JPS5932723B2 - Object surface defect detection device - Google Patents

Object surface defect detection device

Info

Publication number
JPS5932723B2
JPS5932723B2 JP11796778A JP11796778A JPS5932723B2 JP S5932723 B2 JPS5932723 B2 JP S5932723B2 JP 11796778 A JP11796778 A JP 11796778A JP 11796778 A JP11796778 A JP 11796778A JP S5932723 B2 JPS5932723 B2 JP S5932723B2
Authority
JP
Japan
Prior art keywords
light
mirror
light beam
reflected
parabolic mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11796778A
Other languages
Japanese (ja)
Other versions
JPS5544926A (en
Inventor
勝也 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP11796778A priority Critical patent/JPS5932723B2/en
Publication of JPS5544926A publication Critical patent/JPS5544926A/en
Publication of JPS5932723B2 publication Critical patent/JPS5932723B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

【発明の詳細な説明】 本発明は物体表面の欠点検出装置に係り、特に光学系装
置により物体表面精度を測定し、物体表面の欠点を検出
するようにした物体表面の欠点検出装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for detecting defects on the surface of an object, and more particularly to an apparatus for detecting defects on the surface of an object that measures the accuracy of the object surface using an optical system and detects defects on the surface of the object. be.

一般に、光学系装置は被測定物体の表面の欠点、たとえ
ば表面に付着しているヨゴレ、傷、凹凸および心円度を
測定試験したり、ギヤーのような角度的な割出し精度の
測定など、多方面にわたつて利用されている。
In general, optical systems are used to measure and test defects on the surface of an object to be measured, such as dirt, scratches, irregularities, and circularity, and to measure angular indexing accuracy such as gears. It is used in many ways.

光学系装置によつて物体表面の精度を測定試験するにあ
たつて特に重要な要件は、物体表面の状態を高精度に検
出したり測定するために物体表面上に極小な光線スポッ
トを形成することである。また、極小な光線スポットを
得るためには、測定光線が単一光線でしかもこの単一光
線により平行光束を得ることが必要である。従来、この
種の光学系装置を用いた物体表面の欠点検出装置として
は種々のものが提案されているが、いずれのものも上述
した要件を満たすことができず、検出データの面で信頼
性に欠けるものが多い。本発明は上記の点に鑑みてなさ
れたもので、その目的は検出操作が容易であり、高精度
な検出データが得られる高信頼性の物体表面の欠点検出
装置を提供することであつて、以下に本発明の一実施例
を添付図面を参照して説明する。図面において、1は光
源部であるレーザー光源であつて、このレーザー光源1
の前方には所定距離だけ離間した位置に、光線屈折部た
とえば第1の平面鏡2が、レーザー光源1の出力光線1
、の光路に対し所定角度θ0だけ傾斜させて設置されて
いる。
A particularly important requirement when measuring and testing the accuracy of an object's surface using an optical system is to form an extremely small light spot on the object's surface in order to detect and measure the condition of the object's surface with high precision. That's true. Furthermore, in order to obtain a very small light spot, it is necessary that the measuring light beam be a single light beam and that this single light beam produce a parallel light beam. Various devices have been proposed to detect defects on the surface of objects using this type of optical device, but none of them have been able to meet the above requirements and have been lacking in reliability in terms of detected data. There are many things that are lacking. The present invention has been made in view of the above points, and its purpose is to provide a highly reliable defect detection device on the surface of an object that is easy to detect and can obtain highly accurate detection data. An embodiment of the present invention will be described below with reference to the accompanying drawings. In the drawing, 1 is a laser light source which is a light source part, and this laser light source 1
In front of the laser light source 1, a light beam refracting unit, for example, a first plane mirror 2, is located at a predetermined distance apart.
, and is installed so as to be inclined by a predetermined angle θ0 with respect to the optical path of .

この場合、第1の平面鏡2の反射面はレーザー光源1の
出力光線11に対してθ1=450になるように設定さ
れている。3は中心部が第1の平面鏡2からの反射光線
12の光路上に位置し、しかも光線12に対して所定角
度θ2だけ傾斜した状態で設置された半透過鏡いわゆる
ハーフミラーであり、該半透過鏡3の一平面中心部には
第2の平面鏡4が設けられている。
In this case, the reflection surface of the first plane mirror 2 is set so that θ1=450 with respect to the output beam 11 of the laser light source 1. Reference numeral 3 designates a so-called half mirror, which is a semi-transmissive mirror whose center portion is located on the optical path of the reflected light beam 12 from the first plane mirror 2 and which is inclined at a predetermined angle θ2 with respect to the light beam 12. A second plane mirror 4 is provided at the center of one plane of the transmitting mirror 3.

