the light sources 31a to 38a every time the deflection mirror 9 rotates around one axis of the scanning mechanism 4, that is, around the axis P1. Either one is lit.

具体的には、図2(a)に示すように、最初の一周期で光源31aを駆動し、次の一周期で光源32aを駆動し、その後一周期単位で光源33aから38aを時計周りに順次駆動する。   Specifically, as shown in FIG. 2A, the light source 31a is driven in the first cycle, the light source 32a is driven in the next cycle, and then the light sources 33a to 38a are rotated clockwise in the cycle unit. Drive sequentially.

駆動制御部93により各投光部3に出力される駆動信号が、各光源31a〜38aを夫々駆動する駆動回路31c〜38cに入力され、駆動回路31c〜38cは光源31a〜38aを正弦波でAM変調し、或は、所定周波数でパルス駆動する。尚、AM変調する場合には、(数1)により被測定物までの距離が算出され、パルス駆動する場合には、(数2)により被測定物までの距離が算出される。本実施形態では、後者が採用されている。
(数1) L=Δφ・C/(4π・f)
(数2) L=Δt・C/2
The drive signals output to the light projecting units 3 by the drive control unit 93 are input to the drive circuits 31c to 38c that drive the light sources 31a to 38a, respectively. The drive circuits 31c to 38c drive the light sources 31a to 38a in sine waves. AM modulation or pulse driving at a predetermined frequency. In the case of AM modulation, the distance to the object to be measured is calculated by (Equation 1), and in the case of pulse driving, the distance to the object to be measured is calculated by (Equation 2). In the present embodiment, the latter is adopted.
(Equation 1) L = Δφ · C / (4π · f)
(Expression 2) L = Δt · C / 2

例えば、図1及び図4(a)に示すように、光源31aから出射された測定光が軸心P1に対して所定角度θ傾斜した光軸L11に沿って偏向ミラー9に入射するため、走査機構4により回転する偏向ミラー9で偏向反射された測定光が、基準平面PLに対して傾斜した平面PL11上で走査されるようになる。   For example, as shown in FIGS. 1 and 4A, the measurement light emitted from the light source 31a is incident on the deflecting mirror 9 along the optical axis L11 inclined by a predetermined angle θ with respect to the axis P1, so that scanning is performed. The measurement light deflected and reflected by the deflecting mirror 9 rotated by the mechanism 4 is scanned on the plane PL11 inclined with respect to the reference plane PL.

また、光源35aから出射された測定光が軸心P1に対して所定角度θ傾斜した光軸L15に沿って偏向ミラー9に入射するため、走査機構4により回転する偏向ミラー9で偏向反射された測定光が、基準平面PLに対して傾斜した平面PL15上で走査されるようになる。   Further, since the measurement light emitted from the light source 35a enters the deflection mirror 9 along the optical axis L15 inclined by a predetermined angle θ with respect to the axis P1, it is deflected and reflected by the deflection mirror 9 rotated by the scanning mechanism 4. The measurement light is scanned on the plane PL15 inclined with respect to the reference plane PL.

偏向ミラー9がある走査角度に位置するときに、測定対象空間に向けて偏向反射される測定光と基準平面との傾斜角度が幾何学的に算出できるため、測定光に対する被測定物からの反射光に基づいて距離を算出すれば、被測定物に対する角度と距離が求まる。   When the deflection mirror 9 is positioned at a certain scanning angle, the inclination angle between the measurement light deflected and reflected toward the measurement object space and the reference plane can be calculated geometrically, so that the measurement light is reflected from the object to be measured. If the distance is calculated based on the light, the angle and distance to the object to be measured can be obtained.

そして、駆動制御部93により、軸心P1の周方向に沿って互いに異なる位置から異なるタイミングで一つの測定光が出射されるように投光部3が駆動されることにより、軸心P1の周方向に沿って異なる位置から出射された夫々の測定光の走査面は、基準平面PLに対して傾斜し、且つ、互いに異なる角度で傾斜した平面上で走査されるようになる。図4(a)には光源31aと光源35aから出射された夫々の測定光の走査面PL11,PL35が示されている。   Then, the light projecting unit 3 is driven by the drive control unit 93 so that one measurement light is emitted from different positions along the circumferential direction of the axis P1 at different timings, so that the circumference of the axis P1 is increased. The scanning planes of the respective measurement beams emitted from different positions along the direction are scanned on planes that are inclined with respect to the reference plane PL and inclined at different angles. FIG. 4A shows the scanning planes PL11 and PL35 of the measurement light emitted from the light source 31a and the light source 35a.

図4(a),(b)に示すように、例えば、各投光部から出射された測定光が偏向ミラー9上で軸心P1と交差するように照射される場合に、測定光の光軸Lと軸心Pとのなす角度をθとすると、軸心P1を中心とする半径Lの仮想円筒20の周面に照射される各測定光の軌跡は、±L・tanθの振れ幅のリサージュ形状を描くようになる。本実施形態では、投光部3が軸心P1の周りに等間隔で8個設置されているので、隣接する軌跡の位相は45度ずれるようになる。   As shown in FIGS. 4A and 4B, for example, when the measurement light emitted from each light projecting unit is irradiated on the deflection mirror 9 so as to intersect the axis P1, the light of the measurement light Assuming that the angle formed between the axis L and the axis P is θ, the trajectory of each measurement light irradiated on the peripheral surface of the virtual cylinder 20 having the radius L centered on the axis P1 has a fluctuation width of ± L · tan θ. Draw a Lissajous shape. In the present embodiment, since eight light projecting units 3 are installed at equal intervals around the axis P1, the phases of adjacent trajectories are shifted by 45 degrees.

