JPH0267911A - Distance measuring apparatus - Google Patents

Distance measuring apparatus

Info

Publication number
JPH0267911A
JPH0267911A JP63219868A JP21986888A JPH0267911A JP H0267911 A JPH0267911 A JP H0267911A JP 63219868 A JP63219868 A JP 63219868A JP 21986888 A JP21986888 A JP 21986888A JP H0267911 A JPH0267911 A JP H0267911A
Authority
JP
Japan
Prior art keywords
light
measured
incident
height
photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63219868A
Other languages
Japanese (ja)
Other versions
JP2674129B2 (en
Inventor
Tomohide Hamada
智秀 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP21986888A priority Critical patent/JP2674129B2/en
Publication of JPH0267911A publication Critical patent/JPH0267911A/en
Application granted granted Critical
Publication of JP2674129B2 publication Critical patent/JP2674129B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To measure the distance with high accuracy by so arranging light beams as to be incident upon the surface to be measured at right angles and receiving light reflected at said surface to be measured from a perpendicular direction. CONSTITUTION:When light beams are found at one end on a light receiving surface of a photoreceptor 5, the one end on the receiving surface of the receptor 5 is conjugate with a position at a height H1 where incident light is radiated to a surface to be measured. On the other hand, when the light beams are found at the other end on the light receiving surface of the photoreceptor 5, the other end is conjugate with a position at a height H2 where the incident light is radiated to the surface to be measured. In the above condition, when a rotary reflecting mirror 4 is rotated in a direction shown by an arrow A to move the light beams from the one end to the other end on the receiving surface of the photoreceptor 5, one indicent position is found on the receiving surface of the photoreceptor 5 which is conjugate with an incident position of light beams on the surface to be measured having the height H1 to H2. Therefore, the height of the surface to be measured can be obtained in the range from H1 to H2 from the position on the receiving surface where the largest value of signals is received from the photoreceptor 5.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は距離測定装置、特に、光ビームを用いて被測定
面との距離を測定するものに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a distance measuring device, and particularly to one that measures the distance to a surface to be measured using a light beam.

(従来の技術) 従来のこの種の装置に係わる技術としては、三角測量に
基づいた特開昭52−162911号がある。
(Prior Art) As a conventional technology related to this type of device, there is Japanese Patent Application Laid-Open No. 162911/1983 based on triangulation.

このものは、レーザ光源からのレーザ光を投光レンズ、
揺動ミラーを介して斜め方向から被測定対象面に投光す
る投光光学系と、被測定対象面に光軸をほぼ垂直に設け
られた受光レンズ、及び受光レンズで集光されたレーザ
光を光電変換する光電変換素子を宵する受光光学系と、
を有し、揺動ミラーを回転してレーザ光の被測定対象面
への入射角を変え、受光素子から得られる信号が最大に
なったときのt3動ミラーの回転角θをもとめれば、受
光レンズの中心と揺動ミラーの回転中心との距離をdと
して、受光レンズの中心と被測定対象面までの距離りは
d/lanθで求めることができる。
This is a lens that emits laser light from a laser light source.
A light projection optical system that projects light onto the surface to be measured from an oblique direction via a swinging mirror, a light receiving lens whose optical axis is provided almost perpendicular to the surface to be measured, and a laser beam focused by the light receiving lens. a light-receiving optical system that includes a photoelectric conversion element that photoelectrically converts the
, and by rotating the swinging mirror to change the angle of incidence of the laser beam on the surface to be measured, and finding the rotation angle θ of the t3 moving mirror when the signal obtained from the light-receiving element becomes maximum, Letting d be the distance between the center of the light receiving lens and the center of rotation of the swinging mirror, the distance between the center of the light receiving lens and the surface to be measured can be determined by d/lanθ.

(発明が解決しようとする問題点) このような三角測量に基づいた装置は、被測定対象面へ
のレーザ光の投光方向と受光光学系の光軸とはある角度
をもっているので、被測定対象面が鏡面であったり、表
面荒さの小さい場合(研削面やラップ面)には、受光光
学系に反射光が返って来す、測定不能となりたり、返っ
て来たとしてもS/Nの非常に悪い測定となり誤差が大
きくなっていた。
(Problem to be Solved by the Invention) In a device based on such triangulation, the direction in which the laser beam is projected onto the surface to be measured and the optical axis of the light receiving optical system are at a certain angle. If the target surface is a mirror surface or has small surface roughness (ground surface or lapped surface), the reflected light may return to the receiving optical system, making measurement impossible, or even if it does return, the S/N may be low. This resulted in very poor measurements and large errors.

