JPH0471453B2 - - Google Patents

Info

Publication number
JPH0471453B2
JPH0471453B2 JP19565285A JP19565285A JPH0471453B2 JP H0471453 B2 JPH0471453 B2 JP H0471453B2 JP 19565285 A JP19565285 A JP 19565285A JP 19565285 A JP19565285 A JP 19565285A JP H0471453 B2 JPH0471453 B2 JP H0471453B2
Authority
JP
Japan
Prior art keywords
optical system
pinhole
laser light
fine movement
tested
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19565285A
Other languages
Japanese (ja)
Other versions
JPS6255542A (en
Inventor
Taisuke Endo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP19565285A priority Critical patent/JPS6255542A/en
Publication of JPS6255542A publication Critical patent/JPS6255542A/en
Publication of JPH0471453B2 publication Critical patent/JPH0471453B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、光学系に細い光線を所定の位置か
ら所定の角度で入射し、光学系の後方に置いた衝
立上での出射光の位置を測定して、光学系内での
光路を光線追跡により検査するための光学系検査
装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention is directed to a method in which a thin beam of light is incident on an optical system from a predetermined position at a predetermined angle, and the position of the emitted light is determined on a screen placed behind the optical system. The present invention relates to an optical system inspection device for measuring and inspecting an optical path within an optical system by ray tracing.

〔従来の技術〕[Conventional technology]

従来、光学系の光路を検査するための装置とし
て第2図に示すものがあつた。図において、1は
レーザ光源、2はレーザ光源1から発生されるレ
ーザ光を平行光線にするための望遠光学系、3は
絞り、4は被検光学系、5は被検光学系4に対し
細い光線の入射位置および入射方向を調整するた
めの第1の微動台、6は被検光学系4からの出射
光線を通過させるためのピンホール、7はピンホ
ール6の位置を調整するための第2の微動台であ
る。
Conventionally, there has been a device shown in FIG. 2 for inspecting the optical path of an optical system. In the figure, 1 is a laser light source, 2 is a telephoto optical system for collimating the laser light generated from the laser light source 1, 3 is an aperture, 4 is a test optical system, and 5 is for a test optical system 4. A first fine movement stage for adjusting the incident position and direction of the thin beam of light; 6 a pinhole for passing the output beam from the optical system 4 to be examined; 7 a pinhole for adjusting the position of the pinhole 6; This is the second fine movement table.

次に動作について説明する。レーザ光源1から
出るレーザ光を望遠光学系2により平行光線に
し、絞り3により細い平行光線を取り出し、第1
の微動台5を調整して被検光学系4に所定の位置
から所定の角度で入射させると、光線は被検光学
系4を構成するレンズの各面でスネルの法則に従
う屈折をくり返して進み反対側へ透過する。透過
光がピンホール6を通過するよう第2の微動台7
を調整し、被検光学系4を置かないときに光線が
通るピンホール6の位置を原点として、第2の微
動台7の目盛を読みとり、光線追跡による計算値
と比較することにより光学系の検査ができる。
Next, the operation will be explained. The laser light emitted from the laser light source 1 is made into parallel light beams by the telephoto optical system 2, and a thin parallel light beam is taken out by the aperture 3.
When the fine adjustment table 5 is adjusted so that the light beam enters the optical system under test 4 from a predetermined position and at a predetermined angle, the light beam is repeatedly refracted according to Snell's law on each surface of the lens that constitutes the optical system under test 4 and advances. Transmit to the other side. The second fine movement table 7 is arranged so that the transmitted light passes through the pinhole 6.
The position of the pinhole 6 through which the light beam passes when the optical system 4 to be tested is not placed is the origin, and the scale of the second fine movement table 7 is read and compared with the value calculated by ray tracing. Can be inspected.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の光学系検査装置においては、細い平行光
線を入射しても、被検光学系4を通過した光は被
検光学系4により平行光線ではなくなるので、出
射光の検出位置すなわちピンホール6上では太い
光線になつてしまい位置の検出精度が低いという
問題点があつた。幾何光学的には絞りを小さくし
て入射光線を細くすると出射光線も細くできるは
ずであるが、実際には光の強度が低下して光線位
置の検出が困難になるうえ絞りでの回折によりむ
しろ光線が広がつてしまうため精度の向上は難し
い。
In a conventional optical system inspection device, even if a thin parallel beam is incident, the light that passes through the optical system to be inspected 4 is no longer a parallel beam due to the optical system to be inspected. However, there was a problem in that the beam became thick and the position detection accuracy was low. In terms of geometrical optics, if you make the aperture smaller and make the incident light beam narrower, you should be able to make the output light beam narrower, but in reality, the intensity of the light decreases, making it difficult to detect the position of the light beam, and the diffraction at the aperture makes the output light beam narrower. Improving accuracy is difficult because the light beam spreads out.