各測定光に対する被測定物からの反射光に基づいて距離を算出すれば、測定対象空間に存在する被測定物に対する三次元的な距離を算出することができる。   If the distance is calculated based on the reflected light from the measurement object with respect to each measurement light, the three-dimensional distance to the measurement object existing in the measurement target space can be calculated.

図3に示すように、集光光学系6は、反射光を合焦させる受光レンズ6aと、受光レンズ6aによる合焦位置から受光部5に反射光を導く導光部材6bを備えている。   As shown in FIG. 3, the condensing optical system 6 includes a light receiving lens 6a for focusing the reflected light, and a light guide member 6b for guiding the reflected light from the focus position by the light receiving lens 6a to the light receiving unit 5.

導光部材6bは、φ1mm程度の受光部5の受光窓に、受光レンズ6aにより合焦された反射光を導く逆円錐状のコーンプリズムまたは光ファイバアレイで構成することができる。光ファイバアレイは、円筒状の端部領域に先端側が配列され、基端側に他端側が配列された複数本の光ファイバでなり、先端側から基端側にかけて次第に径が絞り込まれるように形成されている。   The light guide member 6b can be formed of an inverted cone cone prism or an optical fiber array that guides the reflected light focused by the light receiving lens 6a to the light receiving window of the light receiving unit 5 having a diameter of about 1 mm. The optical fiber array is made up of a plurality of optical fibers having a distal end side arranged in a cylindrical end region and the other end side arranged in a proximal end side, and the diameter is gradually narrowed from the distal end side to the proximal end side. Has been.

光源から出射された測定光に対応する被測定物からの反射光が、受光レンズ6aによって合焦されると、導光部材6bの端部表面上に光像Iが形成される。導光部材6bにより光像Iを形成する光が受光部5に導かれることにより、感度良く反射光が検出される。   When the reflected light from the object to be measured corresponding to the measurement light emitted from the light source is focused by the light receiving lens 6a, a light image I is formed on the end surface of the light guide member 6b. The light that forms the optical image I is guided to the light receiving unit 5 by the light guide member 6b, so that the reflected light is detected with high sensitivity.

図2(a),(b)に示すように、夫々の光源31a〜38aから出射された測定光に対する反射光が、受光レンズ6aによって合焦されると、導光部材6bの端部表面上に光像I31〜I38が形成される。各光像I31〜I38を形成する光が受光部5に導かれるのである。   As shown in FIGS. 2A and 2B, when the reflected light with respect to the measurement light emitted from the respective light sources 31a to 38a is focused by the light receiving lens 6a, the surface of the end portion of the light guide member 6b is The optical images I31 to I38 are formed. The light forming each of the optical images I31 to I38 is guided to the light receiving unit 5.

図5に示すように、信号処理基板90には、走査機構4に組み込まれたモータ11を駆動するモータ制御回路94と、光源である発光素子31a〜38aを夫々パルス駆動する駆動回路31c〜38cと、受光部5に備えたアバランシェフォトダイオード等の受光素子5aで光電変換された反射光に対応する反射信号を増幅する増幅回路5cと、走査角度検出部15から入力されるパルス信号に基づいて一走査周期毎に切り替えて駆動回路31c〜38cの何れかを駆動する駆動制御部93と、反射信号をAD変換するAD変換部91と、各駆動回路31c〜38cに対する駆動信号の立ち上がりから反射信号の立ち上がりまでの遅延時間を算出する遅延時間算出部92と、遅延時間に基づいて被測定物までの距離を算出するとともに、走査機構4から出射される測定光の走査角度から被測定物の角度を算出する距離算出部として機能するシステム制御部95を備えている。   As shown in FIG. 5, on the signal processing board 90, a motor control circuit 94 for driving the motor 11 incorporated in the scanning mechanism 4 and drive circuits 31c to 38c for driving the light emitting elements 31a to 38a as light sources respectively. And an amplification circuit 5c that amplifies a reflected signal corresponding to reflected light photoelectrically converted by a light receiving element 5a such as an avalanche photodiode provided in the light receiving unit 5, and a pulse signal input from the scanning angle detecting unit 15. A drive control unit 93 that drives one of the drive circuits 31c to 38c by switching every scanning cycle, an AD conversion unit 91 that AD converts the reflection signal, and a reflection signal from the rise of the drive signal for each of the drive circuits 31c to 38c A delay time calculation unit 92 for calculating a delay time until the rising edge of the signal, a distance to the object to be measured based on the delay time, and scanning And a system control unit 95 which functions as a distance calculation unit that calculates an angle of the measurement object from the scan angle of the measurement light emitted from the structure 4.