そこで本発明は、被測定対象面の表面性状を選ばず、す
なわち、被測定対象面が拡散面であるのみならず、正反
射成分の強い金属であったり、またガラスのような鏡面
でありでも、非接触にて高精度測定を実現できる装置を
提供することを目的とする。
Therefore, the present invention does not select the surface properties of the surface to be measured, that is, the surface to be measured can be not only a diffusive surface, but also a metal with a strong specular reflection component, or a mirror surface such as glass. The purpose of this invention is to provide a device that can achieve high precision measurement without contact.

(問題点を解決する為の手段) 本発明は、ビームスプリッタ(1)と、前記ビームスプ
リッタ(1)と被測定対象面(6)との間に配設される
対物レンズ(2)と、前記ビームスプリッタ(1)、前
記対物レンズ(2)を介して前記被測定対象面(6)上
に光ビームを投光する光1lliI装置(3)と、前記
光源装置(3)により投光された光ビームの前記被測定
対象面(6)での反射光を前記対物レンズ(2)、前記
ビームスブリック(1)を介して入光し、反射ビームの
方向を連続的に変化させる回転反射鏡(4)と、前記回
転反射鏡(4)による反射ビームを入光し、入射ビーム
の大きさを表す信号を出力する受光袋W(5)と、前記
入射ビームの大きさが最も小さくなったときの前記入射
ビームの位置を求め、この位置から前記測定対象面(6
)の位置に係わる信号を出力する検出装置(20)〜(
27)とを有することを特徴とする距離測定装置である
(Means for Solving the Problems) The present invention includes a beam splitter (1), an objective lens (2) disposed between the beam splitter (1) and a surface to be measured (6), A light device (3) that projects a light beam onto the surface to be measured (6) via the beam splitter (1) and the objective lens (2), and a light beam projected by the light source device (3). a rotating reflector that allows the light beam reflected by the surface to be measured (6) to enter through the objective lens (2) and the beam block (1), and continuously changes the direction of the reflected beam; (4), a light-receiving bag W (5) that receives the beam reflected by the rotating reflector (4) and outputs a signal representing the size of the incident beam; The position of the incident beam at that time is determined, and from this position the measurement target surface (6
) detecting devices (20) to (20) that output signals related to the position of (
27).

(作 用) 本発明においては、被測定対象面上に光ビームを投光す
る投光光学系(光源装置、ビームスプリッタ、対物レン
ズ)と、被測定対象面からの反射光を受光する受光光学
系(対物レンズ、ビームスプリンタ、回転反射鏡、受光
装置)とを共通の対物レンズを用いることによって同軸
になすことができるので、被測定対象面が鏡面や鏡面に
近い面、すなわち、金属加工片等の金属を精度よく測定
することかでき、かつ拡散面に関しては、面の傾きに対
する許容幅が大きい、という作用効果がある。
(Function) The present invention includes a light projection optical system (light source device, beam splitter, objective lens) that projects a light beam onto a surface to be measured, and a light receiving optical system that receives reflected light from the surface to be measured. By using a common objective lens, the system (objective lens, beam splinter, rotating reflector, light receiving device) can be made coaxial. It has the advantage of being able to measure metals such as metals with high accuracy, and with respect to the diffusion surface, there is a large tolerance for the inclination of the surface.

(実施例) 第1図(a)、(b)は、本発明の実施例の光学系を示
す図であって、ビームスプリッタ1と、ビームスプリッ
タ1と被測定対象面6との間に配設される対物レンズ2
と、ビームスプリッタ1及び対物レンズ2を介して被測
定対象面6上に光ビームを投光する光源装置3と、光源
装置3から射出された光ビームの被測定対象面6での反
射光を対物レンズ2、ビームスプリッタlを介して入光
し、反射ビームの方向を連続的に変化させる回転反射饋
4と、回転琴射鏡4による反射ビ°−ムを入光し、入射
ビームの大きさを表す信号を出力する受光袋′It5と
、が示されている。
(Embodiment) FIGS. 1(a) and 1(b) are diagrams showing an optical system according to an embodiment of the present invention. Objective lens 2 installed
a light source device 3 that projects a light beam onto a surface to be measured 6 via a beam splitter 1 and an objective lens 2; The light enters through the objective lens 2 and the beam splitter l, and the reflected beam is reflected by the rotary reflector 4, which continuously changes the direction of the reflected beam, and the rotary harp reflector 4. A light-receiving bag 'It5 is shown that outputs a signal representing the brightness.

