JP6812776B2 - Distance measurement sensor - Google Patents

Distance measurement sensor Download PDF

Info

Publication number
JP6812776B2
JP6812776B2 JP2016242353A JP2016242353A JP6812776B2 JP 6812776 B2 JP6812776 B2 JP 6812776B2 JP 2016242353 A JP2016242353 A JP 2016242353A JP 2016242353 A JP2016242353 A JP 2016242353A JP 6812776 B2 JP6812776 B2 JP 6812776B2
Authority
JP
Japan
Prior art keywords
light
translucent member
light receiving
prism portion
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016242353A
Other languages
Japanese (ja)
Other versions
JP2018096871A (en
Inventor
杉山 真人
真人 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2016242353A priority Critical patent/JP6812776B2/en
Publication of JP2018096871A publication Critical patent/JP2018096871A/en
Application granted granted Critical
Publication of JP6812776B2 publication Critical patent/JP6812776B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光を照射して物体までの距離を検出する測距センサに関する。 The present invention relates to a distance measuring sensor that irradiates light and detects a distance to an object.

従来、予め設定された所定の範囲に光を照射し、物体により反射された光を取得して、物体までの距離を検出する技術が利用されてきた。この種の技術として、例えば特許文献1−3に記載のものがある。 Conventionally, a technique has been used in which light is irradiated to a predetermined range set in advance, the light reflected by the object is acquired, and the distance to the object is detected. As a technique of this kind, for example, there is one described in Patent Document 1-3.

特許文献1には、一本のビームを複数本のビームに変換し、変換された各ビームを同時に走査し、複数設けられたビーム受信手段により検知対象物からの反射を各ビームごとに区別して受信する位置情報検出装置が開示されている。この位置情報検出装置は、1回の走査で高さ方向を含む走査平面に対する二次元走査を行い、走査位置の情報と検知対象物までの距離情報に基づき、検知対象物の三次元空間における位置を特定している。 In Patent Document 1, one beam is converted into a plurality of beams, each converted beam is scanned at the same time, and reflections from a detection object are distinguished for each beam by a plurality of beam receiving means provided. The receiving position information detection device is disclosed. This position information detection device performs two-dimensional scanning on the scanning plane including the height direction in one scan, and the position of the detection object in the three-dimensional space based on the scanning position information and the distance information to the detection object. Is specified.

特許文献2には、複数の光ビーム反射面を有するポリゴンミラーを備え、各反射面はポリゴンミラーの回転軸に対する倒れ角が夫々異なるように構成された車載用レーダ装置が開示されている。この車載用レーダ装置は、ポリゴンミラーの反射面に入射したレーザを当該ポリゴンミラーの回転によって左右方向に走査し、レーザ光が入射される反射面が切り替わる毎に上下方向にずれながら走査することで走査平面に対する二次元走査を行っている。 Patent Document 2 discloses an in-vehicle radar device including a polygon mirror having a plurality of light beam reflecting surfaces, each reflecting surface having a different tilt angle with respect to the rotation axis of the polygon mirror. This in-vehicle radar device scans the laser incident on the reflecting surface of the polygon mirror in the left-right direction by the rotation of the polygon mirror, and scans while shifting in the vertical direction each time the reflecting surface on which the laser light is incident is switched. Two-dimensional scanning is performed on the scanning plane.

特許文献3には、車両の前方に光ビームを照射し、その反射波を受光して車両前方に位置する先行車との車間距離計測に必要な情報を生成すると共に、光ビームの仰角をマイナス方向に変更して路面上の白線又はそれに相当する走行帯標識線を検出し、レーンキーピングに必要な情報を生成する車載用レーダ装置が開示されている。この車載用レーダ装置は、水平方向に走査された光ビームを車両前方に発射し、当該光ビームが路面上の白線又はそれに相当する走行帯標識線に指向する所定の水平走査角度になったときに、光ビームをプリズム等の光学的要素によって屈折させて仰角をマイナス方向に変更する。 Patent Document 3 irradiates a light beam in front of the vehicle, receives the reflected wave, generates information necessary for measuring the distance between the vehicle and the preceding vehicle located in front of the vehicle, and reduces the elevation angle of the light beam. An in-vehicle radar device that changes direction to detect a white line on a road surface or a traveling zone indicator line corresponding thereto and generates information necessary for lane keeping is disclosed. This in-vehicle radar device emits a horizontally scanned light beam in front of the vehicle, and when the light beam reaches a predetermined horizontal scanning angle directed to a white line on the road surface or a corresponding traveling zone indicator line. In addition, the light beam is refracted by an optical element such as a prism to change the elevation angle in the negative direction.

特開平8−248133号公報Japanese Unexamined Patent Publication No. 8-248133 特開2000−147124号公報Japanese Unexamined Patent Publication No. 2000-147124 特開2003−121546号公報Japanese Unexamined Patent Publication No. 2003-121546

特許文献1に記載の技術は、一本のビームを、ハーフミラーを介して複数本のビームに変換しているため、変換後の各ビームの光量は元の光量に対して減少する。光量が減少することにより対象物の検知距離が狭まってしまい、また、複数本のビーム毎に受信手段(フォトダイオード)を設けているため、コストアップの要因となる。 In the technique described in Patent Document 1, since one beam is converted into a plurality of beams through a half mirror, the amount of light of each beam after conversion is reduced with respect to the original amount of light. Since the detection distance of the object is narrowed due to the decrease in the amount of light, and the receiving means (photodiode) is provided for each of a plurality of beams, this causes an increase in cost.

特許文献2に記載の技術は、水平方向の走査角度についてはポリゴンミラーの各面の割り当て角度に依存するため、各面全てにおいて広角で走査することができない。また、受光レンズとフォトダイオードとの中心を結ぶ中心軸に対する受光角度が大きい反射光はフォトダイオードに集光されないため、上部や側部に受光ミラーを設けて集光する必要があり、コストアップの要因となる。 In the technique described in Patent Document 2, since the scanning angle in the horizontal direction depends on the allocation angle of each surface of the polygon mirror, it is not possible to scan at a wide angle on all the surfaces. In addition, since reflected light with a large light receiving angle with respect to the central axis connecting the center of the light receiving lens and the photodiode is not collected by the photodiode, it is necessary to provide a light receiving mirror on the upper part or the side portion to collect the light, which increases the cost. It becomes a factor.

特許文献3に記載の技術は、白線検出を前提としているため、特定の箇所しかビーム角度を変更できず、広角に亘って上下方向の角度を検出することができない。また、屈折によってマイナス方向に照射したレーザの反射光は受光角度が大きいため、受光素子に集光される光量が少なく、検出距離が短くなったり、適切に検出できなかったりすることもある。 Since the technique described in Patent Document 3 is premised on white line detection, the beam angle can be changed only at a specific location, and the vertical angle cannot be detected over a wide angle. Further, since the reflected light of the laser irradiated in the negative direction by refraction has a large light receiving angle, the amount of light collected by the light receiving element is small, and the detection distance may be shortened or may not be detected properly.

そこで、広範囲に亘って物体までの距離を検出でき、低コストで実現可能な測距センサが求められる。 Therefore, there is a need for a distance measuring sensor that can detect the distance to an object over a wide range and can be realized at low cost.