システム制御部95には、マイクロコンピュータが組み込まれている。電源が投入されると、システム制御部95はモータ制御回路94を介して走査機構4を駆動して回転走査させ、モータが立ち上がると、走査角度検出部51から入力されるパルス信号に基づいて走査機構4が一回転する度に、順次駆動回路31c〜38cを駆動する。   The system control unit 95 incorporates a microcomputer. When the power is turned on, the system control unit 95 drives the scanning mechanism 4 via the motor control circuit 94 to rotate and scan, and when the motor starts up, scanning is performed based on the pulse signal input from the scanning angle detection unit 51. Each time the mechanism 4 makes one revolution, the drive circuits 31c to 38c are sequentially driven.

走査角度検出部15を構成するスリット板15aのスリット間隔が予め設定された回転体の基準位置で他と異なる間隔になるように形成されており、システム制御部95は、パルス信号の波形に基づいて基準位置を把握して、基準位置からのパルス数をカウントすることにより基準位置からの走査機構4の回転角度を算出する。   The slit interval of the slit plate 15a constituting the scanning angle detector 15 is formed so as to be different from the others at a preset reference position of the rotating body, and the system controller 95 is based on the waveform of the pulse signal. The rotation angle of the scanning mechanism 4 from the reference position is calculated by grasping the reference position and counting the number of pulses from the reference position.

システム制御部95は、遅延時間算出部92から入力される遅延時間に基づいて、走査機構4の回転角度に対応する被測定物までの距離を算出するとともに、そのときの走査機構4の回転角度と、投光部3の配置、つまり測定光が出射された投光部と回転角度の相対角度及び投光部の光軸Lと軸心P1の角度から、基準平面に対する測定光の傾斜角度を算出して、測定対象物が位置する三次元の方向と距離を得る。   The system control unit 95 calculates the distance to the measurement object corresponding to the rotation angle of the scanning mechanism 4 based on the delay time input from the delay time calculation unit 92, and the rotation angle of the scanning mechanism 4 at that time Then, the inclination angle of the measurement light with respect to the reference plane is determined from the arrangement of the light projecting unit 3, that is, the relative angle between the light projecting unit from which the measurement light is emitted and the rotation angle and the angle between the optical axis L and the axis P1 of the light projecting unit. The three-dimensional direction and distance where the measurement object is located are obtained by calculation.

以上、TOF方式の三次元測距装置について説明したが、AM方式の三次元測距装置であっても、測定対象物が位置する三次元の方向を検出するメカニズムは同様である。AM方式の場合には、遅延時間算出部92に替えて、測定光と反射光の位相差を求める位相差算出部を備えれることになる。   Although the TOF type three-dimensional distance measuring device has been described above, the mechanism for detecting the three-dimensional direction in which the measurement object is located is the same even in the AM type three-dimensional distance measuring device. In the case of the AM method, in place of the delay time calculation unit 92, a phase difference calculation unit for obtaining the phase difference between the measurement light and the reflected light is provided.

以下、本発明の別実施形態を説明する。
上述の実施形態では、軸心P1の周りに等間隔で8個の投光部3を配置した例を説明したが、投光部3の数は8個に制限されるものでは無く任の数の投光部を配置してもよい。また、各投光部が等間隔に配置されるものに制限されるものでもない。
Hereinafter, another embodiment of the present invention will be described.
In the above-described embodiment, the example in which the eight light projecting units 3 are arranged at equal intervals around the axis P1 has been described. However, the number of the light projecting units 3 is not limited to eight, but is an arbitrary number. May be arranged. Moreover, it does not restrict | limit to what each light projection part is arrange | positioned at equal intervals.

更に各投光部から出射された測定光の光軸Lと軸心P1との成す角度が全て同一である場合を説明したが、夫々異なる角度となるように配置されるものであってもよい。投光部から出射された測定光の光軸Lと軸心P1との成す角度が大きくなると光軸P1に沿った方向の分解能が低くなるが、検出範囲が広くなり、当該角度が小さくなると光軸P1に沿った方向の検出範囲が狭くなるが、分解能が上がる。   Furthermore, although the case where the angles formed by the optical axis L and the axis P1 of the measurement light emitted from each light projecting unit are all the same has been described, they may be arranged to have different angles. . When the angle formed by the optical axis L of the measurement light emitted from the light projecting unit and the axis P1 increases, the resolution in the direction along the optical axis P1 decreases. However, the detection range increases, and light decreases when the angle decreases. The detection range in the direction along the axis P1 is narrowed, but the resolution is increased.

例えば、八個の投光部3が、図2のように、軸心P1周りに配列されているときに、奇数番目の投光部3の光軸と軸心P1との成す角度θ1と、偶数番目の投光部3の光軸と軸心P1との成す角度θ2を、θ1>θ2として、奇数番目の投光部3を用いて計測するか、偶数番目の投光部3を用いて計測するかを切り替えるスイッチを備え、高分解能を重視する計測と、広い検出範囲を重視する計測の何れかを切り替えるように構成してもよい。更に、当該切替スイッチにより、全ての投光部を用いて広範囲且つ高分解能な計測を行なうように切り替えることも可能である。   For example, when the eight light projecting units 3 are arranged around the axis P1, as shown in FIG. 2, the angle θ1 formed by the optical axis of the odd-numbered light projecting unit 3 and the axis P1, and The angle θ2 formed by the optical axis of the even-numbered light projecting unit 3 and the axis P1 is measured using the odd-numbered light projecting unit 3 as θ1> θ2, or the even-numbered light projecting unit 3 is used. A switch for switching whether or not to measure may be provided, and the measurement may be switched between measurement that places importance on high resolution and measurement that places importance on a wide detection range. Furthermore, it is also possible to switch so as to perform wide-range and high-resolution measurement using all the light projecting units by the changeover switch.