ビームスプリッタ1としては、ハーフプリズムの如き光
分割部材が用いられ、光源装置、3としては、レーザ光
源、及びレーザ光源からのレーザ光を対物レンズ2と共
に第1図に示した如き細い平行ビームとして被測定対象
面に投光できるようレンズ系が設けられ、回転反射14
としては、回転中心ρによって回転もしくは揺動される
べく、モータ、ガルバノメータ等の公知の駆動装置によ
り回転駆動されるものが用いられ、受光装置としては、
CCD、PSDの如き位置検出部材が用いられている。
As the beam splitter 1, a light splitting member such as a half prism is used, and as the light source device 3, a laser light source and the laser light from the laser light source are converted into a narrow parallel beam as shown in FIG. 1 together with an objective lens 2. A lens system is provided to project light onto the surface to be measured, and a rotational reflection 14
As a light receiving device, one that is rotationally driven by a known drive device such as a motor or a galvanometer is used so as to be rotated or oscillated by a rotation center ρ.
Position detection members such as CCD and PSD are used.

而して、第1図(a)のように、光ビームが受光装置5
の受光面上の一端にあるときに、受光装置5の受光面上
の一端と高さH,にある被測定対象面の入射光の当たっ
ている位置とが共役になっており、また、第1図(b)
のように、光ビームが受光装置5の受光面上の他端にあ
るときに、受光装置5の受光面上の他端と高さH,にあ
る被測定対象面の入射光の当たっている位置とが共役に
なっているとすれば、第1図(a)の状態から回転反射
鏡4が矢印Aの方向へ回転して、光ビームが受光装置5
の受光面上の一端から他端(B方向)へ移動すると、高
さHlからH!にある被測定対象面の光ビームの入射位
置に共役になる受光装置5の受光面上の光ビーム入射位
置が一つあることになる、このとき、受光装置5の受光
面上の光ビームの径は最小になり、この最小光ビームの
径よりも、受光幅の狭い受光装W5であれば、受光装置
5からの出力信号は最大になる。
Then, as shown in FIG. 1(a), the light beam reaches the light receiving device 5.
When the light-receiving surface of the light-receiving device 5 is located at one end of the light-receiving surface, one end of the light-receiving surface of the light-receiving device 5 is conjugate with the position of the surface to be measured at the height H, which is hit by the incident light. Figure 1 (b)
As shown in FIG. If the positions are conjugate, the rotating reflector 4 rotates in the direction of arrow A from the state shown in FIG.
When moving from one end to the other end (direction B) on the light-receiving surface of , the height changes from Hl to H! There is one light beam incident position on the light receiving surface of the light receiving device 5 that is conjugate to the light beam incident position on the surface to be measured located at . The diameter becomes the minimum, and if the light receiving device W5 has a light receiving width narrower than the diameter of this minimum light beam, the output signal from the light receiving device 5 becomes the maximum.

従って、受光装置からの信号の最大値を与える受光面上
の位置、もしくは回転反射鏡4の回転位!(角度)から
被測定対象面の高さが高さHlからH!の範囲で求まる
ことになる。
Therefore, the position on the light-receiving surface that gives the maximum value of the signal from the light-receiving device or the rotational position of the rotating reflector 4! (angle), the height of the surface to be measured is from height Hl to H! It will be found within the range of .

第2図は、第1図の光学系と共に用いられる電気回路の
ブロック図である。
FIG. 2 is a block diagram of an electrical circuit used with the optical system of FIG. 1.

第2図において1、パルス発生器20からのパルスは、
CCD50の駆動装置21に入力され、駆動装置21は
周知の如くスタートパルスS、と、このスタートパルス
S1に引き続く走査パルスS2とをCCD50に入力す
る。その結果、CCD50はその光電変換部が一端から
他端にわたって順次走査され、これら光電変換部の光電
変換信号が時系列的にCCD50から出力されることに
なる。
In FIG. 2, 1, the pulse from the pulse generator 20 is
The driving device 21 inputs a start pulse S and a scanning pulse S2 following the start pulse S1 to the CCD 50, as is well known. As a result, the CCD 50 is sequentially scanned from one end of the photoelectric conversion section to the other end, and the photoelectric conversion signals of these photoelectric conversion sections are outputted from the CCD 50 in time series.