本発明に係る測距センサの特徴構成は、光を照射する光源と前記光源から照射された光を平行光に変換する投光レンズとが設けられる投光部と、前記投光部から入射される前記平行光の進行方向を、所定の回転軸周りでの回転に応じて所定の第1方向に沿うように平行光のままで変更する投光用ミラーと、前記回転軸を軸心とする円筒形状からなり、前記投光用ミラーで反射された前記平行光の進行方向を変更すると共に、周囲に投射された前記平行光が物体に当たって反射した反射光の進行方向を変更する透光性部材と、前記透光性部材により前記進行方向が変更された前記反射光を検出する受光部と、を備え、前記透光性部材は、前記透光性部材の周方向に沿って形成された面であって、前記周方向に沿って互いに隣接する面同士の前記軸心に対する角度が互いに異なるように配置された投射面を複数有し、前記透光性部材の径方向内側に設けられた前記投光用ミラーから入射する前記平行光を前記第1方向に交差する第2方向に沿って前記投射面から投射する投光用プリズム部と、前記透光性部材を径方向外側から見た時の前記軸心に対する前記透光性部材の外周面の角度が、前記軸心に対する前記投射面の角度と同じ角度となるように前記透光性部材の外周面に前記透光性部材の周方向に沿って形成された複数の入射面を有し、前記投光用プリズム部から投射された前記平行光が前記物体に当たって反射した反射光の前記入射面への入射に応じて前記反射光の進行方向を変更する受光用プリズム部と、を備えている点にある。 The characteristic configuration of the distance measuring sensor according to the present invention is a light projecting unit provided with a light source that irradiates light and a light projecting lens that converts the light emitted from the light source into parallel light, and an incident light from the light projecting unit. A light projection mirror that changes the traveling direction of the parallel light so as to follow a predetermined first direction according to rotation around a predetermined rotation axis, and the rotation axis as an axis. A translucent member having a cylindrical shape that changes the traveling direction of the parallel light reflected by the projection mirror and changes the traveling direction of the reflected light reflected by the parallel light projected to the surroundings. And a light receiving portion for detecting the reflected light whose traveling direction is changed by the translucent member, the translucent member is a surface formed along the circumferential direction of the translucent member. The present invention is provided with a plurality of projection surfaces arranged so that the angles of the surfaces adjacent to each other along the circumferential direction with respect to the axial center are different from each other, and are provided inside the translucent member in the radial direction. When the light projecting prism portion that projects the parallel light incident from the light projecting mirror from the projection surface along the second direction intersecting the first direction and the translucent member are viewed from the outside in the radial direction. The circumferential direction of the translucent member on the outer peripheral surface of the translucent member so that the angle of the outer peripheral surface of the translucent member with respect to the axial center is the same as the angle of the projection surface with respect to the axial center. It has a plurality of incident surfaces formed along the above, and the reflected light travels according to the incident of the reflected light reflected by the parallel light projected from the projection prism portion on the incident surface. The point is that it is provided with a light receiving prism portion that changes the direction.

このような特徴構成とすれば、1本の平行光(光ビーム)を用いて360度(水平)の範囲で所定の角度で第2方向に曲げて照射することが可能となる。このため、複雑なポリゴンミラーを用いることなく、広範囲に亘って光ビームを照射することが可能となる。また、1本の光ビームを分散することなく照射しているため、光量を減らすことが無く、検知距離を狭めることもない。また、受光用プリズム部を投光用プリズム部の角度と同じ角度で傾斜させているため、測距センサの検知対象物である物体からの反射光は、受光用プリズム部で屈折して受光用ミラーに入射する。これにより、何れの角度で照射した光ビームも、反射光は同一の角度で受光用ミラーに入射することが可能になるため、複数の受光部を設ける必要はなく、1つの受光部で受光することが可能となる。したがって、低コストで測距センサを実現できる。更に、受光用プリズム部の傾斜させる面積の割合を変更することにより、所定方向の受光量の増減を制御することができるため、所定方向の検知範囲を広げたり、狭めたりすることが可能となる。 With such a characteristic configuration, it is possible to irradiate by bending in the second direction at a predetermined angle within a range of 360 degrees (horizontal) using one parallel light (light beam). Therefore, it is possible to irradiate a light beam over a wide range without using a complicated polygon mirror. Further, since one light beam is irradiated without being dispersed, the amount of light is not reduced and the detection distance is not narrowed. Further, since the light receiving prism portion is tilted at the same angle as the light emitting prism portion, the reflected light from the object to be detected by the distance measuring sensor is refracted by the light receiving prism portion for light reception. It is incident on the mirror. As a result, the reflected light can be incident on the light receiving mirror at the same angle regardless of the light beam irradiated at any angle, so that it is not necessary to provide a plurality of light receiving parts and the light is received by one light receiving part. It becomes possible. Therefore, the distance measuring sensor can be realized at low cost. Further, by changing the ratio of the tilted area of the light receiving prism portion, it is possible to control the increase or decrease of the light receiving amount in the predetermined direction, so that the detection range in the predetermined direction can be widened or narrowed. ..

また、前記投光用プリズム部は、前記透光性部材の軸方向一方側の端部から軸方向他方側の端部までのうちの一部である第1軸方向領域に形成され、前記受光用プリズム部は、前記透光性部材の軸方向一方側の端部から軸方向他方側の端部までのうちの前記第1軸方向領域以外の第2軸方向領域に形成されると好適である。 Further, the light projecting prism portion is formed in a first axial region which is a part of the translucent member from one end in the axial direction to the other end in the axial direction, and the light receiving light is received. It is preferable that the prism portion is formed in a second axial region other than the first axial region from the end on one axial side of the translucent member to the other end in the axial direction. is there.

このような構成とすれば、物体に当たって反射した反射光の受光用プリズム部に対する入射経路上に、隣接する角度が異なる受光用プリズム部を配置しないようにすることができるため、反射光が受光用プリズム部に入射されるまでに隣接する角度が異なる受光用プリズム部に入射され、光量が減衰することを防止できる。したがって、受光用プリズム部に入射される反射光の量(光量)の低減を防止でき、受光効率を高めることが可能となる。 With such a configuration, it is possible to prevent the light receiving prisms having different angles from being adjacent to each other on the incident path of the reflected light reflected by the object with respect to the light receiving prism, so that the reflected light is for receiving light. It is possible to prevent the light amount from being attenuated by being incident on the light receiving prism portions having different angles before being incident on the prism portion. Therefore, it is possible to prevent the amount of reflected light (light amount) incident on the light receiving prism portion from being reduced, and to improve the light receiving efficiency.

また、前記投光用プリズム部は、前記透光性部材の外周面に形成されていると好適である。 Further, it is preferable that the light projecting prism portion is formed on the outer peripheral surface of the translucent member.

このような構成とすれば、透光性部材に、所期の方向に平行光を照射可能な投光用プリズム部を形成し易くできる。したがって、低コストで構成することが可能となる。 With such a configuration, it is possible to easily form a light projecting prism portion capable of irradiating parallel light in a desired direction on the translucent member. Therefore, it can be configured at low cost.

また、前記受光用プリズム部により前記進行方向が変更された前記反射光を前記受光部に向けて反射する受光用ミラーが備えられ、前記受光用ミラーは、前記投光用ミラーと一体回転するように構成されていると好適である。 Further, a light receiving mirror for reflecting the reflected light whose traveling direction has been changed by the light receiving prism portion toward the light receiving portion is provided, and the light receiving mirror is integrally rotated with the light projecting mirror. It is preferable that it is configured in.