また、各投光部3の光軸と軸心P1との成す角度θを切り替える姿勢切替機構を備えて、高分解能を重視する計測と、広い検出範囲を重視する計測の何れかを切り替えるように構成してもよい。   In addition, a posture switching mechanism for switching the angle θ formed between the optical axis of each light projecting unit 3 and the axis P1 is provided so as to switch between measurement focusing on high resolution and measurement focusing on a wide detection range. It may be configured.

例えば、軸心P1と光軸Lを含む平面上で投光部が揺動可能となるように、投光部をケーシングの上部に支持し、角度θが小さくなる方向にバネ付勢するとともに、角度θが大きくなる方向に押圧するカム部材を備えた姿勢切替機構を備え、当該カム部材を駆動することにより投光部から出射される測定光の光軸の角度を切り替えるように構成することができる。   For example, the light projecting unit is supported on the upper part of the casing so that the light projecting unit can swing on a plane including the axis P1 and the optical axis L, and the spring is biased in a direction in which the angle θ decreases. An attitude switching mechanism including a cam member that presses in the direction in which the angle θ increases is configured to switch the angle of the optical axis of the measurement light emitted from the light projecting unit by driving the cam member. it can.

また、投光部をケーシングの上部に固定し、投光部から出射される測定光の光路上に、光軸を切り替える偏向ミラーやプリズム等の光学部材を位置変更可能に配置して、当該光学部材の位置を変更するアクチュエータを備えてもよい。   In addition, the light projecting unit is fixed to the upper part of the casing, and an optical member such as a deflecting mirror or a prism for switching the optical axis is disposed on the optical path of the measurement light emitted from the light projecting unit so that the position of the optical member can be changed. An actuator for changing the position of the member may be provided.

駆動制御部93が、走査機構4の一回転に同期して、駆動する投光部を順次切り替える場合を説明したが、投光部の切替タイミングを走査機構4の二回転に同期させてもよく、一回転中に任意のタイミングで切り替えてもよい。つまり、駆動制御部93が、軸心の周方向に沿って互いに異なる位置から異なるタイミングで一つの測定光が出射されるように投光部を駆動するものであればよい。   Although the case where the drive control unit 93 sequentially switches the light projecting units to be driven in synchronization with one rotation of the scanning mechanism 4 has been described, the switching timing of the light projecting units may be synchronized with two rotations of the scanning mechanism 4. It may be switched at an arbitrary timing during one rotation. That is, the drive control unit 93 only needs to drive the light projecting unit so that one measurement light is emitted from different positions along the circumferential direction of the axis at different timings.

さらに、投光部が、軸心周りに回転する回転体に支持された単一の投光部で構成され、駆動制御部が、偏向ミラーの一走査に同期して前記回転体を所定角度回転駆動するように構成してもよい。   Further, the light projecting unit is composed of a single light projecting unit supported by a rotating body that rotates around the axis, and the drive control unit rotates the rotating body by a predetermined angle in synchronization with one scanning of the deflection mirror. You may comprise so that it may drive.

具体的には、図6に示すように、測定光の光軸Lが軸心P1と角度θで傾斜するように、単一の投光部3を回転部材12に固定し、当該回転部材12をモータ13により回転可能に構成するのである。   Specifically, as shown in FIG. 6, the single light projecting unit 3 is fixed to the rotating member 12 such that the optical axis L of the measuring light is inclined with respect to the axis P <b> 1 by the angle θ, and the rotating member 12. The motor 13 is configured to be rotatable.

この場合、駆動制御部93により、軸心P1の周方向に沿って互いに異なる位置から異なるタイミングで一つの測定光が出射されるように、モータ13が回転駆動され、投光部が駆動される。   In this case, the motor 13 is rotationally driven by the drive control unit 93 so that one measurement light is emitted from different positions along the circumferential direction of the axis P1 at different timings, and the light projecting unit is driven. .

尚、基準平面に対する測定光の角度を算出するためには、モータ13により軸心P1周りに回転する投光部3の回転位置を検出する位置検出機構を備える必要があることはいうまでもない。   Needless to say, in order to calculate the angle of the measurement light with respect to the reference plane, it is necessary to provide a position detection mechanism that detects the rotational position of the light projecting unit 3 that rotates about the axis P1 by the motor 13. .

モータ13が停止した状態で投光部3が駆動されるように構成してもよいし、モータ13を駆動しながら投光部3を同時に駆動してもよい。投光部3を軸心P1周りの任意の位置に配置できるため、細かいピッチでリサージュ形状が描かれるようになり、より高精度な計測が可能となる。   The projector 3 may be configured to be driven while the motor 13 is stopped, or the projector 3 may be driven simultaneously while the motor 13 is being driven. Since the light projecting unit 3 can be arranged at an arbitrary position around the axis P1, the Lissajous shape is drawn with a fine pitch, and more accurate measurement is possible.