一方、駆動装ff21からのスタートパルスS。On the other hand, the start pulse S from the drive device ff21.

と走査パルスS2とはカウンタ22にも入力され、前者
はリセットパルス、後者の数はCCD50の光電変換部
の位置を示す値として用いられる。すなわち、スタート
パルスにてリセットされた後のカウンタ22の計数値は
、CCD50から出力されている充電変換信号の得られ
た充電変換部の番地にほかならない。
and scanning pulse S2 are also input to the counter 22, where the former is used as a reset pulse and the latter number is used as a value indicating the position of the photoelectric conversion section of the CCD 50. That is, the count value of the counter 22 after being reset by the start pulse is nothing but the address of the charge conversion section from which the charge conversion signal outputted from the CCD 50 was obtained.

また、CCD50の出力信号は、サンプルホールド回路
、ローパスフィルタ23に入力されて、入射ビームの大
きさが最も小さくなうたときの光電変換部の位置に対応
した時間において、ピークを有するアナログ的な信号と
なる。ローパスフィルタ23の出力信号は微分回路24
に入力され、ピーク位置においてゼロクロスとなる微分
信号に変換される。
The output signal of the CCD 50 is input to a sample-and-hold circuit and a low-pass filter 23, and is an analog signal having a peak at a time corresponding to the position of the photoelectric conversion unit when the size of the incident beam is the smallest. becomes. The output signal of the low-pass filter 23 is transmitted to the differentiating circuit 24.
and is converted into a differential signal that crosses zero at the peak position.

この微分信号は、波形整形回路25に入力され、波形整
形回路25は人力信号のゼロクロス点においてパルスを
一つ発生する。波形整形回路25から出力されるパルス
はゲート回路26のゲート端子に入力され、ゲート回路
26の開閉を制御する。
This differential signal is input to the waveform shaping circuit 25, and the waveform shaping circuit 25 generates one pulse at the zero-crossing point of the human input signal. The pulses output from the waveform shaping circuit 25 are input to the gate terminal of the gate circuit 26 to control opening and closing of the gate circuit 26.

ゲート回路26の入力端子には、カウンタ22の計数値
が入力されているから、ゲート回路26からは波形整形
回路25からパルスが生じたとき、すなわち、入射ビー
ムの大きさが最も小さくなったときの入射ビームの入射
位置にある光電変換部の番地に対応した計数値が出力さ
れることになる。
Since the count value of the counter 22 is input to the input terminal of the gate circuit 26, the gate circuit 26 outputs the signal when a pulse is generated from the waveform shaping circuit 25, that is, when the size of the incident beam becomes the smallest. A count value corresponding to the address of the photoelectric conversion unit at the incident position of the incident beam is output.

ゲート回路26から出力された計数値は、マイクロコン
ビニーり等の演算装置27によって被測定対象面の高さ
に変換される。光電変換部の番地、すなわちカウンタ2
2の計数値と被測定対象面の高さとは、一対一に対応し
ているから、演算装置27は予め計数値と被測定対象面
の高さとの対応表を備えており、入力された計数値に対
応した被測定対象面の高さを対応表から読み出すように
している。このようにして演算された被測定対象面の高
さは、表示装置28に表示される。
The count value output from the gate circuit 26 is converted into the height of the surface to be measured by an arithmetic device 27 such as a micro convenience store. The address of the photoelectric conversion unit, that is, counter 2
Since there is a one-to-one correspondence between the counted value in step 2 and the height of the surface to be measured, the arithmetic unit 27 is provided with a correspondence table between the counted value and the height of the surface to be measured in advance, and the inputted measured value is The height of the surface to be measured corresponding to the numerical value is read out from the correspondence table. The height of the surface to be measured calculated in this way is displayed on the display device 28.