このような構成とすれば、投光用ミラーを回転させる動力と、受光用ミラーを回転させる動力とを共通化することができる。したがって、低コスト、且つ、小型化を実現することが可能となる。 With such a configuration, the power for rotating the light projecting mirror and the power for rotating the light receiving mirror can be shared. Therefore, it is possible to realize low cost and miniaturization.

また、前記投光用プリズム部は、前記透光性部材の周方向に沿って形成された平面を含むように構成しても良い。 Further, the light projecting prism portion may be configured to include a plane formed along the circumferential direction of the translucent member.

このような構成とすれば、投光用プリズム部を容易に形成することができる。 With such a configuration, the projection prism portion can be easily formed.

測距センサの構成を示すブロック図である。It is a block diagram which shows the structure of the distance measuring sensor. 投光部及び受光部の配置を示した図である。It is a figure which showed the arrangement of a light emitting part and a light receiving part. 透光性部材の側面図である。It is a side view of the translucent member. 投光用プリズム部の説明図である。It is explanatory drawing of the prism part for floodlight. その他の実施形態に係る透光性部材を示した図である。It is a figure which showed the translucent member which concerns on other embodiment. その他の実施形態に係る透光性部材を示した図である。It is a figure which showed the translucent member which concerns on other embodiment. その他の実施形態に係る透光性部材を示した図である。It is a figure which showed the translucent member which concerns on other embodiment. その他の実施形態に係る透光性部材を示した図である。It is a figure which showed the translucent member which concerns on other embodiment. その他の実施形態に係る透光性部材を示した図である。It is a figure which showed the translucent member which concerns on other embodiment. その他の実施形態に係る測距センサの概要図である。It is a schematic diagram of the ranging sensor which concerns on other embodiments.

本発明に係る測距センサは、安価な構成で広範囲に亘って物体までの距離を検出できるように構成される。以下、本実施形態の測距センサ1について説明する。図1は、本実施形態の測距センサ1の構成を模式的に示したブロック図である。また、図2は、投光部11及び受光部51の配置について示した図である。図1及び図2に示されるように、測距センサ1は、制御部2、透光性部材3、投光部11、投光用ミラー15、受光用ミラー45、受光部51、モータ60、エンコーダ61を備えている。 The distance measuring sensor according to the present invention is configured to be able to detect the distance to an object over a wide range with an inexpensive configuration. Hereinafter, the ranging sensor 1 of the present embodiment will be described. FIG. 1 is a block diagram schematically showing the configuration of the distance measuring sensor 1 of the present embodiment. Further, FIG. 2 is a diagram showing the arrangement of the light emitting unit 11 and the light receiving unit 51. As shown in FIGS. 1 and 2, the distance measuring sensor 1 includes a control unit 2, a translucent member 3, a light projecting unit 11, a light projecting mirror 15, a light receiving mirror 45, a light receiving unit 51, and a motor 60. It includes an encoder 61.

投光部11は光源12と投光レンズ13とが設けられる。光源12は、例えばレーザやLEDを用いて構成され、周囲に光を照射する。光源12から照射された光は、後述する投光レンズ13に入射される。光源12には、制御部2から制御信号が伝達されると共に、電源が供給される。光源12は、これらの制御信号及び電源により駆動され、周囲に光を照射する。 The light projecting unit 11 is provided with a light source 12 and a light projecting lens 13. The light source 12 is configured by using, for example, a laser or an LED, and irradiates the surroundings with light. The light emitted from the light source 12 is incident on the projection lens 13 described later. A control signal is transmitted from the control unit 2 and power is supplied to the light source 12. The light source 12 is driven by these control signals and a power source, and irradiates the surroundings with light.

投光レンズ13は、光源12から照射された光を平行光に変換する。光源12から照射された光は、所定の範囲に広がって進む。投光レンズ13は、このような光を、所定の方向に沿って進む平行光に変換する。これにより、光源12からの光を、所定の方向にのみ照射することが可能となる。投光レンズ13からの平行光は、進行方向が変更されて測距センサ1の外部に照射される。なお、以下では投光レンズ13から照射される平行光を、必要に応じて「投光ビーム」と称して説明する。 The projectile lens 13 converts the light emitted from the light source 12 into parallel light. The light emitted from the light source 12 spreads in a predetermined range and travels. The floodlight lens 13 converts such light into parallel light traveling along a predetermined direction. This makes it possible to irradiate the light from the light source 12 only in a predetermined direction. The parallel light from the light projecting lens 13 is changed in the traveling direction and is irradiated to the outside of the distance measuring sensor 1. In the following, the parallel light emitted from the projection lens 13 will be referred to as a “projection beam” as necessary.

投光用ミラー15は、投光部11から入射される平行光の進行方向を、所定の回転軸X周りでの回転に応じて所定の第1方向に沿うように平行光のままで変更する。投光用ミラー15は、光を反射する鏡面を有して構成される。したがって、投光用ミラー15は、投光部11から入射される平行光を平行光のままで反射する。また、投光用ミラー15は、制御部2からの駆動信号により回転軸Xを軸心として回転される。したがって、投光部11からの平行光は、回転軸Xの径方向に相当する第1方向(本実施形態では水平方向)に平行光として反射される。 The light projecting mirror 15 changes the traveling direction of the parallel light incident from the light projecting unit 11 as the parallel light so as to follow the predetermined first direction according to the rotation around the predetermined rotation axis X. .. The floodlight mirror 15 is configured to have a mirror surface that reflects light. Therefore, the light projecting mirror 15 reflects the parallel light incident from the light projecting unit 11 as the parallel light. Further, the floodlight mirror 15 is rotated about the rotation axis X by a drive signal from the control unit 2. Therefore, the parallel light from the light projecting unit 11 is reflected as parallel light in the first direction (horizontal direction in the present embodiment) corresponding to the radial direction of the rotation axis X.

透光性部材3は、回転軸Xを軸心とする円筒形状からなり(図3参照)、投光用ミラー15で反射された平行光の進行方向を変更すると共に、周囲に投射された平行光が物体に当たって反射した反射光の進行方向を変更する。回転軸Xとは、投光用ミラー15が回転する際の回転軸である。したがって、透光性部材3は、投光用ミラー15の回転軸Xと同軸心上に構成される。平行光とは、投光用ミラー15により進行方向が変更された光である。この平行光は、測距センサ1の周囲に投射される。測距センサ1の周囲に投射された平行光は、物体に当たると反射して測距センサ1に戻ってくる。詳細は後述するが、透光性部材3は、これらの平行光及び反射光が透過する際に進行方向を変更する。したがって、透光性部材3は、少なくとも平行光及び反射光が透過することが可能な材料を用いて、円筒形状で構成される。 The translucent member 3 has a cylindrical shape centered on the rotation axis X (see FIG. 3), changes the traveling direction of the parallel light reflected by the light projecting mirror 15, and is projected to the surroundings in parallel. The direction of travel of the reflected light that is reflected by the light hitting the object is changed. The rotation axis X is a rotation axis when the floodlight mirror 15 rotates. Therefore, the translucent member 3 is configured on the coaxial center with the rotation axis X of the light projecting mirror 15. The parallel light is light whose traveling direction is changed by the projection mirror 15. This parallel light is projected around the ranging sensor 1. When the parallel light projected around the distance measuring sensor 1 hits an object, it is reflected and returned to the distance measuring sensor 1. Although the details will be described later, the translucent member 3 changes the traveling direction when the parallel light and the reflected light are transmitted. Therefore, the translucent member 3 is formed in a cylindrical shape by using a material capable of transmitting at least parallel light and reflected light.