また、図6で、軸心P1を挟んで、回転部材12に二つの投光部を、各投光部の光軸と軸心P1との成す角度θが異なるように配置してもよい。例えば、夫々の投光部の何れを用いるかを切り替えるスイッチを備えることにより、高分解能を重視する計測と、広い検出範囲を重視する計測の何れかを切り替えることができる。   In FIG. 6, the two light projecting portions may be arranged on the rotating member 12 with the axis P <b> 1 interposed therebetween so that the angle θ between the optical axis of each light projecting portion and the shaft center P <b> 1 is different. For example, by providing a switch for switching which of the respective light projecting units is used, it is possible to switch between measurement that places importance on high resolution and measurement that places importance on a wide detection range.

上述した実施形態では、投光部3が、投光部3から出射される測定光の光軸Lが偏向ミラー9上で軸心P1と交差するように配置された構成を説明したが、図7に示すように、投光部3から出射される測定光の光軸Lと光軸P1との成す角度θを一定に保ち、投光部3が、投光部3から出射される測定光の光軸Lが、偏向ミラー9上で軸心P1が交差する点より手前側または奥側で交差するように配置するものであってもよい。このような構成によれば、図4(b)で説明したリサージュ形状の上下方向の幅が縮小または拡大される。   In the above-described embodiment, the configuration in which the light projecting unit 3 is arranged so that the optical axis L of the measurement light emitted from the light projecting unit 3 intersects the axis P1 on the deflection mirror 9 has been described. 7, the angle θ formed by the optical axis L of the measurement light emitted from the light projecting unit 3 and the optical axis P <b> 1 is kept constant, and the light projecting unit 3 emits the measurement light emitted from the light projecting unit 3. These optical axes L may be arranged so as to intersect on the near side or the far side from the point where the axis P1 intersects on the deflection mirror 9. According to such a configuration, the vertical width of the Lissajous shape described with reference to FIG. 4B is reduced or enlarged.

投光部3から出射される測定光の光軸Lが偏向ミラー9上で軸心P1と交差する場合には、光軸Lの軌跡が図8(a)に示すような傾斜平面PL10上を回転するが、測定光の光軸Lが偏向ミラー9上で軸心が交差する点より手前側で交差するように配置されると、光軸Lの軌跡が図8(b)に示すような傾斜平面PL10上を回転するため、軸心P1方向の振れ幅が小さくなるが、分解能が上がる。このような構成を採用すると、感度を高くするため大きな受光光学系を用いる場合であっても、装置をコンパクトに構成することができる。   When the optical axis L of the measurement light emitted from the light projecting unit 3 intersects the axis P1 on the deflection mirror 9, the locus of the optical axis L is on the inclined plane PL10 as shown in FIG. If the optical axis L of the measurement light is arranged on the deflection mirror 9 so as to intersect with the front side of the point where the axes intersect, the locus of the optical axis L is as shown in FIG. Since it rotates on the inclined plane PL10, the deflection width in the direction of the axis P1 decreases, but the resolution increases. By adopting such a configuration, the apparatus can be configured compactly even when a large light receiving optical system is used to increase sensitivity.

また、測定光の光軸が偏向ミラー上で軸心が交差する点より奥側で交差するように配置されると、光軸Lの軌跡が図8(a)に示すような傾斜平面PL10上を回転するため、分解能は低下するが軸心P1方向の振れ幅が大きくなり検出範囲が広がる。   Further, when the optical axis of the measurement light is arranged on the deflection mirror so that it intersects behind the point where the axes intersect, the locus of the optical axis L is on the inclined plane PL10 as shown in FIG. However, although the resolution is reduced, the amplitude in the direction of the axis P1 is increased and the detection range is expanded.

さらに、図9に示すように、偏向ミラー9を、投光部3から出射された測定光を測定対象空間に向けて偏向反射する第一偏向ミラー9aと、被測定物からの反射光を受光部5に向けて偏向反射する第二偏向ミラー9bで構成し、当該偏向ミラー9を組み込んだ回転体4aを、軸心P1周りに回転駆動するモータ11を備え、受光部5が偏向ミラー9を挟んで投光部3と対向する位置に配置されるように、三次元測距装置1を構成してもよい。   Further, as shown in FIG. 9, the deflection mirror 9 receives the reflected light from the object to be measured and the first deflection mirror 9a that deflects and reflects the measurement light emitted from the light projecting unit 3 toward the measurement target space. It comprises a second deflection mirror 9b that deflects and reflects toward the section 5, and includes a motor 11 that rotationally drives a rotating body 4a incorporating the deflection mirror 9 about the axis P1. The three-dimensional distance measuring device 1 may be configured so as to be disposed at a position facing the light projecting unit 3 with being sandwiched.

上述した構成によれば、第一偏向ミラー9aで測定対象空間に照射された測定光の一部が装置1の光学窓2aから反射するような迷光が発生する場合であっても、当該迷光が第二偏向ミラー9bに入射することが抑制されるので、迷光による誤検出を招くことが抑制され、装置の信頼性を向上することができる。   According to the above-described configuration, even when stray light is generated such that part of the measurement light irradiated to the measurement target space by the first deflection mirror 9a is reflected from the optical window 2a of the apparatus 1, the stray light is Since the incident on the second deflecting mirror 9b is suppressed, it is possible to suppress erroneous detection due to stray light and to improve the reliability of the apparatus.