この第2の平面鏡4としては反射率の良い一般の平面鏡
を取付けるか、もしくはコーティングされた反射鏡であ
つてもよい。半透過鏡3の一平面側には、第2の平面鏡
4による反射光線13の光路と中心軸が一致するように
投光用凹面鏡たとえば底面部が開口した回転体パラボラ
鏡5が設置されている。
This second plane mirror 4 may be a general plane mirror with good reflectivity, or may be a coated reflecting mirror. On one plane side of the semi-transparent mirror 3, a concave light projecting mirror, such as a rotating parabolic mirror 5 with an open bottom, is installed so that its central axis coincides with the optical path of the reflected light beam 13 by the second plane mirror 4. .

この投光用パラボラ鏡5の内側には、反射面が該パラボ
ラ鏡5の焦点f1に位置し、光線13に対して傾斜させ
た状態で走査鏡6が設置され、走査鏡6は走査用回転駆
動部7たとえばモータの回転軸8に取付けられており、
この走査鏡6としては平面鏡又はプリズムを用いること
ができる。半透過鏡3の他方の側には投光用パラボラ鏡
5と中心軸が一致するように凹面鏡たとえば受光用回転
体パラボラ鏡9が設置されており、この受光用パラボラ
鏡9の光軸10上に被測定物体11が置かれる。
Inside the parabolic mirror 5 for projection, a scanning mirror 6 is installed with a reflective surface located at the focal point f1 of the parabolic mirror 5 and inclined with respect to the light beam 13, and the scanning mirror 6 rotates for scanning. The drive unit 7 is attached to the rotating shaft 8 of a motor, for example,
As this scanning mirror 6, a plane mirror or a prism can be used. On the other side of the semi-transmissive mirror 3, a concave mirror such as a rotating parabolic mirror 9 for receiving light is installed so that its center axis coincides with that of the parabolic mirror 5 for projecting light. The object to be measured 11 is placed.

また、受光用パラボラ鏡9からの反射光線が半透過鏡3
によつて反射させられる光束の光軸上には、集光レンズ
12が設置されており、この集光レンズ12の焦点F3
の近傍には受光器13が設置されている。受光器13は
光信号を電気信号に変換する光電変換部やその他の制御
回路部を有するものである。次に、上記実施例によつて
本検出装置の動作を説明する。
In addition, the reflected light from the light receiving parabolic mirror 9 is transmitted to the semi-transmissive mirror 3.
A condensing lens 12 is installed on the optical axis of the light beam reflected by the condensing lens 12, and the focal point F3 of this condensing lens 12 is
A light receiver 13 is installed near the. The light receiver 13 has a photoelectric conversion section that converts an optical signal into an electrical signal and other control circuit sections. Next, the operation of the present detection device will be explained using the above embodiment.