この発明は上記のような問題点を解消するため
になされたもので、被検光学系からの出射光線の
強度が十分あり、かつ出射光線の中心位置が明確
にわかり、精度良く出射光線の位置を測定できる
光学系検査装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems.The intensity of the emitted light beam from the optical system to be tested is sufficient, and the center position of the emitted light beam can be clearly seen, and the position of the emitted light beam can be accurately determined. The objective is to obtain an optical system inspection device that can measure .

〔問題点を解決するための手段〕[Means for solving problems]

この発明による光学系検査装置は、レーザ光源
と被検光学系との間に金属顕微鏡用対物レンズと
ピンホールおよび開口径可変な絞りを設けたもの
である。
The optical system inspection apparatus according to the present invention is provided with an objective lens for a metallurgical microscope, a pinhole, and a diaphragm with a variable aperture diameter between a laser light source and an optical system to be inspected.

〔作用〕[Effect]

この発明における対物レンズはレーザ光を集光
し、集光点において中心部が明るい同心円状の回
折パタンを生じる。中心部の明るい部分の直径程
度のピンホールを集光点に置くと、集光点を中心
とする球面波が得られる。絞りはこの球面波の一
部だけを通過させるので、絞りによる回折が起こ
る。回折光を被検光学系に入射させ、絞りの口径
を調整すると被検レンズの透過光は中心の明るい
同心円状の回折パタンとなり、出射光の中心位置
が明確にわかる。
The objective lens in this invention condenses the laser beam and produces a concentric diffraction pattern with a bright center at the condensing point. If a pinhole about the diameter of the central bright part is placed at the focal point, a spherical wave centered at the focal point can be obtained. Since the aperture allows only a portion of this spherical wave to pass through, diffraction occurs due to the aperture. When the diffracted light is made incident on the optical system to be tested and the aperture of the diaphragm is adjusted, the light transmitted through the tested lens becomes a concentric diffraction pattern with a bright center, and the center position of the emitted light can be clearly seen.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示す光学系検査
装置の構成図であり、第1図において、1はレー
ザ光源、3は絞り、4は被検光学系、5は第1の
微動台、6はピンホール、7は第2の微動台、8
は金属顕微鏡用対物レンズ、9はレーザ光の集光
点に置き中心部の明るい部分のみを通過させるピ
ンホールである。
FIG. 1 is a configuration diagram of an optical system inspection apparatus showing an embodiment of the present invention. In FIG. 1, 1 is a laser light source, 3 is an aperture, 4 is an optical system to be inspected, and 5 is a first fine movement table. , 6 is a pinhole, 7 is a second fine movement table, 8
9 is an objective lens for a metallurgical microscope, and 9 is a pinhole that is placed at the focal point of the laser beam and allows only the bright part at the center to pass through.