透光性部材3は、投光用プリズム部21及び受光用プリズム部31を有する。投光用プリズム部21は、測距センサ1の筐体において、投光ビームが透過する箇所に所定の角度を有して設けられ、この角度に応じて投光ビームを屈折させながら投光ビームを測距センサ1の周囲に照射する。投光用プリズム部21は、測距センサ1の筐体に形成された窓部としての筐体窓70を構成する。投光用プリズム部21の構成については後述する。 The translucent member 3 has a light emitting prism portion 21 and a light receiving prism portion 31. The light projecting prism portion 21 is provided at a position where the light projecting beam is transmitted in the housing of the distance measuring sensor 1 at a predetermined angle, and the light projecting beam is refracted according to this angle. Is applied to the periphery of the ranging sensor 1. The light projecting prism portion 21 constitutes a housing window 70 as a window portion formed in the housing of the distance measuring sensor 1. The configuration of the projection prism portion 21 will be described later.

投光用プリズム部21から照射された投光ビームは、測距センサ1の周囲に存在する物体にあたると反射されて反射光となる。この反射光は、受光用プリズム部31を介して測距センサ1に取得される。受光用プリズム部31は、反射光が透過する箇所に所定の角度を有して設けられ、この角度に応じて反射光が屈折することにより反射光の進行方向が変更される。本実施形態では、反射光の進行方向が後述する受光用ミラー45に向かうように変更される。受光用プリズム部31は、上述した投光用プリズム部21と同様に測距センサ1の筐体に形成された窓部としての筐体窓70を構成する。受光用プリズム部31の構成については後述する。 When the light projecting beam emitted from the light projecting prism unit 21 hits an object existing around the distance measuring sensor 1, it is reflected and becomes reflected light. This reflected light is acquired by the ranging sensor 1 via the light receiving prism portion 31. The light receiving prism portion 31 is provided at a position where the reflected light is transmitted at a predetermined angle, and the traveling direction of the reflected light is changed by refracting the reflected light according to this angle. In the present embodiment, the traveling direction of the reflected light is changed so as to be directed to the light receiving mirror 45 described later. The light receiving prism portion 31 constitutes a housing window 70 as a window portion formed in the housing of the distance measuring sensor 1 in the same manner as the light emitting prism portion 21 described above. The configuration of the light receiving prism portion 31 will be described later.

受光用ミラー45は、受光用プリズム部31により進行方向が変更された反射光を後述する受光部51に向けて反射する。受光用ミラー45は、投光用ミラー15と同様に、光を反射する鏡面を有して構成される。また、本実施形態では受光用ミラー45は、投光用ミラー15と一体回転するように構成される。したがって、受光用ミラー45は投光用ミラー15の回転軸は同軸に構成される。受光用プリズム部31からの反射光は、受光用ミラー45の回転に応じて、回転軸Xの軸方向に沿って反射される。 The light receiving mirror 45 reflects the reflected light whose traveling direction has been changed by the light receiving prism portion 31 toward the light receiving portion 51 described later. The light receiving mirror 45 is configured to have a mirror surface that reflects light, similarly to the light projecting mirror 15. Further, in the present embodiment, the light receiving mirror 45 is configured to rotate integrally with the light projecting mirror 15. Therefore, in the light receiving mirror 45, the rotation axis of the light projecting mirror 15 is coaxial. The reflected light from the light receiving prism portion 31 is reflected along the axial direction of the rotation axis X according to the rotation of the light receiving mirror 45.

受光部51は、受光レンズ52と受光センサ53とを有する。受光レンズ52は、受光用ミラー45と受光センサ53との間に設けられ、受光用ミラー45で反射された反射光を受光センサ53の検出面に集光させる。受光センサ53は、透光性部材3により進行方向が変更された反射光を検出する。本実施形態では、上述したように受光用プリズム部31により進行方向が変更された反射光は、受光レンズ52により集光される。したがって、受光センサ53は、受光レンズ52の焦点位置に配置され、当該焦点位置で受光用プリズム部31により進行方向が変更された反射光を検出する。受光センサ53による光の検出は、公知であるので説明は省略する。受光部51は受光センサ53が反射光を検出すると、検出結果を制御部2に伝達する。 The light receiving unit 51 has a light receiving lens 52 and a light receiving sensor 53. The light receiving lens 52 is provided between the light receiving mirror 45 and the light receiving sensor 53, and collects the reflected light reflected by the light receiving mirror 45 on the detection surface of the light receiving sensor 53. The light receiving sensor 53 detects the reflected light whose traveling direction is changed by the translucent member 3. In the present embodiment, the reflected light whose traveling direction is changed by the light receiving prism portion 31 as described above is collected by the light receiving lens 52. Therefore, the light receiving sensor 53 is arranged at the focal position of the light receiving lens 52, and detects the reflected light whose traveling direction is changed by the light receiving prism portion 31 at the focal position. Since the detection of light by the light receiving sensor 53 is known, the description thereof will be omitted. When the light receiving sensor 53 detects the reflected light, the light receiving unit 51 transmits the detection result to the control unit 2.

制御部2は、伝達された検出結果を用いて測距センサ1から物体までの距離を演算する。具体的には、制御部2には、受光部51からの検出結果と、投光部11が光を照射したことを示す情報も伝達される。制御部2は、投光部11が光を照射してから、受光センサ53が光を受光するまでの時間を算定し、光の速度と当該時間の1/2との積により測距センサ1から物体までの距離を演算する。もちろん、上記時間について、各機能部の信号処理に要する遅延時間を補正して用いることも可能である。なお、制御部2は、投光用ミラー15及び受光用ミラー45を回転させるモータ60を制御し、エンコーダ61からモータ60の回転角度の検出結果を取得する。制御部2は、エンコーダ61からの検出結果に基づき、モータ60の回転を制御する。 The control unit 2 calculates the distance from the distance measuring sensor 1 to the object using the transmitted detection result. Specifically, the detection result from the light receiving unit 51 and the information indicating that the light projecting unit 11 has irradiated the light are also transmitted to the control unit 2. The control unit 2 calculates the time from when the light projecting unit 11 irradiates the light until the light receiving sensor 53 receives the light, and the distance measuring sensor 1 is calculated by multiplying the speed of light by 1/2 of the time. Calculate the distance from to the object. Of course, it is also possible to correct the delay time required for signal processing of each functional unit for the above time. The control unit 2 controls the motor 60 that rotates the light projecting mirror 15 and the light receiving mirror 45, and acquires the detection result of the rotation angle of the motor 60 from the encoder 61. The control unit 2 controls the rotation of the motor 60 based on the detection result from the encoder 61.

次に、投光用プリズム部21及び受光用プリズム部31の構成について説明する。図3は、透光性部材3の側面図である。透光性部材3は、上述したように投光用プリズム部21及び受光用プリズム部31を備え、測距センサ1の筐体窓70に設けられる。 Next, the configurations of the light emitting prism portion 21 and the light receiving prism portion 31 will be described. FIG. 3 is a side view of the translucent member 3. As described above, the translucent member 3 includes a light emitting prism portion 21 and a light receiving prism portion 31, and is provided in the housing window 70 of the distance measuring sensor 1.