さらに、本発明による三次元測距装置は、上述した各実施形態を本発明と矛盾しない範囲で適宜組み合わせて構成することも可能である。   Furthermore, the three-dimensional distance measuring device according to the present invention can be configured by appropriately combining the above-described embodiments within a range not inconsistent with the present invention.

上述した何れの実施形態も、本発明の一実施例であり、三次元測距装置の各部の形状、構成、使用材料、信号処理のための回路構成等の具体的な構成は、本発明による作用効果を奏する範囲において適宜変更設計できることはいうまでもない。   Any of the above-described embodiments is an example of the present invention, and the specific configuration of each part of the three-dimensional distance measuring device, such as the shape, configuration, material used, and circuit configuration for signal processing, is according to the present invention. Needless to say, the design can be changed as appropriate within the range where the effects are exhibited.

本発明による三次元測距装置の概略説明図Schematic explanatory diagram of a three-dimensional distance measuring device according to the present invention. 本発明による三次元測距装置の要部の説明図Explanatory drawing of the principal part of the three-dimensional distance measuring device according to the present invention 本発明による三次元測距装置の要部の説明図Explanatory drawing of the principal part of the three-dimensional distance measuring device according to the present invention (a)は測定光の軌跡の説明図、(b)は各測定光の軌跡が作り出すリサージュ形状の説明図(A) is explanatory drawing of the locus | trajectory of measuring light, (b) is explanatory drawing of the Lissajous shape which the locus | trajectory of each measuring light produces 本発明による三次元測距装置の信号処理回路のブロック構成図Block diagram of a signal processing circuit of a three-dimensional distance measuring device according to the present invention. 本発明の別実施形態を示す三次元測距装置の概略説明図Schematic explanatory diagram of a three-dimensional distance measuring device showing another embodiment of the present invention 本発明の別実施形態を示す三次元測距装置の概略説明図Schematic explanatory diagram of a three-dimensional distance measuring device showing another embodiment of the present invention 投光部から出射された測定光の光軸が偏向ミラーに入射する位置により、走査される測定光の平面の傾斜角度が異なる様子を示し、(a)は測定光が光軸上に入射するときの説明図、(b)は測定光が光軸の手前で入射するときの説明図、(c)は測定光が光軸の奥側に入射するときの説明図The state in which the tilt angle of the plane of the measurement light to be scanned differs depending on the position at which the optical axis of the measurement light emitted from the light projecting unit is incident on the deflection mirror, and (a) shows the measurement light incident on the optical axis. (B) is an explanatory diagram when measurement light is incident before the optical axis, and (c) is an explanatory diagram when measurement light is incident on the back side of the optical axis. 本発明の別実施形態を示す三次元測距装置の概略説明図Schematic explanatory diagram of a three-dimensional distance measuring device showing another embodiment of the present invention (a)はAM方式の測距装置の原理説明図、(b)はTOF方式の測距装置の原理説明図(A) is a principle explanatory diagram of an AM type distance measuring device, (b) is a principle explanatory diagram of a TOF type distance measuring device. 従来の二次元測距装置の説明図Illustration of a conventional two-dimensional distance measuring device 従来の三次元測距装置の説明図Explanatory drawing of a conventional three-dimensional distance measuring device 従来の三次元測距装置の説明図Explanatory drawing of a conventional three-dimensional distance measuring device

符号の説明Explanation of symbols

1:三次元測距装置
2:ケーシング
2a:光学窓
3:投光部
31a〜38a:光源(発光素子)
4:走査機構
5:受光部
6:集光光学系
6a:受光レンズ
6b:導光部材
9:偏向ミラー
11:モータ
L,L11,L2:光軸
P1:軸心
1: three-dimensional distance measuring device 2: casing 2a: optical window 3: projectors 31a to 38a: light source (light emitting element)
4: Scanning mechanism 5: Light receiving unit 6: Condensing optical system 6a: Light receiving lens 6b: Light guide member 9: Deflection mirror 11: Motors L, L11, L2: Optical axis P1: Axis center

Claims (8)