次に動作について説明する。レーザ光源1から
出るレーザ光を対物レンズ8で集光し、レーザ光
の集光点に置いたピンホール9により対物レンズ
2による回折光の中央部の明るい部分のみを通過
させるとピンホール9の穴の位置から放射状に広
がる空間的なノイズのない球面波が得られる。絞
り3はこの球面波の一部分を通過させ、被検光学
系4に入射するので、被検光学系4の透過光はピ
ンホール6の位置に同心円状の回折パタンをつく
る。この同心円状のパタンは、ピンホール6から
被検光学系4を通して絞り3を見たとき、絞り3
の穴の中に入るフレネルゾーンの数に依存し、絞
り3の穴径を調整することにより、同心円状のパ
タンの中心部に輝点ができる状態にすることがで
きる。この状態で第2の微動台7を調整して、輝
点かピンホール6を通過するようにし、第2の微
動台7の目盛を読み取ることにより、出射光線の
位置を精密に測定することができる。第1の微動
台5を動かし、各入射位置、入射角について出射
光線の位置を測定すると被検光学系4の検査がで
きる。
Next, the operation will be explained. The laser beam emitted from the laser light source 1 is focused by the objective lens 8, and only the central bright part of the diffracted light by the objective lens 2 is passed through the pinhole 9 placed at the focal point of the laser beam. A spherical wave without spatial noise can be obtained that spreads radially from the hole position. The diaphragm 3 allows a portion of this spherical wave to pass through and enters the optical system to be tested 4, so that the transmitted light from the optical system to be tested 4 forms a concentric diffraction pattern at the position of the pinhole 6. This concentric pattern shows that when the aperture 3 is viewed from the pinhole 6 through the optical system 4 under test, the aperture 3
By adjusting the hole diameter of the diaphragm 3 depending on the number of Fresnel zones that fit into the hole, a bright spot can be created at the center of the concentric pattern. In this state, the position of the emitted light beam can be precisely measured by adjusting the second fine movement table 7 so that it passes through the bright spot or pinhole 6, and reading the scale of the second fine movement table 7. can. The optical system 4 to be inspected can be inspected by moving the first fine movement table 5 and measuring the position of the emitted light beam for each incident position and angle of incidence.

なお、上記実施例では、出射光線の位置検出に
ピンホール6を使用したが、衝立や撮像素子の受
光面に回折パタンを投影してもよい。
In the above embodiment, the pinhole 6 is used to detect the position of the emitted light beam, but the diffraction pattern may be projected onto a screen or the light-receiving surface of an image sensor.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、回折を利用
することにより光線の中心位置が明瞭にわかるの
で、光線追跡を実際に精度良く行え、従来結像特
性による検査が困難であつたレンズの軸ずれ、レ
ンズの傾斜等の非対称要素を含む光学系の検査が
可能となつた。また、この発明によれば、測定値
は光学設計に用いる光線追跡法と直接対応してい
るので設計値との対応が明らかであり、、設計値
からのずれがあつた場合の光学系の修正が容易に
行える。
As described above, according to the present invention, the center position of a light ray can be clearly seen by using diffraction, so ray tracing can be actually performed with high precision, and the axis of the lens, which was conventionally difficult to inspect based on imaging characteristics. It is now possible to inspect optical systems that include asymmetric elements such as misalignment and lens tilt. Furthermore, according to the present invention, since the measured values directly correspond to the ray tracing method used for optical design, the correspondence with the designed values is clear, and the optical system can be corrected if there is a deviation from the designed values. can be easily done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による光学系検査
装置を示す図、第2図は従来の光学系検査装置を
示す図である。 図において、1はレーザ光源、3は絞り、4は
被検光学系、5は第1の微動台、6,9はピンホ
ール、7は第2の微動台、8は金属顕微鏡用対物
レンズである。なお図中同一あるいは相当部分に
は同一符号を付して示してある。
FIG. 1 is a diagram showing an optical system inspection device according to an embodiment of the present invention, and FIG. 2 is a diagram showing a conventional optical system inspection device. In the figure, 1 is a laser light source, 3 is an aperture, 4 is a test optical system, 5 is a first fine movement table, 6 and 9 are pinholes, 7 is a second fine movement table, and 8 is an objective lens for a metallurgical microscope. be. Note that the same or corresponding parts in the figures are indicated by the same reference numerals.