本実施形態では上述したように、透光性部材3は投光用ミラー15及び受光用ミラー45の回転軸Xを軸心とする円筒形状で形成される。投光用プリズム部21は、このような円筒形状の透光性部材3の周方向に沿って形成された面から構成される。「円筒形状の透光性部材3の周方向に沿って形成された面」とは、複数の平面が透光性部材3の周方向に沿って形成されていることをいう。本実施形態では、これらの平面を有する投光用プリズム部21が透光性部材3の外周面に全周に亘って形成される。この場合、これらの複数の平面は透光性部材3を軸方向外側から見て周方向に沿って数度(例えば3〜5度)毎に区分けし、夫々の外周面が平面となるように形成される。このため、夫々の平面の周方向に沿った長さは互いに等しくなるように構成すると好適である。もちろん、夫々の平面の周方向に沿った長さは、均等に構成しなくても良い。なお、本実施形態では「円筒形状の透光性部材3の周方向に沿って形成された面」として平面を例に挙げたが、平面に限らず、例えば円筒面や円錐面であっても良い。 In the present embodiment, as described above, the translucent member 3 is formed in a cylindrical shape centered on the rotation axis X of the light projecting mirror 15 and the light receiving mirror 45. The light projecting prism portion 21 is composed of a surface formed along the circumferential direction of such a cylindrical translucent member 3. The "plane formed along the circumferential direction of the cylindrical translucent member 3" means that a plurality of plane surfaces are formed along the circumferential direction of the translucent member 3. In the present embodiment, the light projecting prism portion 21 having these plane surfaces is formed on the outer peripheral surface of the translucent member 3 over the entire circumference. In this case, these plurality of planes divide the translucent member 3 into several degrees (for example, 3 to 5 degrees) along the circumferential direction when viewed from the outside in the axial direction so that the outer peripheral surfaces thereof are flat. It is formed. For this reason, it is preferable to configure each plane so that the lengths along the circumferential direction are equal to each other. Of course, the lengths along the circumferential direction of each plane need not be evenly configured. In the present embodiment, a flat surface is given as an example of "a surface formed along the circumferential direction of the cylindrical translucent member 3", but the surface is not limited to a flat surface, and may be, for example, a cylindrical surface or a conical surface. good.

また、投光用プリズム部21は、周方向に沿って互いに隣接する面同士の軸心に対する角度が互いに異なるように配置された投射面を複数有する。「軸心に対する角度」とは、軸心に直交する径方向と、上述した複数の平面の夫々の法線ベクトルの方向との角度差を意味する。本実施形態では、投光用プリズム部21が有する平面は、透光性部材3の径方向を向く面(以下では「A面」とする)、透光性部材3の径方向に対して上側を向く面(以下では「B面」とする)、透光性部材3の径方向に対して下側を向く面(以下では「C面」とする)が存在するものとして説明する。 Further, the projection prism portion 21 has a plurality of projection planes arranged so that the angles of the planes adjacent to each other along the circumferential direction with respect to the axial center are different from each other. The "angle with respect to the axis" means the angle difference between the radial direction orthogonal to the axis and the direction of the normal vector of each of the plurality of planes described above. In the present embodiment, the plane of the light projecting prism portion 21 is a surface facing the radial direction of the translucent member 3 (hereinafter referred to as “A surface”), and is above the radial direction of the translucent member 3. It is assumed that there is a surface facing the surface (hereinafter referred to as “B surface”) and a surface facing downward with respect to the radial direction of the translucent member 3 (hereinafter referred to as “C surface”).

図4は、投光用プリズム部21の投射面の説明図である。図4の#01には透光性部材3の斜視図が示される。また、#02には#01において一点鎖線を付した部位の側面視であるA面が示され、#03には#01において破線を付した部位の側面視であるB面が示され、#03には#01において二点鎖線を付した部位の側面視であるC面が示される。なお、理解を容易にするために、図3では、投光用プリズム部21が有するA面、B面、C面は夫々同じ色で示している。図3及び図4に示されるように、投光用プリズム部21が有する平面は、周方向に沿って、A面同士が互いに隣接することはなく、B面同士が互いに隣接することはなく、C面同士が互いに隣接することはないように構成される。本実施形態では、図3及び図4に示されるように、投光用プリズム部21は、周方向に沿って「A面、B面、C面」が繰り返すように構成される。 FIG. 4 is an explanatory view of the projection surface of the projection prism portion 21. # 01 of FIG. 4 shows a perspective view of the translucent member 3. Further, # 02 shows the side view A of the part with the alternate long and short dash line in # 01, and # 03 shows the side view B of the part with the dashed line in # 01. In 03, the C plane, which is a side view of the portion with the alternate long and short dash line in # 01, is shown. For ease of understanding, in FIG. 3, the A surface, the B surface, and the C surface of the light projecting prism portion 21 are shown in the same color. As shown in FIGS. 3 and 4, the planes of the light projecting prism portion 21 are such that the A surfaces are not adjacent to each other and the B surfaces are not adjacent to each other along the circumferential direction. The C-planes are configured so that they are not adjacent to each other. In the present embodiment, as shown in FIGS. 3 and 4, the projection prism portion 21 is configured such that "plane A, plane B, plane C" repeats along the circumferential direction.

投光用プリズム部21は、透光性部材3の径方向内側に設けられた投光用ミラー15から入射する平行光を屈折させて第1方向に交差する第2方向に沿って投射面から投射する。すなわち、上述したように繰り返して配置された複数の平面は、夫々投射面を構成し、径方向内側から投光用ミラー15により反射された平行光が入射され、投光面が向く方向に沿って屈折させて平行光を投射する。これにより、投光用プリズム部21は、投光用ミラー15から入射する平行光を、水平方向に対して鉛直方向に角度を付けて投射することが可能となる。 The light projecting prism portion 21 refracts the parallel light incident from the light projecting mirror 15 provided inside the translucent member 3 in the radial direction from the projection surface along the second direction intersecting the first direction. Project. That is, the plurality of planes repeatedly arranged as described above each form a projection surface, and parallel light reflected by the projection mirror 15 is incident from the inside in the radial direction along the direction in which the projection surface faces. And refract it to project parallel light. As a result, the light projecting prism portion 21 can project the parallel light incident from the light projecting mirror 15 at an angle in the vertical direction with respect to the horizontal direction.

このような投光用プリズム部21は、透光性部材3の軸方向一方側の端部から軸方向他方側の端部までのうちの一部である第1軸方向領域Mに形成される。すなわち、図3に示されるように、透光性部材3の軸方向長さをLとすると、投光用プリズム部21は透光性部材3の軸方向長さLのうちの一部である第1軸方向領域Mに形成される。 Such a light projecting prism portion 21 is formed in the first axial region M which is a part of the translucent member 3 from the end on one side in the axial direction to the end on the other side in the axial direction. .. That is, as shown in FIG. 3, assuming that the axial length of the translucent member 3 is L, the light projecting prism portion 21 is a part of the axial length L of the translucent member 3. It is formed in the first axial region M.