レーザー光源1からの光線11は第1の平面鏡2に入射
されると、該第1の平面鏡2により直角方向に屈折反射
され、該反射光線112は半透過鏡3の中央部に設けら
れた第2の平面鏡4に入射して、さらに90け屈折して
反射する。第2の平面鏡4からの反射光線13は走査鏡
6に入射し、904屈折して投光用パラボラ鏡5の反射
面に向かつて反射する光線14となる。この時、モータ
7により走査鏡6を矢印15に示す如く回転させると、
光線14は放射円状の軌跡L1を形成する。この放射円
状の光線14群は投光用パラボラ鏡5により光軸10に
対して平行方向に反射屈折させられ、光線15群からな
るリング状の光束L2が形成される。光束L2は半透過
鏡3を透過した後、受光用パラボラ鏡9に入射してさら
に屈折し、光線16群からなる光束L3がパラボラ鏡9
の焦点F2に向かつて集束する。この集束光内に被測定
物体11が置かれていると、該被測定物体11の外周面
が走査照射される。こ\で被測定物体11を矢印16に
示す如く光軸10に沿つて移動させれば、被測定物体1
1の外周部を走査することができる。この走査時に被測
定物体11の外周面が無欠点であると、被測定物体11
の外周面からは検出反射光線17が光線16と同じ光路
を通つて再び受光用パラボラ鏡9の反射面に入光し、検
出光束L5が得られる。検出光束L5は半透過鏡3によ
つて直角方向に屈折させられ、集光レンズ12に入射す
る。集光レンズ12は光束L5を集束して集束光L6を
形成し、焦点F3に集光する。この集光された光点は受
光器13により検出され、たとえば光電変換器などによ
り電気信号に変換される。受光器13の出力信号Pは表
示制御部14に導びかれる。表示制御部14としてオシ
ロスコープやその他の信号変換器等を使用すれば、被測
定物体11の表面状態を表示したり、他の機器の制御信
号を得ることが可能である。一方、被測定物体11の表
面に欠点が存在するとき、被測定物体11からの反射光
線が散乱されたり吸収されて受光器13に入射される光
量が少なくなるから、表示制御部14が前記欠点を検出
表示したり、所望の制御信号を発生して検出できること
になる。なお、上記実施例において、レーザー光源1か
らの出力光線11を直接半透過鏡3上の第2の平面鏡4
に入射できるように実施すれば、第1の平面鏡2を省略
することも可能である。以上説明したように、本検出装
置によれば、走査光線としてレーザー光線を使用したか
ら光走査するにあたつて散乱、吸収による光量の変化が
なく、高精度の光走査を遂行できる。
When the light beam 11 from the laser light source 1 is incident on the first plane mirror 2, it is refracted and reflected in the right angle direction by the first plane mirror 2. The light enters the plane mirror 4 of No. 2, is further refracted by 90 times, and is reflected. The reflected light ray 13 from the second plane mirror 4 enters the scanning mirror 6, is refracted 904, and becomes a light ray 14 that is reflected toward the reflecting surface of the light projecting parabolic mirror 5. At this time, when the scanning mirror 6 is rotated as shown by the arrow 15 by the motor 7,
The light ray 14 forms a radial circular trajectory L1. This group of 14 radial circular light rays is reflected and refracted by the projection parabolic mirror 5 in a direction parallel to the optical axis 10, and a ring-shaped light beam L2 consisting of 15 groups of light rays is formed. After the light beam L2 passes through the semi-transmissive mirror 3, it enters the light-receiving parabolic mirror 9 and is further refracted, and the light beam L3 consisting of 16 groups of light rays passes through the parabolic mirror 9.
is focused toward the focal point F2. When the object to be measured 11 is placed within this focused light, the outer peripheral surface of the object to be measured 11 is scanned and irradiated. Now, if the object to be measured 11 is moved along the optical axis 10 as shown by the arrow 16, the object to be measured 1
1 can be scanned. If the outer peripheral surface of the object to be measured 11 is defect-free during this scanning, the object to be measured 11
From the outer peripheral surface of the detection reflected light beam 17 passes through the same optical path as the light beam 16 and enters the reflective surface of the light-receiving parabolic mirror 9 again, yielding a detection light beam L5. The detection light beam L5 is refracted in the right angle direction by the semi-transmissive mirror 3 and enters the condenser lens 12. The condenser lens 12 converges the light beam L5 to form a convergent light L6, which is condensed at a focal point F3. This focused light spot is detected by the light receiver 13 and converted into an electrical signal by, for example, a photoelectric converter. The output signal P of the light receiver 13 is guided to the display control section 14. If an oscilloscope or other signal converter is used as the display control section 14, it is possible to display the surface condition of the object to be measured 11 and obtain control signals for other devices. On the other hand, when a defect exists on the surface of the object to be measured 11, the reflected light from the object to be measured 11 is scattered or absorbed, and the amount of light incident on the light receiver 13 decreases. This means that it can be detected and displayed, or a desired control signal can be generated and detected. In the above embodiment, the output beam 11 from the laser light source 1 is directly transmitted to the second plane mirror 4 on the semi-transparent mirror 3.
It is also possible to omit the first plane mirror 2 if it is implemented so that the light can be incident on the beam. As explained above, according to the present detection device, since a laser beam is used as the scanning beam, there is no change in the amount of light due to scattering or absorption during optical scanning, and highly accurate optical scanning can be performed.