なお、以上の実施例では、受光装置5としてCCD50
を用いた例を上げたが、受光装置5としてはCCD50
のように光量と共に光の入射位置まで検出できるものに
かぎらない。すなわち、回転反射鏡4の回転により光ビ
ームが走査する受光面の範囲をカバーするように、太陽
電池のような光電変換素子を用いることもでき、この場
合には、回転反射鏡4の回転位置を知るように、回転反
射鏡4にロータリーエンコーダの如き回転検出器を設け
ればよい、そして、受光装N5の出力信号のピーク位置
における回転反射鏡4の回転位置を求めれば、この回転
位置が被測定対象面の高さに対応しているので、受光装
′115の出力信号のピーク位置における被測定対象面
の高さを求めることができる。このような構成では、受
光装置5は入射光量に応じた出力が得られるものでよく
、冑価なCODやPSDを使用せずに、安価な太陽電池
等が使用でき、信号処理系も簡素化されるので、装置全
体が安価になるという利点がある。
In addition, in the above embodiment, the CCD 50 is used as the light receiving device 5.
Although we have given an example using a CCD50 as the light receiving device 5,
It is not limited to those that can detect both the amount of light and the position of incidence of the light. In other words, a photoelectric conversion element such as a solar cell may be used so that the range of the light receiving surface scanned by the light beam is covered by the rotation of the rotating reflecting mirror 4. In this case, the rotational position of the rotating reflecting mirror 4 may be To know this, it is sufficient to provide a rotation detector such as a rotary encoder on the rotating reflector 4, and if the rotational position of the rotating reflector 4 at the peak position of the output signal of the light receiving device N5 is determined, this rotational position is Since it corresponds to the height of the surface to be measured, the height of the surface to be measured at the peak position of the output signal of the light receiving device '115 can be determined. In such a configuration, the light receiving device 5 only needs to be able to obtain an output according to the amount of incident light, inexpensive solar cells, etc. can be used instead of expensive CODs and PSDs, and the signal processing system can also be simplified. This has the advantage that the entire device is inexpensive.

また、以上の実施例において、受光装置5の受光面の傾
きを変えることで、容易に測定感度(分解能)を変える
ことができ、さらに、測定範囲を大きく取りたい場合に
も、受光素子を長くし、回転反射鏡4の揺動範囲を大き
くするだけで済み、他の光学系等の構成要素を変更する
必要がない。
Furthermore, in the above embodiments, the measurement sensitivity (resolution) can be easily changed by changing the inclination of the light-receiving surface of the light-receiving device 5; However, it is only necessary to increase the swinging range of the rotating reflecting mirror 4, and there is no need to change other components such as the optical system.

(発明の効果) 以上のように、本発明によれば、被測定対象面に対し、
光ビームを垂直に入射し、垂直な方向から被測定対象面
での反射光を受光する構成であるので、鏡面や鏡面に近
い被測定対象面からの金属加工面等の粗面のものに対し
てまで、様々な面性状の測定面の測定が行なえる。
(Effect of the invention) As described above, according to the present invention, for the surface to be measured,
The configuration is such that the light beam is incident vertically and the reflected light from the surface to be measured is received from the perpendicular direction, so it can be used against rough surfaces such as metal processed surfaces from mirror or near-mirror surfaces. It is possible to measure surfaces with various surface properties.

さらに、本発明では、被測定対象面の位置が変わり測定
距離が変化した場合でも、絶えず受光面上に反射ビーム
の結像している位置があり、かつ、いつもその結像して
いる状態にて距離測定を行っているので、被測定対象の
表面性状(スペックルパターン等)の影響を最小にでき
、精度の高い測定を行うことができる。
Furthermore, in the present invention, even if the position of the surface to be measured changes and the measurement distance changes, there is always a position where the image of the reflected beam is formed on the light receiving surface, and the state where the image is always formed is maintained. Since the distance measurement is performed using the same method, the influence of the surface texture (speckle pattern, etc.) of the object to be measured can be minimized, and highly accurate measurement can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)は、本発明の一実施例の距離測定
装置の光学系を示す図であって、異なる貰さの被測定対
象面と共役な状態にそれぞれの光学系が設定されている
様子を示しており、第2図は、第1図(a)、(b)の
光学系と共に用いられる電気回路のブロック図である。 (主要部分の符号の説明) 1・・・・・・ビームスプリッタ、 2・・・・・・対物レンズ、 3・・・・・・光源装置、 4・・・・・・回転反射鏡、 5・・・・・・受光装置。
FIGS. 1(a) and 1(b) are diagrams showing optical systems of a distance measuring device according to an embodiment of the present invention, in which each optical system is placed in a conjugate state with a different measured object surface. FIG. 2 is a block diagram of an electric circuit used together with the optical system shown in FIGS. 1(a) and 1(b). (Explanation of symbols of main parts) 1... Beam splitter, 2... Objective lens, 3... Light source device, 4... Rotating reflector, 5 ...... Light receiving device.