一方、受光用プリズム部31は、透光性部材3を径方向外側から見た時の軸心に対する透光性部材3の外周面の角度が、軸心に対する投射面の角度と同じ角度となるように透光性部材3の外周面に透光性部材3の周方向に沿って形成された複数の入射面を有する。「透光性部材3を径方向外側から見た時の軸心に対する透光性部材3の外周面の角度」とは、透光性部材3の側面視において、透光性部材3の軸心と、透光性部材3の外周面との角度差をいう。投射面は、本実施形態ではA面、B面、及びC面が相当する。このため、「軸心に対する投射面の角度」とは、A面の角度θ1が軸心に平行であるとすると、軸心に対するB面の角度θ2、軸心に対するC面の角度θ3が相当する。 On the other hand, in the light receiving prism portion 31, the angle of the outer peripheral surface of the translucent member 3 with respect to the axial center when the translucent member 3 is viewed from the outside in the radial direction is the same as the angle of the projection surface with respect to the axial center. As described above, the outer peripheral surface of the translucent member 3 has a plurality of incident surfaces formed along the circumferential direction of the translucent member 3. The "angle of the outer peripheral surface of the translucent member 3 with respect to the axial center when the translucent member 3 is viewed from the outside in the radial direction" is the axial center of the translucent member 3 in the side view of the translucent member 3. And the angle difference from the outer peripheral surface of the translucent member 3. In this embodiment, the projection plane corresponds to the A plane, the B plane, and the C plane. Therefore, the "angle of the projection surface with respect to the axis" corresponds to the angle θ2 of the B surface with respect to the axis and the angle θ3 of the C surface with respect to the axis, assuming that the angle θ1 of the A surface is parallel to the axis. ..

したがって、受光用プリズム部31は、透光性部材3の側面視において、透光性部材3の軸心と、透光性部材3の外周面との角度差が、軸心に対するA面の角度θ1、軸心に対するB面の角度θ2、軸心に対するC面の角度θ3と同じ角度になるように、透光性部材3の外周面に形成される。また、本実施形態では、受光用プリズム部31は透光性部材3の外周面との角度差が、透光性部材3の周方向に亘って一様となるように、軸心に対するA面の角度θ1で形成された第1外周部71、軸心に対するB面の角度θ2で形成された第2外周部72、軸心に対するC面の角度θ3で形成された第3外周部73から構成される。 Therefore, in the light receiving prism portion 31, the angle difference between the axial center of the translucent member 3 and the outer peripheral surface of the translucent member 3 in the side view of the translucent member 3 is the angle of the A surface with respect to the axial center. It is formed on the outer peripheral surface of the translucent member 3 so as to have the same angle as θ1, the angle θ2 of the B surface with respect to the axis, and the angle θ3 of the C surface with respect to the axis. Further, in the present embodiment, the light receiving prism portion 31 has an A surface with respect to the axis so that the angle difference from the outer peripheral surface of the translucent member 3 is uniform over the circumferential direction of the translucent member 3. The first outer peripheral portion 71 formed at the angle θ1 of the above, the second outer peripheral portion 72 formed at the angle θ2 of the B surface with respect to the axial center, and the third outer peripheral portion 73 formed at the angle θ3 of the C surface with respect to the axial center. Will be done.

また、受光用プリズム部31は、第1外周部71、第2外周部72、第3外周部73の夫々が、同じ角度を有する外周部と隣接しないように、すなわち、第1外周部71は第2外周部72及び第3外周部73の一方又は双方と隣接するように、第2外周部72は第1外周部71及び第3外周部73の一方又は双方と隣接するように、第3外周部73は第1外周部71及び第2外周部72の一方又は双方と隣接するように配置され、これらの第1外周部71、第2外周部72、第3外周部73は上述した反射光が入射される入射面を構成する。 Further, in the light receiving prism portion 31, the first outer peripheral portion 71, the second outer peripheral portion 72, and the third outer peripheral portion 73 are not adjacent to the outer peripheral portion having the same angle, that is, the first outer peripheral portion 71 is A third outer peripheral portion 72 is adjacent to one or both of the first outer peripheral portion 71 and the third outer peripheral portion 73 so as to be adjacent to one or both of the second outer peripheral portion 72 and the third outer peripheral portion 73. The outer peripheral portion 73 is arranged so as to be adjacent to one or both of the first outer peripheral portion 71 and the second outer peripheral portion 72, and the first outer peripheral portion 71, the second outer peripheral portion 72, and the third outer peripheral portion 73 are the reflections described above. It constitutes an incident surface on which light is incident.

受光用プリズム部31は、投光用プリズム部21から投射された平行光が物体に当たって反射した反射光の入射面への入射に応じて反射光の進行方向を変更する。すなわち、上述したように上述した第1外周部71、第2外周部72、第3外周部73には、夫々反射光が入射され、屈折により受光用ミラー45に向かう方向に反射光の進行方向が変更される。 The light receiving prism unit 31 changes the traveling direction of the reflected light according to the incident surface of the reflected light reflected by the parallel light projected from the light projecting prism unit 21 hitting the object. That is, as described above, the reflected light is incident on the first outer peripheral portion 71, the second outer peripheral portion 72, and the third outer peripheral portion 73, respectively, and the traveling direction of the reflected light in the direction toward the light receiving mirror 45 due to refraction. Is changed.

ここで、図3に示されるように、透光性部材3の軸方向長さをLとすると、投光用プリズム部21は透光性部材3の軸方向長さLのうちの一部である第1軸方向領域Mに形成されるが、受光用プリズム部31は、透光性部材3の軸方向一方側の端部から軸方向他方側の端部までのうちの第1軸方向領域M以外の第2軸方向領域Nに形成される。本実施形態では、図3に示されるように投光用プリズム部21は透光性部材3の軸方向中央部に形成されるが、当該投光用プリズム部21の軸方向両外側に第1外周部71が形成される。したがって、第1外周部71は投光用プリズム部21に分断された状態で配置される。第1外周部71の一方の軸方向外側には、第2外周部72が形成され、第1外周部71の他方の軸方向外側には、第3外周部73が形成される。 Here, as shown in FIG. 3, assuming that the axial length of the translucent member 3 is L, the light projecting prism portion 21 is a part of the axial length L of the translucent member 3. Although the light receiving prism portion 31 is formed in a certain first axial direction region M, the light receiving prism portion 31 is formed in the first axial direction region from the end portion on one side in the axial direction of the translucent member 3 to the end portion on the other side in the axial direction. It is formed in the second axial region N other than M. In the present embodiment, as shown in FIG. 3, the light projecting prism portion 21 is formed at the central portion in the axial direction of the translucent member 3, but the first light projecting prism portion 21 is formed on both outer sides in the axial direction. The outer peripheral portion 71 is formed. Therefore, the first outer peripheral portion 71 is arranged in a state of being divided by the light projecting prism portion 21. A second outer peripheral portion 72 is formed on one axially outer side of the first outer peripheral portion 71, and a third outer peripheral portion 73 is formed on the other axial outer side of the first outer peripheral portion 71.

上記のように構成された透光性部材3における投光用プリズム部21を、測距センサ1における所定の箇所に設けることにより、投光用プリズム部21が有する投射面の角度に応じて投光用ミラー15で反射された平行光を屈折させ、測距センサ1の周囲に平行光を投射することが可能となる。また、測距センサ1における投光用プリズム部21が設けられていない箇所を、投光用プリズム部21の角度と同じ角度で傾斜させることにより、投光用プリズム部21を介して投射した平行光が物体にあたって反射した反射光が屈折し、透光性部材3の軸心を鉛直方向に沿って配置した場合には、受光用ミラー45に対して水平方向で入射させることが可能となる。したがって、いずれの方向からの反射光も1つの受光センサ53で受光することが可能となる。 By providing the light projecting prism portion 21 in the translucent member 3 configured as described above at a predetermined position in the distance measuring sensor 1, the light projecting prism portion 21 is projected according to the angle of the projection surface. It is possible to refract the parallel light reflected by the light mirror 15 and project the parallel light around the distance measuring sensor 1. Further, by inclining the portion of the ranging sensor 1 where the light projecting prism portion 21 is not provided at the same angle as the angle of the light projecting prism portion 21, parallel projection is performed through the light projecting prism portion 21. When the reflected light reflected by the light hits the object is refracted and the axis of the translucent member 3 is arranged along the vertical direction, the light can be incident on the light receiving mirror 45 in the horizontal direction. Therefore, the reflected light from any direction can be received by one light receiving sensor 53.