基準平面に対して傾斜配置された偏向ミラーを、前記偏向ミラーを通り前記基準平面に垂直な軸心周りに回転する走査機構と、前記軸心から離隔した位置に配置され前記軸心に対して所定角度傾斜した光軸に沿って測定光を出射する投光部と、前記投光部から出射され前記偏向ミラーで偏向反射された測定光のうち、被測定物からの反射光を集光する集光光学系と、前記集光光学系により集光された反射光を検出する単一の受光部と、前記軸心の周方向に沿って互いに異なる位置から異なるタイミングで一つの測定光が出射されるように前記投光部を駆動する駆動制御部と、前記走査機構により前記投光部から測定対象空間に向けて走査された測定光に対する反射光の遅延時間または位相差から前記被測定物までの距離を算出するとともに、前記走査機構から出射される測定光の走査角度から前記被測定物の角度を算出する距離算出部を備えている三次元測距装置。   A scanning mechanism that rotates the deflection mirror that is inclined with respect to a reference plane around an axis that passes through the deflection mirror and is perpendicular to the reference plane; and a position that is spaced from the axis and that is disposed with respect to the axis Of the measuring light emitted from the light projecting unit and deflected and reflected by the deflection mirror, the reflected light from the object to be measured is collected from the light projecting unit that emits the measuring light along an optical axis inclined at a predetermined angle. A condensing optical system, a single light receiving unit for detecting reflected light collected by the condensing optical system, and a single measurement light emitted from different positions along the circumferential direction of the axis at different timings The measured object from the delay time or the phase difference of the reflected light with respect to the measurement light scanned from the light projecting unit toward the measurement target space by the scanning mechanism. And calculate the distance to Serial to have three-dimensional distance measuring apparatus comprising a distance calculation unit that calculates an angle of the object to be measured from a scanning angle of the measurement light emitted from the scanning mechanism. 前記偏向ミラーが、前記投光部から出射された測定光を測定対象空間に向けて偏向反射するとともに、前記被測定物からの反射光を前記受光部に向けて偏向反射する単一の偏向ミラーで構成され、前記集光光学系及び前記受光部が前記軸心上に配置されるとともに、前記複数の投光部が前記受光部の周囲に配置されている請求項1記載の三次元測距装置。   The deflecting mirror deflects and reflects the measurement light emitted from the light projecting unit toward the measurement target space, and deflects and reflects the reflected light from the object to be measured toward the light receiving unit. The three-dimensional distance measuring device according to claim 1, wherein the condensing optical system and the light receiving unit are arranged on the axis, and the plurality of light projecting units are arranged around the light receiving unit. apparatus. 前記偏向ミラーが前記投光部から出射された測定光を測定対象空間に向けて偏向反射する第一偏向ミラーと、前記被測定物からの反射光を前記受光部に向けて偏向反射する第二偏向ミラーとを備えて構成され、前記受光部が前記偏向ミラーを挟んで前記投光部と対向する位置に配置されている請求項1記載の三次元測距装置。   A first deflection mirror that deflects and reflects the measurement light emitted from the light projecting unit toward the measurement target space, and a second that deflects and reflects the reflected light from the object to be measured toward the light receiving unit. The three-dimensional distance measuring device according to claim 1, further comprising a deflection mirror, wherein the light receiving unit is disposed at a position facing the light projecting unit across the deflection mirror. 前記集光光学系は、反射光を合焦させる受光レンズと、前記受光レンズによる合焦位置から前記受光部に反射光を導く導光部材を備えている請求項1から3の何れかに記載の三次元測距装置。   The said condensing optical system is provided with the light-receiving lens which focuses reflected light, and the light guide member which guides reflected light to the said light-receiving part from the focus position by the said light-receiving lens. 3D ranging device. 前記投光部は、前記投光部から出射される測定光の光軸が前記偏向ミラー上で前記軸心と交差するように配置されている請求項1から4の何れかに記載の三次元測距装置。   5. The three-dimensional image according to claim 1, wherein the light projecting unit is arranged such that an optical axis of measurement light emitted from the light projecting unit intersects the axis on the deflection mirror. Distance measuring device. 前記投光部は、前記投光部から出射される測定光の光軸が、前記偏向ミラー上で前記軸心が交差する点より手前側または奥側で交差するように配置されている請求項1から4の何れかに記載の三次元測距装置。   The light projecting unit is disposed so that the optical axes of measurement light emitted from the light projecting unit intersect on the near side or the far side of the deflection mirror from the point where the axis intersects. The three-dimensional distance measuring device according to any one of 1 to 4. 前記投光部が、前記軸心の周方向に沿って互いに異なる位置で複数配置され、前記駆動制御部は、前記偏向ミラーの一走査に同期して前記複数の投光部から何れか一つを選択して順次駆動する請求項1から6の何れかに記載の三次元測距装置。   A plurality of the light projecting units are arranged at different positions along the circumferential direction of the axis, and the drive control unit is one of the plurality of light projecting units in synchronization with one scan of the deflection mirror. The three-dimensional distance measuring device according to any one of claims 1 to 6, wherein the three-dimensional distance measuring device is selected and sequentially driven. 前記投光部が、前記軸心周りに回転する回転体に支持された単一の投光部で構成され、前記駆動制御部は、前記偏向ミラーの一走査に同期して前記回転体を所定角度回転駆動する請求項1から6の何れかに記載の三次元測距装置。   The light projecting unit includes a single light projecting unit supported by a rotating body that rotates about the axis, and the drive control unit is configured to predetermine the rotating body in synchronization with one scanning of the deflection mirror. The three-dimensional distance measuring device according to any one of claims 1 to 6, wherein the three-dimensional distance measuring device is angularly driven.
JP2008084854A 2008-03-27 2008-03-27 Three dimensional ranging device Withdrawn JP2009236774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008084854A JP2009236774A (en) 2008-03-27 2008-03-27 Three dimensional ranging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008084854A JP2009236774A (en) 2008-03-27 2008-03-27 Three dimensional ranging device

Publications (1)

Publication Number Publication Date
JP2009236774A true JP2009236774A (en) 2009-10-15

Family

ID=41250902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008084854A Withdrawn JP2009236774A (en) 2008-03-27 2008-03-27 Three dimensional ranging device

Country Status (1)