Claims (1)

【特許請求の範囲】[Claims] ビームスプリッタと、前記ビームスプリッタと被測定対
象面との間に配設される対物レンズと、前記ビームスプ
リッタ、前記対物レンズを介して前記被測定対象面上に
光ビームを投光する光源装置と、前記光源装置により投
光された光ビームの前記被測定対象面での反射光を前記
対物レンズ、前記ビームスプリッタを介して入光し、反
射ビームの方向を連続的に変化させる回転反射鏡と、前
記回転反射鏡による反射ビームを入光し、入射ビームの
大きさを表す信号を出力する受光装置と、前記入射ビー
ムの大きさが最も小さくなったときの前記入射ビームの
位置を求め、該位置から前記測定対象面の位置に係わる
信号を出力する検出装置と、を有することを特徴とする
距離測定装置。
a beam splitter, an objective lens disposed between the beam splitter and the surface to be measured, and a light source device that projects a light beam onto the surface to be measured via the beam splitter and the objective lens; , a rotating reflector that allows the reflected light of the light beam projected by the light source device on the surface to be measured to enter through the objective lens and the beam splitter, and continuously changes the direction of the reflected beam; , a light receiving device that receives the beam reflected by the rotating reflecting mirror and outputs a signal representing the size of the incident beam, and a light receiving device that determines the position of the incident beam when the size of the incident beam becomes the smallest; A distance measuring device comprising: a detection device that outputs a signal related to the position of the surface to be measured from a position.
JP21986888A 1988-09-02 1988-09-02 Distance measuring device Expired - Lifetime JP2674129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21986888A JP2674129B2 (en) 1988-09-02 1988-09-02 Distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21986888A JP2674129B2 (en) 1988-09-02 1988-09-02 Distance measuring device

Publications (2)

Publication Number Publication Date
JPH0267911A true JPH0267911A (en) 1990-03-07
JP2674129B2 JP2674129B2 (en) 1997-11-12

Family

ID=16742314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21986888A Expired - Lifetime JP2674129B2 (en) 1988-09-02 1988-09-02 Distance measuring device

Country Status (1)

Country Link
JP (1) JP2674129B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010197210A (en) * 2009-02-25 2010-09-09 Tokyo Gas Co Ltd Surface shape measuring method and device therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010197210A (en) * 2009-02-25 2010-09-09 Tokyo Gas Co Ltd Surface shape measuring method and device therefor

Also Published As

Publication number Publication date
JP2674129B2 (en) 1997-11-12

Similar Documents

Publication Publication Date Title
US4568182A (en) Optical system for determining the position of a cursor
JP2586121B2 (en) Rotary encoder origin detection system
JPS6249562B2 (en)
EP0110937B1 (en) Apparatus for measuring the dimensions of cylindrical objects by means of a scanning laser beam
US4521113A (en) Optical measuring device
GB2100424A (en) Methods and apparatus for scanning an object
JPH0267911A (en) Distance measuring apparatus
JP2865337B2 (en) Optical measuring device
JPH0529887B2 (en)
JPS62502421A (en) Equipment for orienting, inspecting and/or measuring two-dimensional objects
JP2000162307A (en) Laser tracking apparatus for locating position of reactor vessel-inspecting robot
SU1688165A1 (en) Device for determining shaft rotation parameters
JPS59212703A (en) Detector for position of spot light
JPH0357914A (en) Optical probe
JPH09113234A (en) Sensor for measuring two-dimensional shape
SU1024709A1 (en) Non-flatness checking device
JPH04130239A (en) Apparatus for measuring outward position and inward position of dynamic surface
JPH0331367B2 (en)
JPS5932723B2 (en) Object surface defect detection device
JPS61231407A (en) Triangular range finder apparatus
JPH08166209A (en) Polygon mirror evaluating device
JPH0318887Y2 (en)
SU1589059A1 (en) Apparatus for adjusting the axis of radiator of optical unit relative to surfaces of the base
JPS6360321B2 (en)
Wieland et al. Computer-synchronized 3D triangulation sensor for robot vision

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 12