なお、透光性部材3は、筐体窓70の内側に配置しても良いし、外側に配置しても良い。また、透光性部材3は、筐体窓70と同一材料で一体化して構成すると好適である。 The translucent member 3 may be arranged inside the housing window 70 or may be arranged outside. Further, it is preferable that the translucent member 3 is integrally formed of the same material as the housing window 70.

〔その他の実施形態〕
上記実施形態では、図3に示されるように、受光用プリズム部31は、投光用プリズム部21の軸方向両外側に第1外周部71が形成され、第1外周部71の一方の軸方向外側には、第2外周部72が形成され、第1外周部71の他方の軸方向外側には、第3外周部73が形成されるとして説明した。しかしながら、図5に示されるように、投光用プリズム部21の軸方向一方側に第1外周部71、第2外周部72、及び第3外周部73を形成し、投光用プリズム部21の軸方向他方側にも第1外周部71、第2外周部72、及び第3外周部73を形成するように構成することも可能であるし、図6に示されるように、投光用プリズム部21の軸方向一方側に第1外周部71、第2外周部72、及び第3外周部73を複数セット形成し、投光用プリズム部21の軸方向他方側にも第1外周部71、第2外周部72、及び第3外周部73を複数セット形成するように構成することも可能である。このように構成することで、受光用ミラー45の形状による受光面積の影響を小さくし、受光量の均一化を図ることが可能となる。また、図示はしないが、第1外周部71、第2外周部72、及び第3外周部73の夫々の数(分割数)を不均等にし、特定の角度からの反射光を強く受光するようにすることで、測距センサ1の検知距離を制御することが可能となる。
[Other Embodiments]
In the above embodiment, as shown in FIG. 3, in the light receiving prism portion 31, the first outer peripheral portion 71 is formed on both outer sides of the light emitting prism portion 21 in the axial direction, and one shaft of the first outer peripheral portion 71 is formed. It has been described that the second outer peripheral portion 72 is formed on the outer side in the direction, and the third outer peripheral portion 73 is formed on the other axial outer side of the first outer peripheral portion 71. However, as shown in FIG. 5, the first outer peripheral portion 71, the second outer peripheral portion 72, and the third outer peripheral portion 73 are formed on one side in the axial direction of the light projecting prism portion 21, and the light projecting prism portion 21 is formed. It is also possible to form a first outer peripheral portion 71, a second outer peripheral portion 72, and a third outer peripheral portion 73 on the other side in the axial direction of the above, and as shown in FIG. 6, for light projection. A plurality of sets of a first outer peripheral portion 71, a second outer peripheral portion 72, and a third outer peripheral portion 73 are formed on one side in the axial direction of the prism portion 21, and a first outer peripheral portion is also formed on the other side in the axial direction of the projection prism portion 21. It is also possible to form a plurality of sets of 71, the second outer peripheral portion 72, and the third outer peripheral portion 73. With such a configuration, it is possible to reduce the influence of the light receiving area due to the shape of the light receiving mirror 45 and to make the light receiving amount uniform. Further, although not shown, the numbers (divisions) of the first outer peripheral portion 71, the second outer peripheral portion 72, and the third outer peripheral portion 73 are made uneven so as to strongly receive the reflected light from a specific angle. By setting this, it is possible to control the detection distance of the distance measuring sensor 1.

上記実施形態では、投光用プリズム部21は、透光性部材3の軸方向中央部に配置される例を挙げて説明したが、例えば図7に示されるように、投光用プリズム部21の位置は平行光の投射位置に合わせて、透光性部材3の軸方向中央部とは異なる位置(例えば軸方向端部側の位置)に配置するとも可能である。 In the above embodiment, the light projecting prism portion 21 has been described with an example of being arranged at the axial center portion of the translucent member 3, but as shown in FIG. 7, for example, the light projecting prism portion 21 has been described. The position of is also possible to be arranged at a position different from the axial central portion of the translucent member 3 (for example, a position on the axial end side side) according to the projection position of the parallel light.

また、例えば図8に示されるように、受光用プリズム部31は軸方向に沿って分割するように形成することも可能である。また、図9に示されるように、投光用プリズム部21及び受光用プリズム部31は、透光性部材3の内周面に形成することも可能である。 Further, for example, as shown in FIG. 8, the light receiving prism portion 31 can be formed so as to be divided along the axial direction. Further, as shown in FIG. 9, the light emitting prism portion 21 and the light receiving prism portion 31 can be formed on the inner peripheral surface of the translucent member 3.

また、図10に示されるように、投光部11の位置を変更すると共に、固定ミラー16を設けることにより、投光用ミラー15と受光用ミラー45とを共通化することができる。したがって、測距センサ1を小型化することが可能となる。 Further, as shown in FIG. 10, by changing the position of the light projecting unit 11 and providing the fixed mirror 16, the light projecting mirror 15 and the light receiving mirror 45 can be shared. Therefore, the distance measuring sensor 1 can be miniaturized.

上記実施形態では、受光用ミラー45は、投光用ミラー15と一体回転するように構成されているとして説明したが、受光用ミラー45は、投光用ミラー15とは別体で回転するように構成することも可能である。 In the above embodiment, it has been described that the light receiving mirror 45 is configured to rotate integrally with the light projecting mirror 15, but the light receiving mirror 45 is rotated separately from the light projecting mirror 15. It is also possible to configure in.

本発明は、光を照射して物体までの距離を検出する測距センサに用いることが可能である。 The present invention can be used in a ranging sensor that irradiates light to detect the distance to an object.

1:測距センサ
3:透光性部材
11:投光部
12:光源
13:投光レンズ
15:投光用ミラー
21:投光用プリズム部
31:受光用プリズム部
45:受光用ミラー
M:第1軸方向領域
N:第2軸方向領域
1: Distance measuring sensor 3: Translucent member 11: Light emitting part 12: Light source 13: Light source lens 15: Light projecting mirror 21: Light emitting prism part 31: Light receiving prism part 45: Light receiving mirror M: 1st axial region N: 2nd axial region

Claims (5)