Country Link
JP (1) JP2009236774A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011226977A (en) * 2010-04-22 2011-11-10 Topcon Corp Laser scanner
JP2012021949A (en) * 2010-07-16 2012-02-02 Topcon Corp Measuring apparatus
WO2013030929A1 (en) 2011-08-29 2013-03-07 株式会社日立製作所 Monitoring device, monitoring system and monitoring method
WO2014010107A1 (en) * 2012-07-11 2014-01-16 北陽電機株式会社 Scanning-type distance measuring device
JP2015215282A (en) * 2014-05-13 2015-12-03 株式会社リコー Object detection device and sensing device
JP2017032359A (en) * 2015-07-30 2017-02-09 株式会社ユーシン Optical radar device, on-vehicle radar device and infrastructure radar device
US10048493B2 (en) 2014-05-30 2018-08-14 Shinano Kenshi Co., Ltd. Three-dimensional drive device
CN110312946A (en) * 2017-02-17 2019-10-08 北阳电机株式会社 Object capture device captures object and object capture system
DE102018125826A1 (en) * 2018-10-18 2020-04-23 Sick Ag Optoelectronic sensor and method for detecting objects
JP6704537B1 (en) * 2019-06-12 2020-06-03 三菱電機株式会社 Obstacle detection device
CN111983598A (en) * 2020-07-22 2020-11-24 清华大学 Axle center track determining method and device based on multipath signals
WO2021117527A1 (en) * 2019-12-09 2021-06-17 北陽電機株式会社 Electromagnetic motor, optical deflection device, and ranging device
JP2021121789A (en) * 2020-01-31 2021-08-26 株式会社デンソー Optical detection device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011226977A (en) * 2010-04-22 2011-11-10 Topcon Corp Laser scanner
JP2012021949A (en) * 2010-07-16 2012-02-02 Topcon Corp Measuring apparatus
EP2407752A3 (en) * 2010-07-16 2016-09-21 Kabushiki Kaisha Topcon Measuring device
WO2013030929A1 (en) 2011-08-29 2013-03-07 株式会社日立製作所 Monitoring device, monitoring system and monitoring method
US9911041B2 (en) 2011-08-29 2018-03-06 Hitachi, Ltd. Monitoring device, monitoring system and monitoring method
WO2014010107A1 (en) * 2012-07-11 2014-01-16 北陽電機株式会社 Scanning-type distance measuring device
JP2015215282A (en) * 2014-05-13 2015-12-03 株式会社リコー Object detection device and sensing device
US10048493B2 (en) 2014-05-30 2018-08-14 Shinano Kenshi Co., Ltd. Three-dimensional drive device
JP2017032359A (en) * 2015-07-30 2017-02-09 株式会社ユーシン Optical radar device, on-vehicle radar device and infrastructure radar device
CN110312946B (en) * 2017-02-17 2023-07-04 北阳电机株式会社 Object capturing device, object to be captured, and object capturing system
CN110312946A (en) * 2017-02-17 2019-10-08 北阳电机株式会社 Object capture device captures object and object capture system
DE102018125826A1 (en) * 2018-10-18 2020-04-23 Sick Ag Optoelectronic sensor and method for detecting objects
US11698442B2 (en) 2018-10-18 2023-07-11 Sick Ag Optoelectronic sensor and method for detecting objects
WO2020250343A1 (en) * 2019-06-12 2020-12-17 三菱電機株式会社 Obstacle detection device
JP6704537B1 (en) * 2019-06-12 2020-06-03 三菱電機株式会社 Obstacle detection device
WO2021117527A1 (en) * 2019-12-09 2021-06-17 北陽電機株式会社 Electromagnetic motor, optical deflection device, and ranging device
JP2021121789A (en) * 2020-01-31 2021-08-26 株式会社デンソー Optical detection device
JP7380269B2 (en) 2020-01-31 2023-11-15 株式会社デンソー light detection device
CN111983598A (en) * 2020-07-22 2020-11-24 清华大学 Axle center track determining method and device based on multipath signals
CN111983598B (en) * 2020-07-22 2024-03-01 清华大学 Axis locus determining method and device based on multipath signals

Similar Documents

Publication Publication Date Title
JP2009236774A (en) Three dimensional ranging device
JP4088906B2 (en) Photo detector of surveying instrument
CN100365433C (en) Scanning rangefinder
JP6111617B2 (en) Laser radar equipment
JP5900722B2 (en) Scanning distance measuring device signal processing device, signal processing method, and scanning distance measuring device
JP4059911B1 (en) 3D ranging device
JP5861532B2 (en) Laser radar equipment
JP5891893B2 (en) Laser radar equipment
JP2014071038A (en) Laser radar device
WO2014010107A1 (en) Scanning-type distance measuring device
WO2014027189A1 (en) Touch sensing systems
CN108627846B (en) Distance measuring device
KR101556866B1 (en) Distance measuring device
JP2005121638A (en) Optoelectronic detection apparatus
KR20180092738A (en) Apparatus and method for obtaining depth information using digital micro-mirror device
JP7035085B2 (en) LIDAR equipment and methods with simplified detection
JP5533759B2 (en) Laser radar equipment
JP4579321B2 (en) Position detection device
CN108885260B (en) Time-of-flight detector with single axis scanning
JP2018189521A (en) Laser radar device
JP2006276133A (en) Optical scanner and method of optical scanning
JP2014071030A (en) Laser radar device
JP7416647B2 (en) surveying equipment
JP2008256463A (en) Measurement apparatus and miller attitude rotation and monitoring apparatus
JP6812776B2 (en) Distance measurement sensor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110607