Claims (1)

【特許請求の範囲】[Claims] 1 レーザ光源と、このレーザ光源から発するレ
ーザ光を集光するための金属顕微鏡用対物レンズ
と、レーザ光の集光点に置いたピンホールと、こ
のピンホールから出る発散レーザ光の一部を通す
開口径が可変な絞りと、この絞りで制限された発
散レーザ光に対し被検光学系の位置および角度を
調整するための第1の微動台と、上記被検光学系
を透過したレーザ光の中心部が通るよう位置を調
整するための第2の微動台に取付けたピンホール
とを具備したことを特徴とする光学系検査装置。
1 A laser light source, an objective lens for a metallurgical microscope to focus the laser light emitted from this laser light source, a pinhole placed at the focal point of the laser light, and a part of the diverging laser light emitted from this pinhole. A diaphragm with a variable aperture diameter to pass through, a first fine movement stage for adjusting the position and angle of the optical system to be tested with respect to the divergent laser beam limited by the diaphragm, and a laser beam that has passed through the optical system to be tested. An optical system inspection device comprising: a pinhole attached to a second fine movement table for adjusting the position so that the center of the optical system passes through the pinhole.
JP19565285A 1985-09-04 1985-09-04 Optical system inspecting device Granted JPS6255542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19565285A JPS6255542A (en) 1985-09-04 1985-09-04 Optical system inspecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19565285A JPS6255542A (en) 1985-09-04 1985-09-04 Optical system inspecting device

Publications (2)

Publication Number Publication Date
JPS6255542A JPS6255542A (en) 1987-03-11
JPH0471453B2 true JPH0471453B2 (en) 1992-11-13

Family

ID=16344732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19565285A Granted JPS6255542A (en) 1985-09-04 1985-09-04 Optical system inspecting device

Country Status (1)

Country Link
JP (1) JPS6255542A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100474141B1 (en) * 2001-07-06 2005-03-08 전자빔기술센터 주식회사 Method for aligning apertures of parts using laser and method for aligning parts using the same
WO2006033544A1 (en) * 2004-09-20 2006-03-30 Cebt Co. Ltd. Method for aligning micro-apertures of parts using laser difflection patern and system using the same
CN104807614B (en) * 2014-01-23 2017-07-11 苏州智华汽车电子有限公司 A kind of preparation method of vehicle-mounted camera optical axis check machine with golden sample is demarcated
CN107687937B (en) * 2017-08-10 2020-02-07 苏州精濑光电有限公司 Excimer laser annealing ELA process quality measurement method and system

Also Published As

Publication number Publication date
JPS6255542A (en) 1987-03-11

Similar Documents

Publication Publication Date Title
EP0503874A2 (en) Optical measurement device with enhanced sensitivity
JP2002071513A (en) Interferometer for immersion microscope objective and evaluation method of the immersion microscope objective
US4281926A (en) Method and means for analyzing sphero-cylindrical optical systems
JPH02161332A (en) Device and method for measuring radius of curvature
US6794625B2 (en) Dynamic automatic focusing method and apparatus using interference patterns
JPH02238338A (en) Lens inspecting apparatus
JPS60196605A (en) Scattering-light detecting optical device
JP2008026049A (en) Flange focal distance measuring instrument
JPH0471453B2 (en)
JPH06508218A (en) Deflection type optical device with wide measurement range
JPS60200112A (en) Optical detection of shape error
JP3040131B2 (en) Spherical surface scratch inspection device
JPH11304640A (en) Inspection apparatus for optical element
JP2003161610A (en) Optical measurement device
KR100738387B1 (en) Wavefront measuring devices with off-axis illumination
JPS62502421A (en) Equipment for orienting, inspecting and/or measuring two-dimensional objects
JP2000097657A (en) Interferometer
JP3365881B2 (en) Lens refractive index inspection device
JPH0783620A (en) Laser displacement meter
CN115200471A (en) Speckle device for lead bonding machine and control method thereof
JPS63182547A (en) Particle analyzer
JPH0714308U (en) Surface roughness inspection device
JPH06258181A (en) Eccentricity measuring apparatus
JPH01201144A (en) Scattered light detector
JPS61120912A (en) Distance measuring device