光を照射する光源と前記光源から照射された光を平行光に変換する投光レンズとが設けられる投光部と、
前記投光部から入射される前記平行光の進行方向を、所定の回転軸周りでの回転に応じて所定の第1方向に沿うように平行光のままで変更する投光用ミラーと、
前記回転軸を軸心とする円筒形状からなり、前記投光用ミラーで反射された前記平行光の進行方向を変更すると共に、周囲に投射された前記平行光が物体に当たって反射した反射光の進行方向を変更する透光性部材と、
前記透光性部材により前記進行方向が変更された前記反射光を検出する受光部と、を備え、
前記透光性部材は、前記透光性部材の周方向に沿って形成された面であって、前記周方向に沿って互いに隣接する面同士の前記軸心に対する角度が互いに異なるように配置された投射面を複数有し、前記透光性部材の径方向内側に設けられた前記投光用ミラーから入射する前記平行光を前記第1方向に交差する第2方向に沿って前記投射面から投射する投光用プリズム部と、前記透光性部材を径方向外側から見た時の前記軸心に対する前記透光性部材の外周面の角度が、前記軸心に対する前記投射面の角度と同じ角度となるように前記透光性部材の外周面に前記透光性部材の周方向に沿って形成された複数の入射面を有し、前記投光用プリズム部から投射された前記平行光が前記物体に当たって反射した反射光の前記入射面への入射に応じて前記反射光の進行方向を変更する受光用プリズム部と、を備える測距センサ。
A light projecting unit provided with a light source that irradiates light and a light projecting lens that converts the light emitted from the light source into parallel light.
A light projecting mirror that changes the traveling direction of the parallel light incident from the light projecting unit with the parallel light so as to follow a predetermined first direction according to rotation around a predetermined rotation axis.
It has a cylindrical shape with the rotation axis as the axis, changes the traveling direction of the parallel light reflected by the projection mirror, and advances the reflected light reflected by the parallel light projected to the surroundings. A translucent member that changes direction,
A light receiving unit for detecting the reflected light whose traveling direction has been changed by the translucent member is provided.
The translucent member is a surface formed along the circumferential direction of the translucent member, and is arranged so that the angles of the surfaces adjacent to each other along the circumferential direction with respect to the axial center are different from each other. From the projection surface along a second direction that intersects the first direction with the parallel light incident from the projection mirror provided on the inside in the radial direction of the translucent member. The angle between the projection prism portion to be projected and the outer peripheral surface of the translucent member with respect to the axial center when the translucent member is viewed from the outside in the radial direction is the same as the angle of the projection surface with respect to the axial center. The outer peripheral surface of the translucent member has a plurality of incident surfaces formed along the circumferential direction of the translucent member so as to be at an angle, and the parallel light projected from the light projection prism portion is emitted. A distance measuring sensor including a light receiving prism portion that changes the traveling direction of the reflected light according to the incident light reflected on the object onto the incident surface.
前記投光用プリズム部は、前記透光性部材の軸方向一方側の端部から軸方向他方側の端部までのうちの一部である第1軸方向領域に形成され、
前記受光用プリズム部は、前記透光性部材の軸方向一方側の端部から軸方向他方側の端部までのうちの前記第1軸方向領域以外の第2軸方向領域に形成される請求項1に記載の測距センサ。
The light projecting prism portion is formed in a first axial region which is a part of the translucent member from one end in the axial direction to the other end in the axial direction.
The light receiving prism portion is formed in a second axial region other than the first axial region from an end portion on one side in the axial direction of the translucent member to an end portion on the other side in the axial direction. Item 1. The ranging sensor according to item 1.
前記投光用プリズム部は、前記透光性部材の外周面に形成されている請求項1又は2に記載の測距センサ。 The distance measuring sensor according to claim 1 or 2, wherein the light projecting prism portion is formed on an outer peripheral surface of the translucent member. 前記受光用プリズム部により前記進行方向が変更された前記反射光を前記受光部に向けて反射する受光用ミラーが備えられ、
前記受光用ミラーは、前記投光用ミラーと一体回転するように構成されている請求項1から3のいずれか一項に記載の測距センサ。
A light receiving mirror for reflecting the reflected light whose traveling direction has been changed by the light receiving prism portion toward the light receiving portion is provided.
The distance measuring sensor according to any one of claims 1 to 3, wherein the light receiving mirror is configured to rotate integrally with the light projecting mirror.
前記投光用プリズム部は、前記透光性部材の周方向に沿って形成された平面を含む請求項1から4のいずれか一項に記載の測距センサ。 The distance measuring sensor according to any one of claims 1 to 4, wherein the light projecting prism portion includes a plane formed along the circumferential direction of the translucent member.
JP2016242353A 2016-12-14 2016-12-14 Distance measurement sensor Active JP6812776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016242353A JP6812776B2 (en) 2016-12-14 2016-12-14 Distance measurement sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016242353A JP6812776B2 (en) 2016-12-14 2016-12-14 Distance measurement sensor

Publications (2)

Publication Number Publication Date
JP2018096871A JP2018096871A (en) 2018-06-21
JP6812776B2 true JP6812776B2 (en) 2021-01-13

Family

ID=62632930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016242353A Active JP6812776B2 (en) 2016-12-14 2016-12-14 Distance measurement sensor

Country Status (1)

Country Link
JP (1) JP6812776B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6219168B1 (en) * 1999-12-20 2001-04-17 Xerox Corporation Single rotating polygon mirror with adjacent facets having different tilt angles
JP3802394B2 (en) * 2001-10-16 2006-07-26 オムロン株式会社 Automotive radar equipment
JP4040024B2 (en) * 2004-01-30 2008-01-30 オリンパス株式会社 Polygon mirror and mold for forming polygon mirror
US7280130B2 (en) * 2004-04-09 2007-10-09 Kabushiki Kaisha Toshiba Optical multi-beam scanning device and image forming apparatus
JP2007024928A (en) * 2005-07-12 2007-02-01 Nidec Sankyo Corp Light beam emitting apparatus and image forming apparatus
DE102005043931A1 (en) * 2005-09-15 2007-03-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. laser scanner
JP5072069B2 (en) * 2007-03-05 2012-11-14 シチズン電子株式会社 Light source device
JP5900722B2 (en) * 2011-05-18 2016-04-06 北陽電機株式会社 Scanning distance measuring device signal processing device, signal processing method, and scanning distance measuring device
US10649071B2 (en) * 2014-10-07 2020-05-12 Konica Minolta, Inc. Scanning optical system and radar
JP6616077B2 (en) * 2015-02-16 2019-12-04 株式会社トプコン Measuring device and 3D camera
US20190011539A1 (en) * 2015-12-24 2019-01-10 Konica Minolta Inc Light Projecting/Reception Unit And Radar

Also Published As

Publication number Publication date
JP2018096871A (en) 2018-06-21

Similar Documents

Publication Publication Date Title
WO2016056545A1 (en) Scanning optical system and light projection and reception device
US7557906B2 (en) Distance measurement instrument
JP2018529102A (en) LIDAR sensor
JP2016151422A (en) Measurement device and three-dimensional camera
JP2017129573A (en) Photoelectronic sensor and object detection method
JP6618042B2 (en) Emitter / receiver
JP2009236774A (en) Three dimensional ranging device
KR20180126927A (en) A eight-channel ridar
US20190011539A1 (en) Light Projecting/Reception Unit And Radar
WO2017135224A1 (en) Object detection device of optical scanning type
JP7240137B2 (en) Target device and measurement system
KR101556866B1 (en) Distance measuring device
JP2005121638A (en) Optoelectronic detection apparatus
JP2015129678A (en) Scanning optical system, optical scanning device, and ranging device
KR101918683B1 (en) LiDAR scanning device
JP6812776B2 (en) Distance measurement sensor
KR20180126963A (en) A eight-channel ridar
WO2019176749A1 (en) Scanning device and measuring device
JP6676974B2 (en) Object detection device
EP3364229B1 (en) Optical-scanning-type object detection device
JP7314661B2 (en) Optical scanning device, object detection device and sensing device
KR102038547B1 (en) A sixteen-channel ridar
JP6913422B2 (en) Surveying system
WO2017065049A1 (en) Optical-scanning-type object detection device
KR102636500B1 (en) Lidar system with biased 360-degree field of view

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201130

R151 Written notification of patent or utility model registration

Ref document number: 6812776

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151