また、被測定物体11の表面を走査検出する場合に走査
鏡6を回転させてリング状の光束を得るようにしたから
、操作は測定用試料を挿入するだけで済み、検出作業が
容易にして高精度の測定が可能になるし、かつ、走査用
光束発生部においてパラボラ鏡5を用いると共に、検出
光発生部においてもパラボラ鏡9を用いたので、光束を
平行に投光および受光でき、極小な光線スポツトが得ら
れて細部の欠点を高精度に検出できる等の利点があり、
特に円筒状の被測定物体の検出装置としては極めて有効
である。
In addition, when scanning and detecting the surface of the object to be measured 11, the scanning mirror 6 is rotated to obtain a ring-shaped light beam, so the operation is only required to insert the measurement sample, making the detection work easier. High-precision measurement is possible, and since the parabolic mirror 5 is used in the scanning light flux generation section and the parabolic mirror 9 is also used in the detection light generation section, the light flux can be emitted and received in parallel, making it extremely small. It has the advantage of being able to obtain a bright light spot and detecting detailed defects with high precision.
It is particularly effective as a detection device for cylindrical objects to be measured.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示す構成図である。 The drawing is a configuration diagram showing an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 レーザー光源部からの単一光線の光路に対して傾斜
配置され中央部に前記単一光線を屈折させる全反射部を
有する半透過鏡と、この半透過鏡の一方の面から所定間
隔離間して設置され前記全反射部からの反射光線を直角
方向に屈折させる走査鏡と、この走査鏡を回転させる回
転駆動部と、前記半透過鏡の一方の面から所定間隔離間
して設置され前記走査鏡の回転によりリング状の平行光
束を発生させる投光用パラボラ鏡と、前記半透過鏡に対
して前記投光用パラボラ鏡と光軸を同一にして反対側に
設置された受光用パラボラ鏡と、この受光用パラボラ鏡
を介して被測定物体の表面から反射される反射光束を集
束させる集光レンズと、この集光レンズにより集光され
た光を受光し所望の電気信号に変換する受光器とにより
構成したことを特徴とする物体表面の欠点検出装置。
1. A semi-transmissive mirror that is arranged obliquely with respect to the optical path of a single beam from a laser light source and has a total reflection section in the center that refracts the single beam; a scanning mirror that is installed at a distance and refracts the reflected light beam from the total reflection section in a right angle direction; a rotation driving section that rotates the scanning mirror; a light projecting parabolic mirror that generates a ring-shaped parallel light beam by rotating the mirror; and a light receiving parabolic mirror that is installed on the opposite side of the semi-transmissive mirror with the same optical axis as the light projecting parabolic mirror. , a condenser lens that converges the reflected light beam reflected from the surface of the object to be measured via the light-receiving parabolic mirror, and a light receiver that receives the light condensed by the condenser lens and converts it into a desired electrical signal. An apparatus for detecting defects on the surface of an object, characterized by comprising:
JP11796778A 1978-09-27 1978-09-27 Object surface defect detection device Expired JPS5932723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11796778A JPS5932723B2 (en) 1978-09-27 1978-09-27 Object surface defect detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11796778A JPS5932723B2 (en) 1978-09-27 1978-09-27 Object surface defect detection device

Publications (2)

Publication Number Publication Date
JPS5544926A JPS5544926A (en) 1980-03-29
JPS5932723B2 true JPS5932723B2 (en) 1984-08-10

Family

ID=14724694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11796778A Expired JPS5932723B2 (en) 1978-09-27 1978-09-27 Object surface defect detection device

Country Status (1)

Country Link
JP (1) JPS5932723B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5381613B2 (en) * 2009-10-23 2014-01-08 富士通株式会社 Optical scanning apparatus and optical scanning method
DE102014212633B4 (en) * 2014-06-30 2017-03-09 Inoex Gmbh Measuring device and method for measuring test objects

Also Published As

Publication number Publication date
JPS5544926A (en) 1980-03-29

Similar Documents

Publication Publication Date Title
US4583854A (en) High resolution electronic automatic imaging and inspecting system
US4874246A (en) Arrangement for optically measuring a distance between a surface and a reference plane
JPS5849819B2 (en) Sousashiki Kensa Souchi
US4728196A (en) Arrangement for determining a surface structure, especially for roughness
JPS6036013B2 (en) Metal surface defect inspection method
EP3537100B1 (en) Methods and apparatuses for refractive index measurement of transparent tube
US4099051A (en) Inspection apparatus employing a circular scan
CA1244688A (en) Optical projector
US4577101A (en) Shaft encoder with an optical system comprising two straight-line-generatrix surfaces
US6285451B1 (en) Noncontacting optical method for determining thickness and related apparatus
US4690565A (en) Optical apparatus for the detection of scattered light
US5978089A (en) Non-contact method for measuring the shape of an object
JPS5932723B2 (en) Object surface defect detection device
JPS5960344A (en) Method and device for automatically inspecting surface by coherent laser luminous flux
RU2270979C2 (en) Device for determination of inner surface contour of object
JP2865337B2 (en) Optical measuring device
JPS6432105A (en) Angle deviation measuring instrument for flat plate member
JPS62502421A (en) Equipment for orienting, inspecting and/or measuring two-dimensional objects
US4523842A (en) Asperic surface test fixture
JPH0471453B2 (en)
SU1446465A2 (en) Device for monitoring surface roughness
JPH09281054A (en) Method and apparatus for surface inspection of disk
SU1312380A1 (en) Device for checking surface roughness
JPH0357914A (en) Optical probe
SU868348A1 (en) Device for checking surface roughness